
Cost-Based Heuristic Search is Sensitive to the Ratio of Operator Costs

Christopher Wilt and Wheeler Ruml
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA

{wilt, ruml} atcs.unh.edu

Abstract

In many domains, different actions have different costs. In
this paper, we show that various kinds of best-first search
algorithms are sensitive to the ratio between the lowest and
highest operator costs. First, we take common benchmark
domains and show that when we increase the ratio of oper-
ator costs, the number of node expansions required to find a
solution increases. Second, we provide a theoretical analysis
showing one reason this phenomenon occurs. We also dis-
cuss additional domain features that can cause this increased
difficulty. Third, we show that searching using distance-to-
go estimates can significantly ameliorate this problem. Our
analysis takes an important step toward understanding algo-
rithm performance in the presence of differing costs. This re-
search direction will likely only grow in importance as heuris-
tic search is deployed to solve real-world problems.

Introduction
In real world domains, different actions rarely all have the
same cost. For example, in the logistics domain, the cost of
moving a package from one vehicle to another is very small
compared to the cost of moving the vehicle, and the cost of
moving different kinds of vehicles can vary by more than
an order of magnitude. Other examples include traversing
a map where there are different kinds of terrain, or a manu-
facturing domain where the cost of materials, machines, and
labor can vary by orders of magnitude. In robotic motion
planning, sometimes large macro-actions are considered in
addition to the base actions (Likhachev and Ferguson 2009),
but these macro actions have a very high cost compared
to the base ones. Despite this reality, many of the com-
mon benchmark domains used to validate search algorithms
(sliding tile puzzle, pancake puzzle, topspin puzzle, Rubik’s
cube, grid path planning, STRIPS planning, etc.) are all unit
cost. To understand how heuristic search can be used on
real-world problems, it is crucial to examine algorithm be-
havior on problem domains that exhibit a variety of action
costs.

In this paper, we first present an empirical analysis that
shows that, when costs are not uniform, problems become
much more difficult for standard heuristic search algorithms.
We then provide a theoretical analysis that demonstrates that

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a single error in the heuristic can cause A* (Hart, Nilsson,
and Raphael 1968), weighted A* (Pohl 1970), and greedy
search (Doran and Michie 1966) to all expand a number of
nodes exponential in the ratio of the heuristic error to the
smallest operator cost. We argue that this effect plays an im-
portant role in explaining the observation that non-unit cost
domains are much more difficult to solve than a comparable
unit cost domain, and we argue that this phenomenon will
occur whenever the domain has low cost operators that can
be applied from any node, and few duplicates. Last, we show
that exploiting a heuristic that identifies short paths, as op-
posed to cheap paths, fares much better than basic best-first
searches in domains with non-unit operators.

This work shows that the common strategy in search re-
search of considering only unit-cost domains has an im-
portant weakness: algorithm behavior can be very differ-
ent when actions have different costs. Our analysis takes
a step toward understanding algorithm performance in the
presence of differing costs, and demonstrates the effective-
ness of recently-proposed distance-based methods in provid-
ing suboptimal solutions. This research direction will likely
only grow in importance as heuristic search is increasingly
deployed to solve real-world problems, which often feature
a variety of costs.

Background
We define a search problem as the task of finding a least cost
path through a directed weighted graphG where all weights
are finite and strictly positive. If all edges in the graph have
the same weight, we say the graph hasunit cost. Otherwise,
we say the graph hasnon-unit cost. In a graphG we define
the operator cost ratioto be the ratio of the largest edge
weight inG to the smallest edge weight inG.

For any noden in the graph,succ(n) returns the succes-
sors ofn in G. In the graph, some nodes are goal nodes,
identified by a predicategoal(n). For all nodes,h∗(n) de-
notes the cost of a cheapest path inG from n to a node that
satisfies thegoal predicate. Since it is generally computa-
tionally demanding to calculateh∗ for any given node, we
have a functionh(n) that accepts a node and returns an esti-
mate ofh∗(n). We assume that this heuristic is admissible.
An admissible heuristic is one that satisfies:

∀n : h∗(n) ≥ h(n) (1)

c(n, n′) denotes the cost of a cheapest path fromn to n′. A
consistent heuristic is one that satisfies:

∀n, n′ : h(n) ≤ c(n, n′) + h(n′) (2)

A search problem is formally defined by the tuple contain-
ingG, a goal predicate, ah() function and a nodestart ∈ G.
Search algorithms like A*, weighted A*, and greedy search
construct paths through the graph starting at thestart node,
so any noden that has been encountered by the search algo-
rithm has a known path fromstart ton throughG. The cost
of this path is defined asg(n).

Related Work
Other researchers have demonstrated that domains with high
cost ratios can cause best-first search to perform poorly. The
problem, in its most insidious form, was first identified by
Benton et al. (2010). They discussg value plateaus, a collec-
tion of nodes that are connected to one another, all with the
sameg value. Domains withg value plateaus have zero cost
operators, so these domains have an infinite operator cost
ratio. Such plateaus arise in temporal planning with concur-
rent actions and the goal of minimizing makespan, where
extraneous concurrent actions can be inserted into a partially
constructed plan without increasing its makespan, creating a
group of connected nodes with the sameg value. Benton et
al. (2010) prove that when using either an optimal or a sub-
optimal search algorithm, large portions ofg value plateaus
have to be expanded, and they then demonstrate empirically
that this phenomenon can be observed in modern planners.
They propose a solution that uses a node evaluation function
considering estimated makespan to go, makespan thus far,
and estimated total time consumed by all actions, indepen-
dent of any parallelism. The estimate of the total time with-
out parallelism is weighted and added to the estimated re-
maining makespan and incurred makespan to form the final
node evaluation function, which is then tested empirically
in a planner, which performs well on the planning domains
they discuss. Benton et al. discuss the effects of zero cost
operators, but do not discuss problems associated with small
cost operators.

Cushing, Benton, and Kambhampati (2010) argue that
cost based search performs poorly when the ratio of the
largest operator cost to the smallest operator cost is large,
and that cost-based search can take prohibitively long to
find solutions when this occurs. They first argue that it is
straightforward to construct domains in which cost-based
search performs extremely poorly simply by having a very
low cost operator that is always applicable, but does not im-
mediately lead to a goal. They empirically demonstrate this
phenomenon in a travel domain where passengers have to
be moved around by airplanes, but boarding is much less ex-
pensive than flying the airplane. They provide empirical evi-
dence using planners to demonstrate that the presence of low
cost operators causes traditional best-first search to perform
poorly, and show that best-first searches that use plan size or
hybridized size-cost metrics to rank nodes performs much
better as compared to when using cost alone. Their analy-
sis of how the heuristic factors into the analysis is limitedto
an empirical analysis of two planning systems. This work

Problem Expansions
Unit Pancake 69
Sum Pancake 3,711

Table 1: A* expansions on different problems

invited questions about the theoretical underpinnings of pre-
cisely why the range of operator costs was causing such a
huge problem, and also questions about why the presence of
an informed heuristic was not ameliorating the problem.

Concurrently with our work, Cushing, Benton, and
Kambhampati (2011) extended their previous analysis, dis-
cussing examples of domains that exhibit the problematic
operator cost ratios. Once again, their theoretical analysis
is almost exclusively confined to uniform cost search, and
does not consider the mitigating effects an informed heuris-
tic can have, although they speculate that heuristics can help
improve the bound, but not asymptotically. Their consider-
ation of heuristics is purely empirical, limited to extensive
analysis of the performance of two planning systems, dis-
cussing how the various components of the planners deal
with a wide variety of operator costs, and either exasperate
or mitigate the underlying problem.

In this paper, we extend this previous work in two ways.
First, we illustrate the problem empirically in a number
of standard benchmark domains from the search literature.
Second we deepen the theoretical underpinnings of the prob-
lem associated with a wide range of operator costs. We do
this by showing that, given a heuristic with a bound on its
change between any parent and child node, the number of
extra nodes introduced into the search by a heuristic error
will be exponential, and that this can only be mitigated by
change in the branching factor (e.g. branching factor is not
uniform) or the detection of duplicates; the heuristic can-
not rise sufficiently quickly to change the underlying asymp-
totic complexity. We also show that the property of bounded
change of heuristic error arises in a number of common
robotics heuristics, as well as any domain with a consistent
heuristic and invertible operators.

Difficulty of High Cost Ratio Domains
The first step in our analysis is to show that, empirically,
non-unit cost domains are more difficult than their unit-cost
counterparts. In order to demonstrate the difficulty associ-
ated with non-unit cost edges, we consider modifications of
two common benchmark domains: the sliding tile puzzle
and the pancake puzzle. We do this to maintain the same
connectivity and heuristic.

We define failure of a search to be exhausting main mem-
ory, which is 8 GB on our machines, without finding a solu-
tion.

The pancake puzzle consists of an array of numbers, and
the array must be sorted by flipping a prefix of the array. In
the standard variety of the pancake puzzle, each flip costs
1. In our sum pancake puzzle, the cost of each flip is de-
termined by adding up the values contained in the prefix to
be flipped. It is unclear how to effectively adapt the gap

Cost Function Failure Rate 95% Conf
Unit 21% 7.9%
Cost =

√
face 48% 9.6%

Cost = 1
face 66% 9.5%

Table 2: Behavior of A* on tile puzzles with different cost
functions

heuristic (Helmert 2010) to the non-unit puzzle, so we use
a pattern database (Culberson and Schaeffer 1998) for both
varieties of pancake puzzle to make sure the heuristics used
are comparable to one another. We consider a 10 pancake
problem with a pattern database that tracks 7 pancakes, in
order to make sure that A* is able to solve both the unit and
the non-unit cost versions of the problem. We considered
100 randomly generated problems, and solved the same set
of problems with both cost functions. With the sum cost
function, the cost of a move ranges from 3 to 55, giving a
ratio of 18.3. As can be seen in Table 1, the non-unit sum
cost function requires more than 50 times the number of ex-
pansions than its unit cost cousin.

The sliding tile puzzle we consider is a 4x4 grid with a
number, 1-15, or blank in each slot. A move consists of
swapping the position of the blank with a tile next to it, either
up, down, left, or right, with the restriction that all tilesmust
remain on the 4x4 grid. In the standard sliding tile puzzle,
each move costs 1, but we also consider variants where the
cost of doing a move is related to the face of the tile. We
use the Manhattan distance heuristic for all puzzles. For the
non-unit puzzles, the standard Manhattan distance heuristic
is weighted to account for the different operator costs while
retaining both admissibility and consistency. We use the 100
instances published by Korf (1985). As can be seen in Table
2, as we increase the ratio of operator costs from 1 in Unit
to 3.9 in square root tiles to 15 in inverse tiles, the problems
get more difficult. These differences are statistically highly
significant.

We have seen that a simple modification to the cost
function of two standard benchmark domains makes the
problems require significantly more computational effort to
solve. These examples establish the fact that non-unit cost
domains can be much more difficult as compared to a unit
cost domain with the same state space and connectivity.

Localized Heuristic Error
In this section, we consider one possible explanation for the
difficulty of high cost ratio problems. The problem occurs
when the amount the heuristic can change across a transition
is bounded. We show that this condition holds when we have
a consistent heuristic in a domain with invertible operators,
but we argue that some heuristics have this property even if
the operators in the domain are not invertible. We use this
bound on the rate at whichh can change to prove bounds
on the rate at which error in the heuristic can change. We
then apply these results to draw conclusions about the size
of heuristic depressions in non-unit cost domains.

Felner et al. (2011) show that in a graph with invertible

operators, any consistent heuristic will satisfy:

∀n, s : ∆h(n, s) = |h(n)− h(s)| ≤ c(n, s) (3)

This is one method of establishing a bound on how
∆h(n, c) can change along a path. Note that having re-
versible operators is not the only way in which a bound on
∆h can be established. Some heuristics inherently have this
property. For example, in the dynamic robot motion plan-
ning domain, operators are often not reversible. In this do-
main, the usual heuristic is calculated by solving the prob-
lem without any dynamics. Without dynamics, operators
can be reversed, so the rate at which the heuristic can change
is bounded by the cost of the transition.

Establishing a bound on∆h allows us to establish prop-
erties about not only the heuristic error, but also about the
behavior of search algorithms that rely upon the heuristic
for guidance.

Bounds on the rate at whichh can change have an im-
portant consequence for how the error inh(n), defined as
ǫ(n) = h∗(n)− h(n), can change across any transition.

Theorem 1. In any domain where∆h(n, s) ≤ c(n, s) holds
for any pair of nodes n, s such that s is a successor of n:

∆ǫ(n, s) = |ǫ(n)− ǫ(s)| ≤ 2 · c(n, s) (4)

Proof. This equation can be rewritten as

|(h∗(n)− h(n))− (h∗(s)− h(s))| ≤ 2 · c(n, s) (5)

which itself can be rearranged to be

|(h∗(n)− h∗(s))− (h(n)− h(s))| ≤ 2 · c(n, s) (6)

The fact thath∗ is monotone implies that the mosth∗ can
change between two nodesn ands where s is a successor
of n is c(n, s). The statement of the theorem limitsh(n) to
within c(n, s) of h(s). Since the change in bothh andh∗

is bounded by thec(n, s), the difference between theǫ(n)
andǫ(s) is at most twicec(n, s). The 2 is necessary because
(h∗(n) − h∗(s)) = ∆h∗ and(h(n) − h(s)) = −∆h may
have opposite signs.

This bound∆ǫ places important restrictions on the cre-
ation of a local minimum in the heuristic. When the change
in h(n) is bounded and all nodes have similar cost, in or-
der to accumulate a large heuristic error, the heuristic hasto
provide incorrect assessments for several transitions. For ex-
ample, in order for a heuristic in a unit cost domain to have
an error of 4, there must be at least two transitions where the
heuristic does not change correctly; it is not possible for any
single transition to add more than 2 to the total amount of
error present inh.

In a non-unit cost domain, the error associated with a high
cost operator can contribute much more to the overall heuris-
tic error as compared to the error potentially contributed by
a low cost operator. The result of this is that, in a domain
with non-unit cost, heuristic error does not accumulate uni-
formly because the larger operators can contribute more to
the heuristic error. This does not occur in domains with unit
costs, because each operator can contribute exactly the same

Figure 1: Examples of heuristic error accumulation along a
path

amount to the heuristic error. A simple example of this phe-
nomenon can be seen in the top part of Figure 1; all opera-
tors contribute the same percent to the total error, but due to
size differences, a single large operator contributes almost
all of the error inh. If we consider a different model of error
where any operator can either add its size to the total error,
or not contribute to the error, we have the example in the bot-
tom part of Figure 1, where a single large operator can con-
tribute so much error to a path that the effects of the other
operators is insignificant. This can occur when, for exam-
ple, an important aspect of the domain has been abstracted
away in the heuristic. In either case, the large operators have
the ability to contribute much more error than the smaller
operators.

Consequences for Best-First Search
Any deviation fromh∗(n) in an expanded node can cause
A* to expand extra nodes. In this section, we show that the
number of extra nodes is exponential in the ratio of the size
of the error to the smallest cost operator.

Corollary 1. In a domain where∆h(n, s) ≤ c(n, s) with
an operator of costδ, if a noden is expanded by A* and all
descendants ofn haveb applicable operators of costδ, at
leastbǫ(n)/2·δ extra nodes will be introduced to the open list,
unless there are duplicate nodes or dead ends to prematurely
terminate the search within the subtree of descendants ofn.

Proof. Consider the situation where an A* search encoun-
ters a node n that has a heuristic error of sizeǫ(n). This
means thatg(n) + h(n) + ǫ(n) = gopt(goal). In or-
der to expand the goal, all descendantss of n which have
f(s) ≤ gopt(goal) must be expanded.

We have assumed that the change inh going from the
parent to the child is bounded by the cost of the operator
used to get from the parent to child. We have also assumed
that we can applyb operators with costδ. Sinceb operators
with costδ can be applied, then we have the result thatf
can increase by at most2δ per transition, at least while in
the subtree consisting of operators of costδ. Note that there
can be additional nodes reachable by different operators, but
these nodes are not counted by this theorem.

This bound on the change inf stems from the fact that
g(s) always increases fromg(n) by δ, and in the best case
h(s) will also increase byδ overh(n). This means that in
order to raisef(s) to something higher thangopt(goal), we

must apply a costδ operator at leastǫ(n)2·δ times to make it so
thatf(s) > gopt(goal).

The best case scenario is that the heuristic always rises
by δ across each transition, along withg. If this happens,

2 1 3
4 5 6 7
8 9 10 11
12 13 15 14

? ? ? ?
? ? ? ?
? ? ?
? ? 15 14

Figure 2: Left: 15 puzzle instance with a large heuristic min-
imum. Right: State in which the 14 tile can be moved.

we can apply theδ cost operatorǫ(n)2·δ times beforef(s) >
gopt(goal). If we assume there are no duplicate states, this
produces a tree of sizebǫ(n)/2·δ

The exact number of nodes that will be within the local
minimum is more difficult to calculate. First, it might not
always be possible to apply an operator with costδ. If this
is the case, then the local minimum might not havebǫ(n)/δ

nodes in it, becauseδ will be replaced by the cost of the
smallest operator that is applicable. If the domain has small
operators that are not always applicable, then this equation
will overestimate the number of nodes that will be intro-
duced to the open list.

In addition to that, the closed list can provide protection
against expandingbǫ(n)/δ nodes. If the local minimum does
not havebǫ(n)/2·δ unique nodes in it, then the closed list will
detect the duplicate states, allowing search to continue with
a more promising area of the graph. This observation plays
a critical role in determining whether cost-based search will
perform well in domains with cycles.

An Example
We consider a sliding tile puzzle in which the cost of moving
a tile is the value of the tile, or the face value of the tile
squared. On the instance shown in the left part of Figure
2, the Manhattan distance heuristic will underestimate the
cost of the root node by a very large margin. In order to
get to the solution, the 14 and the 15 tiles have to switch
places. In order for this to occur, one of the tiles has to
move out of the way. Letn denote a configuration as in
the right part of Figure 2, where we can move the 14 tile
up 1 slot, to make room for the 15 tile, and the other tiles
are arranged in any fashion. If we assume the optimal path
involves first moving the 14 out of the way (as opposed to
first moving the 15 out of the way), this node, or one like
it, must eventually make its way to the front of the open list.
Let s14 denote the node representing the state where we have
just moved the 14 tile. If we have unit cost,f(s14) − 2 =
f(n), sinceg(s14) = g(n)+1 andh(s14) = h(n)+1. If cost
is proportional to the tile face, then we havef(s14) − 28 =
f(n), sinceg(s14) = g(n) + 14 andh(s14) = h(n) + 14.
If cost is proportional to the square of the tile face, then we
havef(s14) − 392 = f(n), sinceg(s14) = g(n) + 142

andh(s14) = h(n) + 142, and2 · 142 = 392. Sinces14
is along the optimal path, eventually it must be expanded by
A*. Unfortunately, in order to get this node to the front of
the open list A* must first expand enough nodes such that the
minimum f on the open list isf(n) + {2, 28, 392}, where
the appropriate value depends upon the cost function under

Cost (ratio) Algorithm Exp Cost Length

Unit (1:1)
A* 76,599 28 28

WA*(3) 19,800 34 34
Greedy 881 168 168

Face (1:15)
A* 482,948 210 28

WA*(3) 94,301 314 48
Greedy 36,932 956 180

Face2 (1:225)
A* 3,575,939 DNF DNF

WA*(3) 1,699,265 2,884 56
Greedy 1,156,044 6,272 94

Table 3: Difficulty of solving the puzzle from Figure 2

consideration.
The core problem is that raising thef value of the head

of the open list in non-unit domains can require expanding
a very large number of nodes due to the low cost operators.
We can observe this phenomenon empirically by consider-
ing Table 3, where we can see that the more we vary the
operator costs, more nodes must be expanded to get out of
the local minimum associated with the root node.

Suboptimal Cost-Based Search
One way to scale A* to difficult problems is to relax the
admissibility criterion associated with A* by using either
weighed A* (Pohl 1970) or greedy search (f(n) = h(n))
(Doran and Michie 1966). In Figure 2, any solution has to
move either the 14 or the 15 tile from its initial location,
which will make the heuristic larger. Let the collection of
nodes such that either the 14 or the 15 tile has been moved
be denoted by{nlm}, since one of these nodes must be in-
cluded in any path to a solution. In greedy search, in order
to bring one of the nodes in{nlm} to the front of the open
list, all nodes that have a lowerh value have to be removed
from the open list. In particular, the siblings of the node
from {nlm} under consideration have to be expanded, as do
all of their successors that have a lowerh value. Since the
sliding tiles domain has reversible operators and a consistent
heuristic, by Theorem 1,∆h is bounded by the cost of the
operator used to transition. The end result is that it could
potentially take a very long time to get one of the nodes in
{nlm} to the front of the open list if it is always possible to
apply a low cost operator.

As can be seen in Table 3, when faced with a prob-
lem where there is a landmark node where the heuristic in-
creases, both weighted A* and greedy search must expand
significantly more nodes when the operator costs in the do-
main vary, and this number increases as the range of operator
costs increases.

When does this Problem Arise?
We have shown that in certain domains, the A* search algo-
rithm has to expand a very high number of nodes as com-
pared to a identical search space with a different cost func-
tion. In addition to that, we have shown that weighted A*
and greedy search are not immune to this problem. A natu-
ral question to ask is how to predict when such problems will

Figure 3: Greedy search and heuristic error

occur. For A*, we use two primary features to predict when
this phenomenon will be observed. The first feature is that
the ratio of the highest cost operator to the smallest cost op-
erator is high. Since error inh accumulates along a path pro-
portionately to operator cost, the presence of extraordinarily
large operators means it is possible for the error to make
very large jumps. This allows the ratio of heuristic error to
the smallest operator cost to rise quickly, possibly with the
application of a single very large operator. The second fea-
ture is that the rate at whichh can change is bounded, which
bounds how quickly the search algorithm can recover from
the accumulated error inh when applying low cost opera-
tors. These two features combine to introduce an exponen-
tial number of nodes onto the open list that A* must expand
in order to terminate.

The situation with greedy search is slightly different.
With greedy search, the only extra expansions are associ-
ated with vacillating. Vacillation can occur whenever the
children of a node all have higherh value than the head of
the open list, but this principle can be applied recursivelyto
all descendants. As can be seen in Figure 3, greedy search
pays by expanding an exponential number of nodes for the
error of 3 associated with the node labeled “Bad Node”. This
is because “Bad Node” should not be at the front of the open
list, but because of a deceptively lowh, it is. In order to
recover from this error, the descendants of “Bad Node” all
have to be expanded in order to be cleared from the open
list. Note that the heuristic below “Bad Node” is behaving
as favorably as possible, rising as much as possible at each
transition. It could also be the case thath stays the same, as
is the case with “Worse Node”. Beneath this node there is
an arbitrarily large tree where the heuristic does not change.
In this example, greedy search can be made to expand an ar-
bitrarily large number of nodes before discovering the goal,
establishing that the exponential growth in the size of the

heuristic error is a lower bound, subject to modification only
by variation in the branching factor, operator applicability or
the closed list.

With weighted A* bothh andg can contribute to mitigat-
ing the error fromh. Even in the best case scenario there
are still an exponential number of nodes in the tree under
the “Bad Node” because withbǫ/(2·w+1)·δ nodes this tree is
still exponential with respect toǫδ , although the error term is
mitigated by the weightw.

The fact that this tree is non-unit is crucial. The error in
h increases by 5 when traversing the link from the root to
“Bad Node”, but the only reason the error is able to increase
by this much is because the transition cost is 5 and not 1.

A Solution: Search Distance
We have observed that cost-based best-first searches can eas-
ily become mired in an irrelevant sub-graph if faced with a
high cost operator whose effects were incorrectly tabulated
by the heuristic, or if the heuristic happens to take an incor-
rect value for whatever reason. This is a general problem,
but it is exacerbated in domains where the operator costs
vary significantly.

Following Cushing, Benton, and Kambhampati (2010),
we argue that searches that consider distance to go estimates
fare much better because their consideration of distance typ-
ically puts a tighter limit on how far they descend into local
minima. The algorithm proposed by Benton et al. (2010)
uses two quantities,hm(n) andhc(n). hm(n) is an esti-
mate of the remaining makespan, andhc(n) is an estimate
of the time consumed by all actions that must be incorpo-
rated into the plan assuming zero parallelism. The problems
we are considering do not have makespan, so as originally
proposed this algorithm does not apply.

Thayer, Ruml, and Kreis (2009) and Thayer and
Ruml (2011) investigate algorithms that exploitd(n) to
speed up search.d(n) is a heuristic that provides an esti-
mate of the number of nodes between the current node and
the goal node. The exact semantics ofd(n) vary. It can ei-
ther be the number of nodes along the path to the closest
goal, or the number of nodes along the path to the cheapest
goal. We considerd(n) to be the estimated distance between
the current node and the cheapest goal reachable from that
node. d(n) can be calculated in exactly the same way as
h(n) would be if the domain had unit cost. For example,
in the sliding tile puzzle the ordinary Manhattan distance
heuristic can serve asd(n).

We consider six algorithms, four of which make use of
a d(n) heuristic. The first algorithm we consider is greedy
search, where nodes are expanded inh(n) order. Second,
we consider weighted A*, where nodes are expanded in
f ′(n) = g(n) + w · h(n) order. The third algorithm we
consider expands nodes ind(n) order. We call this method
Speedy. Since we elect to drop duplicate states in order to
further speed things up, we call the specific variant used here
Speedier (Thayer, Ruml, and Kreis 2009). Fourth, we con-
sider a breadth-first beam search that orders nodes ond(n).
Fifth we consider Explicit Estimation Search (EES), which
is a bounded suboptimal algorithm that uses inadmissible

Domain Algorithm Expansions Cost

Tiles

Greedy/Speedier 2,117 519
WA* 3 13,007 74
d(n) beam (50) 4,207 90
EES 3 6,816 85
Skeptical 3 5,620 84

Pancake

Greedy/Speedier 26,174 7,532
WA* 3 18,225 15
d(n) beam (50) 11,940 241
EES 3 12,358 16
Skeptical 3 15,640 15

Table 4: Algorithms on unit cost domains

estimates ofd(n) andh(n) to guide search, as well as an
admissibleh(n) that is used to prove the quality bound. A
detailed description of the algorithm is given by Thayer and
Ruml (2011). The last algorithm we consider is Skeptical
search (Thayer, Dionne, and Ruml 2011), an algorithm that
orders nodes on̂f(n)′ = g(n) + w · ĥ(n), whereĥ(n) is an
improved, but inadmissible, estimate ofh∗(n), as its evalua-
tion function, using the admissibleh(n) to prove the bound
on the initial solution.

We show that searching ond(n) leads to very fast solu-
tions, but there is a cost: as would be expected, solutions
found disregarding all cost information are of very poor
quality. Fortunately, the bounded suboptimal searches that
leverage both distance and cost information are able to pro-
vide high quality solutions very quickly.

Empirical Results
Table 4 shows the results for the unit-cost version of the slid-
ing tile and pancake puzzles. Sinceh andd are the same in
a unit cost domain, greedy and speedier are the same. On
the 15 puzzle, we used the same instances as before. For
the pancake puzzle, we used 100 randomly generated 14
pancake problems, using a 7 pancake pattern database as a
heuristic. We can see that when we make all moves cost
the same, weighted A* performs about the same as EES and
skeptical, and there is no single pareto dominant algorithm.

Sliding Tiles
We consider the variant of the sliding tile puzzle where the
cost of moving a tile is the face value of the tile raised to the
third power, and use the same instances used by Korf (1985).
CPU time refers to the average CPU time needed to solve a
problem. Solution cost refers to the average cost of the solu-
tion found by an algorithm. DNF denotes that the algorithm
failed to find a solution for one or more instances. As can be
seen in Table 5, with this cost function, speedier is the clear
winner in terms of time to first solution, but it lags badly
in terms of solution quality. EES and skeptical search, on
the other hand, are able to find high quality solutions. In-
terestingly, the most successful algorithm we were able to
find for this domain is a breadth-first beam search that or-
ders nodes ond(n) where ties are broken in favor of nodes
with small g(n). We believe this is due to the fact that the

Algorithm Parameter CPU Time Solution Cost
Greedy DNF DNF
Weighted A* 1-1000 DNF DNF
Speedier 0.010 485,033
d(n) beam 10 0.228 199,709
d(n) beam 50 0.086 77,223
d(n) beam 100 0.098 65,187
d(n) beam 500 0.315 57,122
EES 100 0.037 87,682
EES 10 0.038 87,682
EES 3 46.836 74,162
Skeptical 100 0.770 85,030
Skeptical 10 1.084 80,027
Skeptical 3 6.917 68,171

Table 5: Solving the 4x4 face3 sliding tile puzzle

Algorithm Parameter CPU Time Solution Cost
Greedy DNF DNF
Weighted A* 1-1000 DNF DNF
Speedier 0.679 508,131
d(n) beam 10 36.666 100,507
d(n) beam 50 1.810 8,191
d(n) beam 100 1.642 5,184
d(n) beam 500 1.777 1,905
EES 4 18.401 817
EES 10 1.619 934
EES 100 1.619 934
Skeptical 4 3.435 854
Skeptical 10 3.379 889
Skeptical 100 3.233 951

Table 6: Solving 14-pancake (cost = sum) problems

beam searches found short solutions in terms of path length,
which happened to also correspond to low cost solutions.
EES, Skeptical, speedier, andd(n) beam search all solve the
problem, but the most important fact to note from Table 5 is
the fact that both weighted A* and greedy search were not
able to solve the problem at all, showing that consideration
of d(n) is mandatory in this domain.

Sum Pancake Puzzle
For our evaluation on the pancake puzzle, we consider a 14
pancake problem where the pattern database contains infor-
mation about seven pancakes, and the remaining seven pan-
cakes are abstracted away. We used the same 100 randomly
generated instances from the unit cost experiments. The 14
pancake problem was the largest problem we could consider
because we were unable to easily generate a pattern database
for a pancake problem that was any larger.

The results of running the selected algorithms on this
problem can be seen in Table 6. Once again, we observe
weighted A* and greedy search are unable to solve all prob-
lems. EES and skeptical are able to solve all instances with
larger weights. We had to use a weight of 4 because the
weight of 3 used in the previous domain proved to be too ag-

Algorithm Parameter Expansions Solution Cost
Greedy 68,778 2,992,826
Weighted A* 3 148,407 2,556,569
Weighted A* 10 97,002 2,825,369
Weighted A* 100 71,704 2,904,727
Speedier 18,642 2,978,587
d(n) beam 10-500 DNF DNF
EES 3 113,413 2,721,338
EES 10 108,044 2,936,708
EES 100 108,044 2,936,708
Skeptical 3 165,146 2,514,215
Skeptical 10 127,079 2,603,531
Skeptical 100 117,056 2,630,606

Table 7: Grid Path Planning with Life Costs

gressive. Speedier is able to solve all instances once again,
but this comes at a cost: extremely poor quality solutions.
Beam search ond(n) is able to provide complete coverage
over the instances, but neither solution quality or time to so-
lution are particularly impressive in this domain. Overall,
d(n) based searches perform very well in the pancake puz-
zle with sum costs. Again, the most important thing to note
about this domain is that, although there was no clear winner
able to pareto dominate the all other algorithms, weighted
A* and greedy search were once again unable to solve all
problems.

Grid Path Planning

For grid path planning, we consider a variant of standard
grid path planning where the cost to transition out of a cell
is equal to the y coordinate of the cell, which has two ben-
efits. First, there is a clear difference between the shortest
solution and the cheapest solution. In addition, it allows us
to simulate an environment in which a being in a certain part
of the map is undesirable. The boards are 1,200 cells tall
and 2,000 cells wide. 35% of the cells are blocked. Blocked
cells are distributed uniformly throughout the space. In this
domain, the size of a local minimum associated with any
given node is bounded very tightly. For any noden in this
problem, the descendants ofn are all reached by applying an
operator that is within 1 of the cost of the operator used to
generaten. Given this, even if the heuristic errs in its evalu-
ation ofn, very few levels of nodes will have to be expanded
to compensate for this heuristic error.

Another factor that makes grid world with life costs a par-
ticularly benign example of a non-unit cost domain is the
fact that duplicates are so common. In order to observe the
worst case exponential number of states described in Corol-
lary 1, we assume the descendants of the node in question
are all unique. In grid world with life costs, this assumption
is not the case.

These mitigating factors allow cost-based best-first
searches to perform very well, despite a very wide range of
operator costs. This can be seen in Table 7 where weighted
A* performs very well, in stark contrast to the other domains
considered where weighted A* and greedy search are un-

able to solve all problems. It is a known problem that beam
searches perform poorly in domains like grid path planning
where there are lots of dead ends (Wilt, Thayer, and Ruml
2010), so it is not surprising that beam searches were un-
able to solve all instances in this domain. In Table 7, the
rows for Speedier, EES, Skeptical, and Weighted A* are all
pareto optimal, showing that in this domain, there is no clear
benefit to usingd(n) the way there is in the weighted tiles
domain and the heavy pancake domain, where the searches
that did not considerd(n) did not finish.

Summary
The examples in the previous section show the practical em-
pirical consequences of Corollary 1. The sliding tile domain
is one where low cost operators are often applicable and du-
plicates are rare, so there is little to mitigate the effect of the
high cost ratio. In the sum pancake domain, duplicates are
only mildly more common than in the sliding tiles domain,
as the minimum cycle in that domain has length 6. Both
of these domains prove to be very problematic for best-first
searches when the costs are not all the same.

We can contrast this with what we observe in grid path
planning. In grid path planning, duplicates are very com-
mon, and although operator costs vary across the space,
there is very little local variation in operator costs, which
places a very strict bound on the number of nodes that are
within any single local minimum. Thus, the range of opera-
tor costs is only a part of what makes a non-unit cost domain
more difficult.

Conclusion
We have shown that some domains with non-unit cost func-
tions are much more difficult to solve using best-first heuris-
tic searches than a domain with precisely the same connec-
tivity but a constant cost function.

We have also shown that in a domain with a consistent
heuristic and invertible operators, the amount thath(n) can
change from one node to the next is bounded. We then
showed that if the rate of change inh is bounded, it can
be very time consuming to recover from any kind of heuris-
tic error if there are both large and small cost operators. We
have shown this effect can harm the entire family of best-first
searches ranging from A* to weighted A* to greedy search.

Lastly, we proposed a solution for problems where cost-
based search performs poorly, which is to consider an addi-
tional heuristic,d(n), and use this heuristic to help guide the
search. We then showed that when best-first search proves
impractical, searches that considerd(n) can still find solu-
tions. This demonstrates that algorithms that exploitd(n)
represent a fruitful direction for research. These results
are significant because real-world domains often exhibit a
wide range of operator costs, unlike classic heuristic search
benchmarks.

References
Benton, J.; Talamadupula, K.; Eyerich, P.; Mattmueller, R.;
and Kambhampati, S. 2010. G-value plateuas: A challenge
for planning. InProceedings of ICAPS 2010.

Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence14(3):318–334.
Cushing, W.; Benton, J.; and Kambhampati, S. 2010. Cost
based search considered harmful. InSymposium on Com-
binatorial Search.
Cushing, W.; Benton, J.; and Kambhampati,
S. 2011. Cost based satisficing search con-
sidered harmful. arXiv:1103.3687v1 [cs.AI].
http://arxiv.org/abs/1103.3687, accessed
April 10, 2011.
Doran, J. E., and Michie, D. 1966. Experiments with the
graph traverser program. InProceedings of the Royal So-
ciety of London. Series A, Mathematical and Physical Sci-
ences, 235–259.
Felner, A.; Zahavi, U.; Holte, R.; Schaeffer, J.; Sturtevant,
N.; and Zhang, Z. 2011. Inconsistent heuristics in theory
and practice.Artificial Intelligence1570–1603.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions of Systems Science and Cyber-
neticsSSC-4(2):100–107.
Helmert, M. 2010. Landmark heuristics for the pancake
problem. InSymposium on Combinatorial Search.
Korf, R. E. 1985. Depth-first iterative-deepening: An
optimal admissible tree search.Artificial Intelligence
27(1):97–109.
Likhachev, M., and Ferguson, D. 2009. Planning long
dynamically feasible maneuvers for autonomous vehicles.
I. J. Robotic Res.28(8):933–945.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph.Artificial Intelligence1:193–204.
Thayer, J., and Ruml, W. 2011. Bounded suboptimal
search: A direct approach using inadmissible estimates. In
Proceedings of the Twenty-Second International Joint Con-
ference on Articial Intelligence (IJCAI-11).
Thayer, J. T.; Dionne, A.; and Ruml, W. 2011. Learning
inadmissible heuristics during search. InProceedings of
ICAPS 2011.
Thayer, J.; Ruml, W.; and Kreis, J. 2009. Using distance
estimates in heuristic search: A re-evaluation. InSympo-
sium on Combinatorial Search.
Wilt, C.; Thayer, J.; and Ruml, W. 2010. A comparison of
greedy search algorithms. InSymposium on Combinatorial
Search.

