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A Highly Accurate Approach That 
Resolves the Pressure Spike of 
Elastohydrodynamic Lubrication 
We propose an accurate numerical method to solve the classical line contact problem 
of elastohydrodynamic lubrication. The method incorporates a second order ac
curate discretization and a straightforward automatic local mesh refinement pro
cedure. Using these elements, we remove discretization errors which have produced 
significant inaccuracies in previously published results, and we completely resolve 
the pressure spike which is shown to be smooth on a sufficiently small length scale. 

Introduction 
The numerical solution of the classical line contact problem 

of elastohydrodynamic lubrication (EHL) has recently re
ceived additional attention [1-6]. In these numerical solutions, 
one of the most striking features, and one of the most com
putationally problematic, is the pressure spike. 

The pressure spike is a narrow peak of high pressure that oc
curs toward the downstream end of the pressure profile (see 
Figs. 1(a), 2(a), 3(a)) between the rolling elements. Little is 
known about the precise cause of the pressure spike. However, 
it is known that the spike will not occur when the viscosity is 
constant, even at high loads [7]. Even the continuity of the 
derivative of pressure at the top of the spike is subject to con
troversy, and previous authors who have attempted to use 
finer meshes to resolve details of the pressure spike have found 
that the maximum pressure increases with the number of mesh 
points [5, 6]. 

We believe that such controversies have arisen from inac
curate numerial results in previous solutions. We remove these 
inaccuracies with a numerical approach that for the first time 
completely resolves the pressure spike in even quite difficult 
cases. In so doing, various techniques are proposed that ad
vance the state-of-the-art in solving the EHL equations 
generally. 

The approach given herein consists of a discretization that 
has second order errors on a nonuniform mesh. All solution 
variables, including the unknown exit position, are obtained 
simultaneously by Newton's method. Following convergence 
of Newton's method, a local error test is made throughout the 
solution region, and additional points are inserted where most 
needed. The current discrete solution, suitably interpolated, is 
used as an initial guess for Newton's method on the new mesh. 
The local error test is repeated, followed again by Newton's 
method until a prescribed error tolerance or a maximum 

Fig. 1(a) a = 10., A = .04. Pressure and film thickness over entire inter
val. Every sixth point is marked on pressure profile. 
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Fig. 1(b) a = 10., A = .04. Pressure profile near the pressure maximum 
with every mesh point shown. 
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number of mesh points is achieved. Such a technique for 
dynamically generating converged solutions on a nonuniform 
mesh is herein reported to completely resolve the gradients in 
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Fig. 2(a) a = 5.046, X = 2.96. Pressure and film thickness over entire in
terval. Every sixth point is marked on pressure profile. Corresponds to 
U = 1 x 1 0 - 1 1 , G = 4 x 1 0 3 , IV = 1 x 1 0 ~ 5 . 
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Fig. 3(a) a = 5.352, X = 2.339. Pressure and film thickness over entire in-
shown on pressure profile. Corresponds to terval. Every sixth point is showr 

W = 1 x 1 0 ~ , G = 4 x 1 0 3 , W=t. 125x10" 
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Fig. 2(b) a = 5.046, X = 2.96. Pressure profile near the pressure max
imum with every mesh point shown. 
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Fig. 3(b) « = 5.352, X = 2.339. Pressure profile near the pressure max
imum with every mesh point shown. 

the pressure spike. In particular, the spike is shown to have a 
continuous first derivative when viewed on a suitably small 
length scale. It is not a singularity. 

In the next section, we describe our discrete formulation in 
detail, and compare it to some of the recent formulations of 
other authors. Then our automatic mesh refinement pro
cedure is described, followed by a short discussion of the con
tinuation procedure used to generate initial guesses for 
Newton's method. Results are then presented with particular 
emphasis on the pressure spike. We close with a discussion of 
the results. 

Discrete Formulation 

We begin with the nondimensional equations as given by 
Kostreva [2], whose notation we modify only for the end-
points, a and b. In particular, we consider the isothermal case 
of a line contact with pure rolling. The fluid is assumed incom
pressible, obeying the Barus pressure-viscosity dependence. 
Only two dimensionless parameters, a and X, are required to 
describe the problem for determining the pressure, p, and the 
film thickness, h. 

h3—?-=-keaP[h-h(b)] 
dx 

h(x) = x2-b2 + h(b) ( p(s)\og 
IT Jo 

ds 

(1) 

(2) 

2 f* 
p{s)ds=\ 

It J a 

Pda)=p(b) = 0 

(3) 

(4) 

Reynold's equation (1), is used in integrated form, introducing 
h(b) explicity. The boundary condition dp/dx(b) = 0 has been 
used to obtain equation (1) and is now redundant, since any 
solution of equation (1) will necessarily satisfy this boundary 
condition. In the elastic equation, (2), h{b) has also been used 
to eliminate the more usual composite constant (k in the nota
tion of [2]). Use of the integrated Reynold's equation is highly 
recommended, since it substantially simplifies the discretiza
tion procedure. 

In previous work, the location of the free boundary, b, has 
been problematic. In some approaches, [2] and [6] for exam
ple, pressures are cut off below zero and the free boundary is 
located only to the closest mesh point. In other approaches, 
[4], and [5] for example, the film thickness is calculated just 
outside the original interval, [a, b], and interpolated to pro
vide the condition that fixes the free boundary. In the com
plementarity approach of Kostreva [2], an additional outer 
loop is devoted solely to establishing the free boundary loca
tion. Determination of the free boundary location has been 
considered sufficiently difficult that Lubrecht [6] considers the 
problem to be one of the "two severe drawbacks" of the 
Newton approach. 
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We avoid all such difficulties with the simple expedient of 
scaling the problem to a fixed interval before numerical solu
tion. Let 

x—a 
z = — , (5) 

b — a 
so the computations are now performed on [0,1] for all b. The 
parameter b is now an unknown to be determined at the same 
time and to the same accuracy as the other unknowns of the 
problem. This change of independent variable introduces 
some additional nonlinearities into the problem, but they pro
vide no difficulty for the Newton iteration. 

The problem on [0,1] becomes the following, after bringing 
the exponential inside the derivative in Reynold's equation: 

A3(z)-|-[exp(-ap(z))] = -(,b-a)a\[h(.z)-h(l)] (6) 
dz 

h(z) = (b- a)(z -l)[(a + b) + (b- a)z] + A(l) 

__L ( 6_a ) [ p^ iog l^Z iLU (7) 
ir Jo I 1-s I 

—(b-a)\ ip(s)ds=l (8) 
IT JO 

p(0) = p(l) = 0 (9) 

To discretize this system, a nonuniform mesh is intro
duced: Q = z0<Z\< . . . <z„ = l. Letpj be the approxima
tion to p(Zj). We want this approximation to have errors no 
larger than the square of the local mesh spacing. The discrete 
unknowns are {Pj)"=Q, h(\), and b, for a total of n + 3 
unknowns. It is convenient to introduce the half-points, 
Z/-i/2 = (Z/-i +Zj)/2, and hj_U2 which will be a second order 
approximation to h(Zj^y2). 

A discrete version of equation (6) written at the half-points 
results in the first n equations. 

\ exp( - apj) - exp( - apj_ t)' 

+ (6-a)«X[A/_i/2-A(l)]=0, y=l , . . . , « (10) 
In this, hj_V2 is obtained from equation (7) written at the half-
point. The only approximation required in obtaining hj_U2 is 
in performing the integration. The integration will have 
second order errors if p is approximated by its piecewise-linear 
interpolant in each mesh interval and the resulting integrals 
are performed exactly. This procedure results in the modified 
trapezoid rule for the logarithmic kernel of equation (7). 

[ P(.s)log 1 Zj~ U1 ~S Ids = t , avPi + bijPi-1 • (») 
J 0 I 1 — S I • _ i 

where ay and by are given by 

(Zj-Zj-1 )ay =-[(s + zj-1/2)/2 - Zj- iKzj-1/2 - s)log lzy_ y2-s\ 

+ K s + l ) / 2 - « / _ , ] ( l - j ) l o g ( l - j ) (12) 

1 \s=zi 
+ - 7 ^ 0 - * / - 1 / 2 ) 

Z ls = z;-l 

(Zj-Zt-i)bu = [(S + Zj-U2V2-ZjKZj-u2-S)l0g\Zj-U2-s\ 

-Hs+l)/2-z,](l-s)]og(l-s) (13) 

1 1*=*/ 

=-^0-Z/-l/2) 
Z ls = * / - l 

Equation (7) yields the result, 
hj- U2-h(\) = (b- a)(zj-1/2 -l)l(a + b) + (b- a)z}-1/2] 

2 " 
(b-a)]jaiJpi + byp^l. (14) 

* 1=1 

This quantity, hj_y2 - h{\), is computed and used internally in 
the computations rather than hj_U2 to avoid the possible loss 
of significance in the subtraction of the often nearly-equal 
quantites, hj_U2 and h(l), in equation (10). When this result is 
used in equation (10), this equation also contains errors no 
larger than the square of the mesh spacing. 

Three more equations are required to complete the 
discretization. They are p0 = 0, p„ = 0, and the trapezoid rule 
applied to the load balance, equation (8). 

- ( ^ ^ ( ^ f e - V ^ l (15) 

In conclusion, we give n + 3 equations for the n + 3 unknowns 
to be solved by Newton's method. The discretization is second 
order accurate. We emphasize that no special accomodation 
of the free boundary location, b, is required in the numerical 
procedure, and that b is treated simply as another unknown. 

Rohde and Oh [8] were the last to use a highly accurate 
discretization to solve this problem, but their results show only 
moderate pressure spikes. Most of the other referenced works 
claim no more than a first order accurate discretization. 
Kostreva's [2] discretization of Reynold's equation is second 
order accurate, but only on a uniform mesh and cannot be 
directly generalized to a nonuniform mesh. Moreover, 
Kostreva's discrete integration in the elastic equation is not 
second order accurate even on a uniform mesh. That is, the 
logarithmic kernel in [2] is discretized simultaneously with the 
pressure in performing the integration, and the logarithmic 
kernel does not possess the two bounded derivatives necessary 
for the trapezoidal rule to be fully second order accurate. 
Houpert and Hamrock [5] present a second order accurate 
discretization, but they use a first-order discretization for 
most of the results they present, stating that it converged more 
easily. 

Mesh Refinement 

Automatic mesh refinement is a central component of our 
approach. Other authors, for example [1] and [5], have used a 
nonuniform mesh for this problem, but the points are 
specified a priori. In the approach recommended here, loca
tions of additional mesh points are determined automatically 
in an outer cycle that continues until a prespecified error 
tolerance or a maximum number of mesh points is attained. 
We describe our algorithm in detail below, but other ap
proaches may be equally effective, provided that sufficient 
care is taken in the presence of the pressure spike. The impor
tant point is that each discrete solution should be subjected to 
some refinement procedure that will insure the insensitivity of 
the discrete solution to further refinement (that is, con
vergence under mesh refinement) before one infers properties 
of the continuous solution from this discrete solution. 

The discretization error is controlled by calculating a mesh 
function, e,, after each discrete solution. The mesh function, 
ej, is related to the discretization error in interval j and will be 
described in detail below. For now we simply note that we can 
always arrange for it to be proportional to the local mesh spac
ing. The actual refinement is carried out by adding one point 
at a time as follows: (1) the interval with the largest e,- is 
located, (2) this interval is halved and the pressure at the new 
mesh point thus created is obtained by linear interpolation, 
and (3) the error e, is halved to be shared equally by the two 
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new subintervals. Points are added in this manner until the 
worst estimated error is less than the prescribed tolerance or 
until a prescribed number of new points per refinement step is 
reached. To insure a degree of regularity to the mesh, addi
tional points are also added so that no mesh interval is more 
than 2.5 times the size of either neighbor. Once this refinement 
process is complete, the resulting pressure distribution on all 
of [0, 1] is resubmitted as an initial guess for Newton's method 
for the discrete EHL equations. The cycling between refine
ment and solution is continued until no refinement is 
necessary to meet the prescribed tolerance or until a maximum 
number of mesh points is reached (generally, 1000). 

This algorithm works to refine the mesh were ej is largest, 
with the motivation that it is most efficient to put the new 
mesh points where they are indeed needed. More formally, we 
are creating an approximately equidistributing mesh: even
tually, all e/s will be within a factor of 2 using the above 
algorithm. The use of equidistributing meshes for controlling 
nonuniform mesh refinement is common in two-point 
boundary value problems (see [9] and the references therein), 
and in flame calculations (see [10] and the references therein), 
for example. It is important to realize that the aim of an 
equidistributing mesh is to give the best solution possible for 
the current number of mesh points; it does not guarantee suf
ficient accuracy of any individual discrete solution. One must 
still test the discrete solution for insensitivity to further refine
ment. For the results presented here, we sought insensitivity of 
pressure maximum value and position when viewed on a 
length scale sufficiently small to reveal the smoothness of the 
pressure spike. 

Obviously, the success of this approach relies upon an ap
propriate mesh function, e,. Common choices use the local 
truncation error (for example, [9]), or a combination of lower 
order derivatives of the solution (for example, [10]). When 
readily available, the local truncation error is the most 
theoretically sound choice. For our problem, two distinct 
sources of truncation error can be identified: (1) the trunca
tion error, ER, associated with the discretization of Reynold's 
equation, equation (10), when we consider hj_l/2

 a s known ex
actly, and (2) the truncation error, Eh, associated with the 
discrete evaluation of hj_l/2, equation (14). An immediate 
problem presents itself in that Eh does not induce a well-
defined local truncation error. That is, a mesh that would 
equidistribute the local truncation error for hj_W2 would not 
necessarily equidistribute the error for the evaluation of 
A/+10-1/2- Nevertheless, our experience has shown that Eh is 
more important than ER in obtaining the position and value of 
the pressure maximum, which is the most challenging part of 
this calculation. We therefore now focus on how to obtain a 
mesh function from Eh. 

The truncation error of equation (14) arises only from the 
truncation error of the modified trapezoid rule, equation (11). 
For a fixed Zj-U2, we can define a local truncation error, Tjh 

which represents the contribution to the error over interval /' 
such that 

I>,7 * Eh. 

A short calculation gives 

1 
*Ji~ n W zi-\> p"fe)log|^-1/2 Zi 

i-z, 
(16) 

as the dominant term for the local truncation error. Note that 
it depends nontrivially upon Zj^W2, which is why Tj, only 
makes sense as a local truncation error for fixed Zj-m-
However, the logarithm has only a weak singularity at two 
isolated points, z, = l, and Zj=Zj-l/2, that is not even strong 
enough to cancel a single power of (z,- — Zj-\) at these points. 

Therefore, if we treat the logarithm as a constant, only a small 
error is introduced, the dependence upon Zj-y2 drops out of 
Tjh and an approximate local truncation error proportional to 
(z,-z,_i)3 |/>' '(z,)| can be identified. 

Only technical details are required to complete the deter
mination of ej. To prevent the mesh from becoming too sparse 
where p'" accidentally vanishes, \p'' I is replaced by 
\p " I + 7 \p' I, since p' is extreme when p'' vanishes (7=12 

was used for the examples given below). Finally, a cube root is 
taken so that e, will be proportional to the local mesh spacing 
as mentioned above. 

ej = (ZJ-ZJ-IX \p''(«,)I +y\p'(zj)\)1 (17) 

Crude approximations to these derivatives will suffice. 
We close this section with some of our experience in effi

ciently refining meshes. This computation is dominated by the 
expense of factoring the Jacobian of the (« + 3) nonlinear 
equations into upper and lower triangular matrices for 
Newton's method. These full matrices are calculated 
analytically for each new mesh. Computational efficiency is 
obtained by seeking the maximum refinement with the 
minimum of factorizations. Therefore, we iterate with 
Newton's method using only the first factored Jacobian for up 
to 50 iterations. If 50 iterations are not sufficient, we back up 
to the last refinement level and retry the refinement but with 
only half the number of refining mesh points. Con
versely, if Newton's method finds the solution too easily, that 
is, in 4 iterations or less, the number of points to be added dur
ing the next refinement is doubled. These numbers worked 
well, but we make no claim that they are optimal. The key 
point is that one can use the information contained in the 
number of Newton iterates to judge how aggressively to refine 
on subsequent steps. Generally, the insensitivity of the discrete 
solutions to mesh refinement grows progressively, so this pro
cedure will allow a steady increase in the number of points 
added per refinement as the solution is refined. 

Obtaining Solutions by Continuation 

During the refinement procedure, the initial guess for 
Newton's method at each step of the refinement is supplied 
naturally by the solution from the previous refinement step. 
To supply initial guesses for Newton's method at the begin
ning of the refinement procedure, that is, on the crudest mesh, 
a continuation method generates new solutions using nearby, 
more easily obtained, solutions in the X - a parameter space. 

To increase the size of the continuation step from those used 
in [2], forward Euler steps are used. Specifically, let Ybe the 
(« + 3)-vector of unknowns, let R be the (« +3)-vector of 
discrete equations for the unknowns to satisfy, and p be one of 
the problem parameters—a, X or a combination of these two. 
Having a solution for a particular p = p0 means 

R(y(p);p)=0 a t p = P o (18) 

An approximate solution at a neighboring p is available from 

y(p)^y(Po) + (fi-Po)-^(Po)- (19) 
dp 

dy/dp(pQ) is obtained by differentiating (18). 
dR dy dR 

— f - + — - = 0 at p = p0 (20) 
dy dp dp 

The (n + 3)x(n + 3) matrix, dR/dy, is the Jacobian of the 
nonlinear system which we have just used to obtain the solu
tion at p = p0 in equation (18). That is, since the Newton itera
tions already require the computation of a Jacobian, we use 
this information twice to permit the simple use of a two-term 
Taylor series approximation for the new solution in equation 
(19), rather than a one-term expansion. 
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Fig. 4 Discrete pressure profiles near the pressure maximum for the 
same parameters as Fig. 3. Labels show the number of points used to 
generate each discrete solution. Above 927 points, the curves are essen
tially indistinguishable. Mesh point locations surpressed for clarity. 

Results 
The results presented in Figs. 1-3 are fully converged: they 

are insensitive to further mesh refinement. Although not 
generally necessary, we took the additional precaution of 
checking each final solution against a more refined discrete 
solution after halving each mesh interval. Our measure of sen
sitivity is that the maximum pressure value and position 
should not change appreciably when viewed on a length scale 
in which the pressure spike appears smooth (see Fig. 4). 

Figure 1(a) shows the pressure and film thickness of a solu
tion for a relatively large a of 10, although the difficulty in ob
taining the solution was moderated by the relatively small 
value of .04 for A. In this parameter regime, a relatively Hert
zian pressure profile is evident with an added pressure spike. 
827 nonuniform, automatically generated mesh points were 
used to produce this solution. Every sixth point is shown on 
the pressure profile in Fig. 1(a). Figure 1(b) is an expanded 
view of the pressure with every mesh point shown in the vicini
ty of the pressure maximum, and it clearly shows that the 
spike is indeed smooth. The largest e, for this solution is 
.0060, and the ratio of maximum to minimum mesh size is 
2048, the largest of the solutions reported here. 

The last two solutions are part of a continuation series in 
which the load is increased. Using the three dimensionless 
parameters of Dowson and Higginson [11] (£/: speed, G: 
material, W: load), with U and G fixed, respectively, at 
1 x 10-11 and 4x 103, Fig. 2 corresponds to W= 1 x 10 5 and 
Fig. 3 corresponds to W= 1.125x 10~5. In general, the two 
nondimensional systems are linked by 

a = GyfW7(2^),\ = 3Tr2U/W2. (21) 
We interpret our results in terms of (U, G, W) for these par
ticular parameters to more easily compare to the work of 
others. However, it is not possible in general to uniquely map 
from (a,X) to the redundant (U, G, W). 

The solution in Fig. 2 was generated with 518 nonuniform 
mesh points. It attained a maximum e, of .0011 with a ratio of 
maximum to minimum mesh ratio of 64. This is the least dif
ficult solution of those reported here. 

The parameters used in Fig. 2 allow comparison with two of 
the more recent numerical approaches to this problem. Figure 
2 of this work and Fig. 9 of Okamura [4] and Fig. 2 of 
Lubrecht [6] show some qualitative similarity, but poor quan
titative agreeement. The pressure profile just to the left of the 
spike in [4] is flatter than that reported here or in [6]. 

4.9 
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2.9 

1.9 
0.90 1.00 1.12 1.14 

f * 10! 

Fig. 5 Maximum pressure versus load parameter, IV, for U = 1 x 10 ~ 1 1 , 
G = 4x 103. As discussed in text, true curve must run through shaded 
area. 

Okamura places the pressure spike near x= .5; Lubrecht 
places it near x=.2; it is near x=.3 in this work. After 
multiplying by a factor of 2 in the two earlier papers to com
pensate for the difference in nondimensionalization, 
Okamura's results give a film thickness at the center of contact 
(x = 0) of approximately 1.6, Lubrecht gives it as approxi
mately 2.0, it is given as 1.86 in this work. Clearly, numerical 
accuracy deserves more attention than it has previously 
received. 

In Fig. 3, a continuation of the Fig. 2 solution is shown in 
which the load has increased by only 1/8 to W= 1.125 x 10"5, 
the pressure maximum has increased by more than 3/4, and 
the spike has narrowed considerably. This solution was ob
tained using 927 mesh points with a ratio of maximum to 
minimum mesh spacing of 598. The maximum ey- is .0064, sur
prisingly close to that of the solution in Fig. 1. 

To provide a graphic example of insensitivity to further 
refinement, Fig. 4 shows the tip of the pressure spike for 
various discrete solutions that eventually produced the solu
tion in Fig. 3. This figure illustrates our general experience 
that the tip of the spike rises and moves closer to the exit as the 
mesh is refined. Past 927 points, the curves are nearly in
distinguishable, so the discrete solution is accepted. 

Discussion 
Our principal point is that previous solutions have not been 

able, or have not been executed with sufficient care, to provide 
adequate numerical accuracy and so have come to incorrect 
conclusions as to the nature of the pressure spike. The solu
tions given in this paper clearly show that an appropriate 
numerical scheme can resolve the details of the smooth 
pressure profile on the appropriately small length scale near 
the pressure maximum. The extremely nonuniform, adap-
tively generated meshes used to obtain these solutions show 
the futility of economically obtaining an accurate solution 
with a uniform mesh. With little assistance from the user the 
solutions obtained by the proposed method can be used to ob
tain fully converged solutions: the addition of points 
anywhere in the mesh will not change the solution. This 
feature is not present in previous work. For example, Fig. 3 of 
[5] and Fig. 4 of [6] show that even the most detailed previous 
solutions are not fully converged. During mesh refinement but 
before convergence has been achieved, our experience con
firms that the maximum pressure of the spike increases as the 
mesh spacing is decreased. This behavior, observed by others, 
has caused some to conclude that the pressure spike is a 
singularity [3], or that no amount of refinement will limit the 
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height of the pressure spike [6]. On the other hand, Houpert 
and Hamrock [5] state that sufficiently many points can 
resolve the height of the pressure spike, and Lubrecht [6] 
states that smaller discretization errors are needed. 

Having recognized that insufficiently refined solutions will 
produce smaller pressure spikes than the true solution, we 
must question the observation by some authors ([4-6]) that the 
height of the pressure spike eventually decreases with load. 
Their conclusion, which has been based on calculations using 
a fixed number of mesh points, should only be accepted if 
each reported solution has fully converged so that the max
imum pressure has been able to achieve its full value. As 
shown in Fig. 4, an unconverged solution will underestimate 
the value of the pressure maximum. Also the narrowness of 
the pressure spike in the high load regime causes us to question 
the ability of a fixed-mesh procedure to capture even the 
qualitative character of the spike. 

We admit that Fig. 2 and 3 only carry us to W- 1.125 
xlO~5, a value that is not necessarily in the regime where 
others report the decreasing pressure spike with load. 
However, we have seen no sign of this decrease in our con
verged solutions. Figure 5 shows our experience that the max
imum pressure increases very sharply with increasing load for 
the higher load cases. The last three points in Fig. 5 represent 
discrete solutions that have not fully converged (we placed an 
arbitrary limit of 1000 points for solutions that we would 
report in detail here). However, with the observation that the 
pressure maximum increases with refinement, we expect the 
true curve to actually be above that plotted in Fig. 5 and to oc
cur somewhere in the shaded region. We believe that computa
tional cost is the only barrier to carrying Fig. 5 accurately to 
higher loads using the techniques presented here. 

Wu [12] has recently shown that the derivative of pressure is 
continuous for sufficiently small a. However, small a is the 
nearly isoviscous case, and Herrebrugh [7] had previously con
cluded that no pressure spike occurs for constant viscosity. A 
proof that the pressure derivative is continuous for general 
problems, not requiring near-constant viscosity, is still a very 
worthwhile goal. In the meantime, our numerical results settle 
this controversy in general—the pressure spike of 
elastohydrodynamic lubrication is smooth. 
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