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ABSTRACT 

In the present study, non-linear wave loads such as the 
wave-drift force, wave-drift damping and wave-drift added 
mass, acting on the body is considered based on the potential 
theory. To investigate non-linear wave loads, consistent 
perturbation expansion by means of two small parameters, i.e. 
the incident wave slope and the low frequency body motion, is 
performed on a moving frame (body-fixed) coordinate system. 

To avoid complicated free surface integrals as much as 
possible, new approach for the higher order potential in the 
interaction problem of low frequency motion and waves is 
suggested in the present work. Instead of integrals, derivative 
operators are defined to obtain special solutions efficiently 
 
INTRODUCTION 

When ocean vehicles work in the wave, we usually need 
operate to be accurate positioning by means of mooring system 
or Dynamic Poisoning System (DPS). They may oscillate in 
horizontal plane with low frequency as a result of slowly 
varying non-linear wave forces at difference frequency of a 
pair of ocean wave spectrum component (ωi - ωj). The forces 
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are proportion to square of wave height and affected by the 
slow drift motion. It can be separated two parts. One is 
proportional to the velocity of the low-frequency motion while 
the other one is proportional to the acceleration. They are called 
wav

4) evaluated the 
wave

e-drift damping and wave drift added mass respectively. 
 The wave-drift damping had been studied from many 

kinds of aspect in the past two decades. For example, in the 
case of the experimental way, T. Kinoshita et. al. developed 
forced oscillated test system and examined the dependence of 
wave height, wave frequency and so on. (1988) While in the 
case of the analytical way, Matsui et. al. (1991), Emmerhoff & 
Sclavounos (1992), Bao & Kinoshita (199

-drift damping in the explicit formula.  
The wave-drift added mass have been researched same 

way as wave-drift damping. For example, in the case of the 
tank test, Kinoshita, Bao, Yoshida and Ishibashi showed the 
existence of it and gauged precisely for the different wave 
length. (2003) Tanizawa simulated by means of full non-linear 
2D numerical test. (1997) It based on the potential theory. This 
numerical test calculated the wave-drift damping as well as 
wave-drift added mass. For the slow drift motion, the 
conventional damping coefficient is much smaller than the 
wave-drift damping and the wave-drift added mass which is as 
much as 20% of the conventional added mass in some cases. 
They are not so extreme condition such as the wave length ( λ ) 
is 2.7m and the wave height ( A ) is 0.05m respectively. So the 
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wave-drift added mass cannot be ignored to simulate the 
resonance frequency even if the wave elevation is not so high. 

The formulation of the problem involving the interaction 
between low-frequency oscillation and incoming waves is 
suggested by Newman(1993). Two time scales are derived, one 
asso

tion for the potential, proper radiation 
cond

s simple to calculate. In his 
meth
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ciated with the body motion at the frequency σ and the 
other corresponding to the incident wave frequency ω.  

It is difficult to solve for the secularity of free surface 
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to the incident waves. In other words, we are going to consider 
the interaction between the slow oscillation
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arbitrary shape is oscillating slowly in a train of regular waves. 
To simplify description, the body is restrained from responding 
to the incident waves. In other words, we are going to consider 
the interaction between the slow oscillation

action wave field. It is not an essential difficulty to include 
the effects of linear responses of the body.  

The frequency of the slow oscillation is designated by σ  
while the wave frequency is given by ω. It is assumed that σ << 
ω. The low-frequency oscillation is restricted in the horizontal 
plane, i.e. in the m de of surg

action wave field. It is not an essential difficulty to include 
the effects of linear responses of the body.  

The frequency of the slow oscillation is designated by σ  
while the wave frequency is given by ω. It is assumed that σ << 
ω. The low-frequency oscillation is restricted in the horizontal 
plane, i.e. in the m de of surg
2 or 6 respectively. Its displacement 
as follows respectively:    
2 or 6 respectively. Its displacement 
as follows respectively:    
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where an over dot denotes the time differentiation. In (2-1), 
ξ represents the amplitude of the slow oscillation, which is 
assumed real without losing generality. 

A Cartesian coordinate system following th

              (2-1) 

e low-
to describe the problem. The 

z nates of moving frame is 

frequency oscillations is adopted 
oxy plane coincides with the un
-axis is pointing upward. The coordi

disturbed free surface while the 

related to a space-fixed frame, say OXYZ, as follows:  
( ) ( )2or111 =

+=
j

txX j ξδ
( )22+= tyY j ξδ

sincos −= yxX ξξ

                    (2-2a) 

ta 

trans

( )6
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j
yxY ξξ

                  (2-2b) 

In (2-2), δij represents the Kroenecker del
δ where. 

function, i.e. δij =1 
as i = j while ij = 0 else

The time derivative in the space-fixed frame can be 
ferred to the moving frame by chain-rule differentiation: 

( ) )2or1( =∂∂−∂∂= jxttdtd jjξ&            (2-3a) 
where x1=x and x2=y  

In the case of low-frequency ya
moving frame, the incident wave angl

w motion, referring to the 
e β changes with time, 

 0 6 a time derivative is taken, a 
 should be added:  

i.e. β = β -ξ (t). Therefore, when 
term of differentiation with respect to β

dd ( )( )βξ ∂∂+∂∂−∂∂= 66 xttt &                 (2-3b) 
Here, x6=θ, i.e. the azimuth angle. 

3. PERTURBATION EXPANSION 
It is assumed the fluid to be inviscous and the flow to be 

irrotational. Therefore, there exists a velocity potential Φ(x, t). 
It is natural to use two time scales to describe these two kinds 

 respectively. 

on up to the 
quad

of motions with low and high frequency
Following the approach of Newman’s [4], the veloc
can be expressed by a perturbation expansi

ity potential 

ratic order in wave amplitude ζa as: 
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The potentials on the right-hand side of (3-1) depends 
only on the space position x. The number in the subscript 
indicates the order in wave amplitude while the letter j =1, 2 or 
6 denotes that the potential is related to the slow surge, sway or 
yaw motion respectively. Superscripts are used if needed to 
deno e wave frequency. 

itted since 
rif

te harmonic time dependence on th
Here, potentials with double wave frequency are om
they will not contribute to the wave
damping.  

-d t added mass and 

He  function i as 

( )
re, the phase s defined 

( ) ( )
( )




=
=−

=
6

2or1
jt
jtt

tS jj
j ω

κξω
            (3-2) 
2 Copyright © 2006 by ASME 

: http://www.asme.org/about-asme/terms-of-use



Dow
where βκ cos01 k=  and βκ sin02 k= with k0 to be the wave 
number of the incident waves. The so-called encountering 
frequency ωe is obtained from the time derivative of Sj(t) 

( ) ( ) ( )2or1=−== jttS jjje κξωω &&                (3-3) 
As mentioned earlier, in the case of low-frequency y , 
a term of differentiation with respect t

aw motion
o β should be added to a 

time derivative when refe g to the moving frame (see 2-3b). 
For the convenience of later discussion, we define

rrin
βκ ∂∂= i6 , 

comparable with the case of j=1 or 2. 
Next, the potential )(

1
±
jφ  is considered, which is linear in 

wave amplitude as denoted by the first subscript. It takes 
 m

waves. When the low frequency σ is asymptotically small, this 
of σ: 

( )

account of the interaction between low frequency otions and 

potential is further expanded into a series 
)~ˆ(2

1
jj ψσψ ±=                             (3-4) 

4. BOUNDARY VALUE PROBLEMS 

1 jφ ±

The velocity potential is governed by the Laplace equation 
in the fluid domain and satisfy an impermeable condition on 
the sea bottom z=-h and on the body surface S0.  

When the free surface condition is considered in the 
moving frame, it is stated as follows on the exact ele
the free surface z=ζ(x, y, t): 
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In (4-2), the expansion about the mean free surface, i.e. z 
= 0, has been made. In the same way, the free surface condition 

ean f
 into it to yield the free 

ial:

in (4-1) is also expanded about the m ree surface and the 
perturbation expansions are substituted
surface condition for each order of potent  
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5. WAVE LOADS 

HS∈                       (4-4) 
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the same way as the velocity potential i.e. 

( ) ( ) ( ){ [
( ) ( )( ) ( ) ( )( ) ( ) ]}...

...Re
0

211

0
0

21

++++

+++=
−−−−+−+

−−

ti
ij

ttSi
ij

ttSi
ij

ti
iji

tiS
ii

eFeFeF

eFFeFtF
jj

j

σσσ

σξσ
            (5-3) 
3 Copyright © 2006 by ASME 

e: http://www.asme.org/about-asme/terms-of-use



Dow
We are interested in th
frequency, i.e. F0ij and 
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It can be served from (5-5a, b) tob hat only the potential jψ̂  
will contribute to the wave-drift damping while both potentials 
of jψ̂ and jψ~ are required to evaluate the wave-drift added 

her order mass. Therefore, an efficient way to solve the hig
potential ~

jψ is desired.  

6. SOLUTIONS OF THE BVP 

6.1 Approach for the Lower Order Potentials 
In the present study, the boundary value problems 

presented in section 4 are solved by the hybrid method. The 
fluid domain, designated by Ω, is divided into an inner region 
Ω1 a

he solutions for each order of potentials in 

nd an outer region ΩR by a virtual cylindrical surface SR 
with a radius equal to r0 (see Fig. 1). Different expressions are 
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R

In the inner region, according to the Green’s identity, the 
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F H

surface SR. CP is the shape coefficient at the field point P. The 
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and Hn is the Hankel function of the first kind of order n, while 
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For the potential jψ̂ , in addition to the general terms same to 
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(6-5) except the coefficients Amn and 
solutions should be added to satisfy the inhom
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ogeneous free 
4 Copyright © 2006 by ASME 

e: http://www.asme.org/about-asme/terms-of-use



Dow
surface condition. The special solutions take the following 
form: 
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 tedious 
These special solutions given in (6-7) and (6-8) can also be 
expressed in eigen-function expansion after so

uction. 
me

ded

6.2 New Approach for the Higher Order Potential 
When the potential jψ~ is considered (defined Equ. (3-4)), 
difficulty arises from the first forcing term, i.e. jψν ˆ2 , since 

jψ̂  itself satisfies an inhomogeneous free surface condition 
Ordinary, the special solution for the inhomogeneous bou
condit

ndary 

In the j

ion can be obtained by an integral over the free surface. 
 case of potential ψ~ , linear in wave slope but an order 

of low frequency 
this part because p

squared, one of the difficult parts to solve is 
jotential ψ̂ itself is secular at far field. So 

we are going to consider this problem in another way.  
As mentioned before th potential je ψ̂  consists of three 

parts, i.e. 
g
j

s
j

U
jj ψψψψ ˆˆˆˆ ++=                               (6-10) 

Similarly, the potential jψ~ contains three parts corresponding 
to different parts of potential jψ̂ as followings; 

gU ~~~~
j

s
jjj ψψψψ ++=                               (6-11) 

    We can obtain solutions correspondingly. The first one is 
obtained by applying a derivative operator to the fi order 
potential φ1. the operator involves a double derivative with 
respect to the parameter ν:  

rst 

2
1

2)(~ νφκνψ ∂∂+∂∂= jj
U
j xi                      (6-12) 
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The second one consists of two parts. The first part is the ν-
derivative applied to the second special solution of S

j
ψ̂ while 

the second part is an integral ov ther e free surface. 
]ˆˆ[2~ ∫ ∂∂−∂∂=

FS

s
j

s
j

s
j dsfG ννψνψ                  (6-13) 

g

The third one is the ν-derivative applied to the general solution 
ntial 

j
ψ̂ . part of the pote

νψνψ ∂∂= jj
ˆ2 gg~                    ( 6 - 1 4 ) 

The remaining forcing terms can easily be treated in the same 
way as in solving the potential jψ̂  

7. DISCUSSION 
It can be observed from (6-13), a free surface integral, i.e. 

∫ ∂∂ s
j dsfG νˆ , still exists in the new solutions. It is important 

FS

to examine whether this integral is convergent or not. Since the 
derivative of the forcing te ferring to the parameter ν 
is complicated to calculate, we are going to change this form to 
the differential of the Green function by means of the 
diff t as follo

rm s
jf̂ re

erential formul the uca of prod wings; 

∫ ∂−ν∫ ∂=∂∂
FF S

s
jjS

s
j dsfGdsfG ννˆ 7-1) 

Then the behavior of integrand at larg r >> 1) is 
shown in Table 1. 

∂∂ sφ̂             (

e distance (

Table 1 

Integrand r >>1 

ν∂∂G ( )1(
nHr ′ or )1(

nJr ′ ) ~ riker 02
1 ±  

s
jf̂  ~ 2−r  

As a summary of Table 1, the integrand behaves as follows for 
r>>1: 

riks
j erfG 02

3

~ˆ ±−∂∂ ν                               (7-2) 
Hence the integral will be convergent. However, the convergent 

enough to integrate it numerically. Special 
trea

CONCLUSION 
t study, higher order potential used in the 

calc

solutions have an advantage of saving much effort 
from

rate is not good 
tments are needed when dealing with the propagating 

modes in the eigen-function expansion. These propagating 
modes are separated from the other terms and can be integrated 
analytically. The remaining terms, i.e. the evanescent modes , 
which are convergent at least in proportion to the radius, can be 
calculated numerically.  

In the presen
ulation of the wave-drift added mass is solved by means of 

proper derivative operator. It is easy to confirm that the free 
surface integral appeared in the new solutions is convergent. 
The new 

 tedious numerical integral over the free surface. 
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ncentrate our discussion on the proof that 
the

nditions. 
U

derivative operator and the Laplace operator can be changed. 
We are going to co

se solutions satisfy the corresponding inhomogemeous free 
surface co

As shown in (6-12) the solution jψ~ is expressed as 
; follows

{ν ∂℘~ 22 νφψ ∂=p     }1j   
where {}℘  is defined as; 

                       (A-1) 

When (A- 1) is substituted into the free surface condition, 
following calculation can be derived; 

{ })({} jjxi κ+∂∂=℘                         (A-2) 
the 

{ }[ ] { }]22 νφ ∂2
1

2 νννφν ∂℘−∂∂∂℘∂= z [ 1

[ ]2
1

22
1

3 νφννφν ∂∂−∂∂∂℘= z
L.H.S  

                (A-3) 

1( ){ }νφνφ ∂∂+−∂ 11 2z  φνν ∂∂∂℘= 22

{ }ν∂1

R.ˆ2 == Uψν  
2  

H.S
φν ∂℘=

j

So the solution for U
jψ~ satisfies the free surface condition. 

   When the second solution s
jψ~ in (6-13) is considered, it 

should be noticed that the second part of it, i.e. the free surface 

sˆ
integral, represents a potential caused by the pressure 
distribution of νν ∂∂ jf2 over 
second solution into the free surface condition, we have: 

νψνννψν ∂∂−∂∂∂∂= s
j

s
jz )ˆ2()ˆ2(.L.H.S

the free surface. Inserting the 

νν ∂∂− s
jf̂2

 

( )[ νψν −∂∂∂= s zˆ2. ]νψνψ ∂∂−+∂ sss f̂ˆˆ  

This shows that the corresponding free surface is satisfied. 

mogeneous free surface 
condition, the validation is quite simple and is referred to 
Emmerhoff and Sclavounos (1992).  

jjjj

s R.H.Sˆ2 == jψν  

     Finally the third one g
jψ~  is considered. Since the 

general solution of g
jψ̂ satisfies a ho
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