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ABSTRACT

In the present study, non-linear wave loads such as the
wave-drift force, wave-drift damping and wave-drift added
mass, acting on the body is considered based on the potential
theory. To investigate non-linear wave loads, consistent
perturbation expansion by means of two small parameters, i.e.
the incident wave slope and the low frequency body motion, is
performed on a moving frame (body-fixed) coordinate system.

To avoid complicated free surface integrals as much as
possible, new approach for the higher order potential in the
interaction problem of low frequency motion and waves is
suggested in the present work. Instead of integrals, derivative
operators are defined to obtain special solutions efficiently

INTRODUCTION

When ocean vehicles work in the wave, we usually need
operate to be accurate positioning by means of mooring system
or Dynamic Poisoning System (DPS). They may oscillate in
horizontal plane with low frequency as a result of slowly
varying non-linear wave forces at difference frequency of a
pair of ocean wave spectrum component (@; - @). The forces
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are proportion to square of wave height and affected by the
slow drift motion. It can be separated two parts. One is
proportional to the velocity of the low-frequency motion while
the other one is proportional to the acceleration. They are called
wave-drift damping and wave drift added mass respectively.

The wave-drift damping had been studied from many
kinds of aspect in the past two decades. For example, in the
case of the experimental way, T. Kinoshita et. al. developed
forced oscillated test system and examined the dependence of
wave height, wave frequency and so on. (1988) While in the
case of the analytical way, Matsui et. al. (1991), Emmerhoff &
Sclavounos (1992), Bao & Kinoshita (1994) evaluated the
wave-drift damping in the explicit formula.

The wave-drift added mass have been researched same
way as wave-drift damping. For example, in the case of the
tank test, Kinoshita, Bao, Yoshida and Ishibashi showed the
existence of it and gauged precisely for the different wave
length. (2003) Tanizawa simulated by means of full non-linear
2D numerical test. (1997) It based on the potential theory. This
numerical test calculated the wave-drift damping as well as
wave-drift added mass. For the slow drift motion, the
conventional damping coefficient is much smaller than the
wave-drift damping and the wave-drift added mass which is as
much as 20% of the conventional added mass in some cases.
They are not so extreme condition such as the wave length ( 1)
is 2.7m and the wave height ( 4 ) is 0.05m respectively. So the
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wave-drift added mass cannot be ignored to simulate the
resonance frequency even if the wave elevation is not so high.

The formulation of the problem involving the interaction
between low-frequency oscillation and incoming waves is
suggested by Newman(1993). Two time scales are derived, one
associated with the body motion at the frequency o and the
other corresponding to the incident wave frequency .

It is difficult to solve for the secularity of free surface
condition. Yoshida etc. (2005) suggested new radiation
condition similar to Matsui’s (1991) one. In this method, to
ensure the unique solution for the potential, proper radiation
conditions are inserted and special solutions are obtained by the
free surface integrals.

The free surface condition is so complicated that the
integral over it needs much effort. On the other hand, the
Emmerhoff’s (1992) approach is simple to calculate. In his
method, the special solution is obtained by means of a
derivatives operator.

In the present study, we try to follow Emmerhoff’s
approach to solve the higher order potential in the interaction
problem of low frequency motion and waves. A couple of new
derivative operators are going to be defined to solve these
problems.

2. COORDINATE SYSTEM

Ly

x 1 Body Fixed Coordinate System
X' Space Fixed Coordinate System

Fig. 1 Coordinate System

The problem to be solved here is that a body with an
arbitrary shape is oscillating slowly in a train of regular waves.
To simplify description, the body is restrained from responding
to the incident waves. In other words, we are going to consider
the interaction between the slow oscillations and the ambient
diffraction wave field. It is not an essential difficulty to include
the effects of linear responses of the body.

The frequency of the slow oscillation is designated by o
while the wave frequency is given by w. It is assumed that o <<
. The low-frequency oscillation is restricted in the horizontal
plane, i.e. in the mode of surge, sway or yaw designated by j=1,
2 or 6 respectively. Its displacement and velocity is expressed
as follows respectively:

£ (t)=ReliZ e} (j=1,2 or 6)

& (1)=RefoF e

where an over dot denotes the time differentiation. In (2-1),

-1

& represents the amplitude of the slow oscillation, which is

assumed real without losing generality.

A Cartesian coordinate system following the low-
frequency oscillations is adopted to describe the problem. The
oxy plane coincides with the undisturbed free surface while the
z-axis is pointing upward. The coordinates of moving frame is
related to a space-fixed frame, say OXYZ, as follows:

X=x+3,&()

Y=y+68,5()

X =xcosé, —ysiné, ('—6)
Y=xsiné, +ycos&, B

(j=lor2) (2-22)

(2-2b)

In (2-2), o represents the Kroenecker delta function, i.e. J; =1
as i =j while ¢; = 0 elsewhere.

The time derivative in the space-fixed frame can be
transferred to the moving frame by chain-rule differentiation:

d/dt =0/t & (¢)o/ox, (j=1or2) (2-3a)
where x;=x and x,=y

In the case of low-frequency yaw motion, referring to the
moving frame, the incident wave angle £ changes with time,
i.e. B = P¢-&(t). Therefore, when a time derivative is taken, a
term of differentiation with respect to £ should be added:

dfdt=0o]ot & (t)o/ox, +0/dp) (2-3b)
Here, x¢=0, i.e. the azimuth angle.

3. PERTURBATION EXPANSION

It is assumed the fluid to be inviscous and the flow to be
irrotational. Therefore, there exists a velocity potential d(x, 1).
It is natural to use two time scales to describe these two kinds
of motions with low and high frequency respectively.
Following the approach of Newman’s [, the velocity potential
can be expressed by a perturbation expansion up to the
quadratic order in wave amplitude ¢, as:

P(x,t)= Re{¢$l (x)e’[s/([) + 4 (x)+... + og[%/ (x)e™

4 () 0 g () PO 1 g (e + ]

The potentials on the right-hand side of (3-1) depends
only on the space position x. The number in the subscript
indicates the order in wave amplitude while the letter j =1, 2 or
6 denotes that the potential is related to the slow surge, sway or
yaw motion respectively. Superscripts are used if needed to
denote harmonic time dependence on the wave frequency.
Here, potentials with double wave frequency are omitted since
they will not contribute to the wave-drift added mass and
damping.

Here, the phase function is defined as

a)t—gz,(t)/(j (j=1lor2)
s0={"

(3-1)

(3-2)
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where x, =k,cos and «, =k,sin S with k, to be the wave

number of the incident waves. The so-called encountering
frequency @, is obtained from the time derivative of Sy(¥)

o, =S ()=0-¢ )k, (j=1or2) (3-3)
As mentioned earlier, in the case of low-frequency yaw motion,
a term of differentiation with respect to £ should be added to a
time derivative when referring to the moving frame (see 2-3b).
For the convenience of later discussion, we define k, =i9/0f3,
comparable with the case of j=1 or 2.

Next, the potential ¢ is considered, which is linear in
wave amplitude as denoted by the first subscript. It takes
account of the interaction between low frequency motions and
waves. When the low frequency o is asymptotically small, this
potential is further expanded into a series of o

¢ =1y, o)) (3-4)

4. BOUNDARY VALUE PROBLEMS

The velocity potential is governed by the Laplace equation
in the fluid domain and satisfy an impermeable condition on
the sea bottom z=-% and on the body surface .

When the free surface condition is considered in the
moving frame, it is stated as follows on the exact elevation of
the free surface z=¢(x, y, ?):
o’@fot” + god/oz—2£ ()0’ dforox, — £ (t)od/ox,
+2V(0@/ar)- V& -2, (1 (0@/ox ) V& (-1
+1(Vo-V\Vo-V@)=0  onz=¢(x,p,1)
where the wave elevation ¢ of the free surface is evaluated by
¢ =—1/g(o®/or—& (t)od/ox, ++VD-VO)

= —1/glowjor-¢& (1)omjox, + 1V - V>
—1/g oot dlom/or— & (t)ow/ax, ) oz
+& ()owjox, o farez] |, +0(@?)

In (4-2), the expansion about the mean free surface, i.e. z
= 0, has been made. In the same way, the free surface condition
in (4-1) is also expanded about the mean free surface and the

perturbation expansions are substituted into it to yield the free
surface condition for each order of potential:

0¢,/0z —vg =0 (4-3a)
o9\ oz = 1"

where ¥ = Re{-iw/(2g)¢, 0°¢; [z}
04,,/0z=0 (4-3¢)
oy, Joz-vip, = f,
where f, =-2i0¢, /ox,

—ig,0°¢,, [0z
o, [ez-vy, = JNF/

(4-2)

(4-3b)

~2K,4,+2iV ¢, -V, (4-3d)

where 17/ =0 '[2vy, —i04,[0x, — K 4 +2iV, -V (4-30)
_i¢0,/(6 ¢1/62 -V ¢1 )]

of) oz -0’ [g 4l = f;?’ (4-30)

19 =Rel/(2g)olp .~ 437, )-3v* (44,

_¢:v¢1 : V¢10)— 2V ¢|¢1 ¢jﬂ:: + 2V¢1 'V¢n,

- ¢1*x, ¢1z: + l.K_/¢l¢l*zz + ¢l*z:v¢l : V¢_,o - v¢1*
V(V ¢1 : V¢j0 )+ % (¢/Ozzv¢l : V¢1* - V¢,o
v(V¢1 ' V(ﬁ: ))+ 5/6 (V¢1 ' V(ﬁ: - %V2¢1¢1* )/} }

As a summary of this section, we write down the form of
the boundary value problem for the potentials 7, and y, as
follows. The corresponding forcing terms in the free surface
condition are given in (4-3).

Vi, =0 €Q

oy, [oz=vy, =/, €S,

61/4/6220 s, (4-4)
oy, [on=0 es,

proper far field condition.

5. WAVE LOADS

Once the potential are solved, the hydrodynamic pressure
can be evaluated by the Bernoulli equation. In the moving
frame following the low-frequency oscillations, the Bernoulli
equation can be expressed as:

p= —p(@cb/at—f(t) 6@/6x+%VCD-Vd) +ng (5.1

The wave loads are obtained by integrating the
hydrodynamic pressure along the instantaneous wetted body
surface S, , which consists of a mean wetted body surface Sz
under the calm water and a surface wetted by the wave
elevation ¢ along the water line Cp of the body. The force
acting on the body in i-direction (i = 1, 2, 6 representing the
direction in surge sway or yaw respectively) may be evaluated
by the following integrals.

F () :—p_[ [7_§(I)7+ ; \oR VCD+ngn ds

5-2
=_pJ‘ [——5(:)—4-;%1) V(Djndv (5-2)
+£ aﬂaﬂ—zg(z)—wq) vo_ L0
2g Y ot | ot g ot otz

where p represents the fluid density. In (5-2), use has been
made of the wave elevation ¢ shown in (4-2).

The wave forces are expanded into a perturbation series in
the same way as the velocity potential i.e.

F.():Re{Fe'S +FY 4. +0E[F e s
e Ry (q(’*‘”)+sz +]} )

1ij lij
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We are interested in the force with a time factor of low
frequency, i.e. Fy; and F;. Here, F; is the hydrodynamic force
when the body is slowly oscillating in calm water while F; is
in quadratic order of wave amplitude. Each of them can be
separated into real and imaginary parts as followings;

F,; = —(—ioA, +BOU)
z(f) =—(-iod,, +B,,)

The Real part of them is in phase with the velocity of
the low frequency oscillations, which gives conventional (By;)
or wave-drift damping (B,;). The imaginary parts, in phase
with the acceleration, gives conventional (4;) or wave drift
added mass (42;).

The conventional damping and added mass for the slow
drift motion are well known (Kinoshita etc 2002). We are
interested in the terms of the wave-drift damping and wave-
drift added mass, which can be written in the following form;

By =Re [ S v, ve s lv Vg tnds

péio s|oex, Y Virth (5-5a)
1 . .0,
2v fs[w/// ox

% = Im[j. {1 v, —

+ivg, 44 —iaﬁn,w@ w;}n,dl}

(5-4)

2ij

B, +iVe,, ~V¢1]¢fnldl}

VV/ V! }ndH f W, + e (5-5b)

It can be observed from (5-5a, b) that only the potential ¥,

will contribute to the wave-drift damping while both potentials
of y, and y are required to evaluate the wave-drift added

mass. Therefore, an efficient way to solve the higher order
potential is desired.

6. SOLUTIONS OF THE BVP

6.1 Approach for the Lower Order Potentials
In the present study, the boundary value problems

presented in section 4 are solved by the hybrid method. The
fluid domain, designated by (2, is divided into an inner region
£, and an outer region (% by a virtual cylindrical surface Sk
with a radius equal to 7y (see Fig. 1). Different expressions are
used to represent the solutions for each order of potentials in
these two regions. They will be matched on the common
surface Sp.

In the inner region, according to the Green’s identity, the
potentials can be expressed by the following integral over its
boundary surface:

Cop, = [(Gy, 08, Jon—9,0G,, [onlis, (6-1)
where P is the field point while Q is the source point
distributed on the boundary surface S surrounding the inner
region (2. It consists of the body surface Sg, part of the free
surface Sy in the inner region, the sea bottom Sy and the virtue
surface Sg. Cp is the shape coefficient at the field point P. The

value of Cp can be determined by assuming the potential to be a
unit constant, i.e. gp= @p= 1 and consequently,

C, =[0G, [onds (6-2)

Gpo designates the Green’s function. In the present study, the
fundamental solution for a pulsating source and its mirror
image referring to the sea bottom Sy is used as the Green’s
function, i.e.

Gy = % + % (6-3a)
PO PO
where
PQ_\/ yQ) (P_ZQ)2
—\/ yQ) (zp +z, +2h)2 (6-3b)

ThlS part of dlscusswn is well known in the literature of
boundary element method. Hence, our discussion will be
concentrated on the outer region.

In the outer region, the solutions are expressed by the
eigen-function expansion. A cylindrical coordinate system, O-
ré, is also adopted in order to be used in the outer region for
convenience.

Different eigen-functions are used for different boundary
value problems. For example, for the low-frequency potential
¢, a rigid wall condition is imposed on the free surface by
neglecting terms of order O(¢?) or higher. Its solution in the
outer region can be written as:

- iiR,?mf ()Z,’ (z)(A,; cosn@+ B, sinnf) (6-4a)
m=0 n=0
where
. "t =0
Run= " 6-4b
" (r) { ( m )/K (ﬂ' T ) m> O ( )

ZY(z)=cos A, (z+h); A, =mm/h (6-4c)
and K, is the modified Bessel function of the second kind of
order n.

For the linear potential ¢, which satisfies a homogeneous
free surface condition, the expansion is readily written as:

=SSR (MZL(2)(A4, cosnO+ B, sin nd) (6-52)
m=0 n=0
where

) H (kr)/H (k =0

U () = (ko) H (kor,) m (6-5b)
K, (k) K, (k) m>0

29() = coshk,(z+h)/coshk,h m=0 (650

cosk,(z+h)/cosk,h  m>0

and H, is the Hankel function of the first kind of order », while
k, (m>0) is the positive solution of the dispersion relation:
v =—k,tank,h (6-6)

For the potential ,, in addition to the general terms same to

(6-5) except the coefficients 4,, and B,,, some special
solutions should be added to satisfy the inhomogeneous free
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surface condition. The special solutions take the following
form:

! =-2(i0/ox +k, cos 8)d4, OV (6-7)
v, =if 2V, Vg, -4, [0 )G ds (6-8)

where S} denotes the part of the free surface in the outer
region, i.e. 7, <r<ow atz =0, and G represents a Green’s

function suitable for the problem of pressure distribution over
the free surface. Its definition and eigen-function expansion are
described as followings (see Wehausen & Laitone 1960):

G'(r.0.z:p.p.C) =Y g, (rz p. )" (6-9a)

n=—on0

where

g,(r,z;p,¢)

H, (k) (k,p)
J, (kyr)H (ko p)
© K (k rI (k >
T S i B o] il B (T
I,(k,rK,(k,p) r<p

C, =k, /lh(k; —v*)+Vv]; C, =k, [[h(k} +v*)-V] (6-9¢)
These special solutions given in (6-7) and (6-8) can also be

expressed in eigen-function expansion after some tedious
deduction.

= i27zC0( jz;‘) (2Z,°($)

m=1

6.2 New Approach for the Higher Order Potential
When the potential  is considered (defined Equ. (3-4)),

difficulty arises from the first forcing term, i.e. 2wy, since
w, itself satisfies an inhomogeneous free surface condition

Ordinary, the special solution for the inhomogeneous boundary
condition can be obtained by an integral over the free surface.
In the case of potential , linear in wave slope but an order
of low frequency squared, one of the difficult parts to solve is
this part because potential  itself is secular at far field. So
we are going to consider this problem in another way.

As mentioned before the potential ¥, consists of three
parts, i.e.
v, =0 (6-10)
Similarly, the potential /,contains three parts corresponding

to different parts of potential 17, as followings;

V=0 (6-11)
We can obtain solutions correspondingly. The first one is

obtained by applying a derivative operator to the first order

potential ¢. the operator involves a double derivative with

respect to the parameter v:

y! =v(iofox, +x,)0°¢ [0V (6-12)

The second one consists of two parts. The first part is the -
derivative applied to the second special solution of y?f while

the second part is an integral over the free surface.

7, =2v{oy; Jov - L Gof: Jovds) (6-13)
The third one is the 1-derivative applied to the general solution
part of the potential *.

we=2woy¢ o (6-14)
The remaining forcing terms can easily be treated in the same
way as in solving the potential t/}_,

7. DISCUSSION
It can be observed from (6-13), a free surface integral, i.e.

L G6};/ / Ovds , still exists in the new solutions. It is important
s

to examine whether this integral is convergent or not. Since the
derivative of the forcing term JA‘/ referring to the parameter v

is complicated to calculate, we are going to change this form to
the differential of the Green function by means of the
differential formula of the product as followings;

[ Gar; Jovas=a4; /GV—L 0G/ov f;ds (7-1)

Then the behavior of integrand at large distance (» >> 1) is
shown in Table 1.

Table 1
Integrand r>>1
oG/ov (rH!" orrJ!") U
J}; ~ r’

As a summary of Table 1, the integrand behaves as follows for
r>>1:

Gof: Jov ~rie™ (7-2)
Hence the integral will be convergent. However, the convergent
rate is not good enough to integrate it numerically. Special
treatments are needed when dealing with the propagating
modes in the eigen-function expansion. These propagating
modes are separated from the other terms and can be integrated
analytically. The remaining terms, i.e. the evanescent modes ,
which are convergent at least in proportion to the radius, can be
calculated numerically.

CONCLUSION

In the present study, higher order potential used in the
calculation of the wave-drift added mass is solved by means of
proper derivative operator. It is easy to confirm that the free
surface integral appeared in the new solutions is convergent.
The new solutions have an advantage of saving much effort
from tedious numerical integral over the free surface.
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APENDIX A
VALIDATION OF THE SPECIAL SOLUTION

Obviously, all the solutions given in (6-12, 13, 14) satisfy
the governing equation since the order of applying the

derivative operator and the Laplace operator can be changed.
We are going to concentrate our discussion on the proof that
these solutions satisfy the corresponding inhomogemeous free
surface conditions.

As shown in (6-12) the solution 1/7f is expressed as

follows;

) =velo's [ovi) (A-1)
where @{} is defined as;

@i} =(0fox, +x )| | (A-2)

When (A- 1) is substituted into the free surface condition, the
following calculation can be derived,;

LHS=0lvplo’s /ov: ez —v[vplors Jov']]
=vp|o'g, Joviaz—vo's [ov:] (A-3)
—vplor/ov:(og, oz—ve, )+ 209, /ov}
=2vplog, /ov)
=2vy =R.H.S
So the solution for 1/7]” satisfies the free surface condition.
When the second solution i in (6-13) is considered, it

should be noticed that the second part of it, i.e. the free surface
integral, represents a potential caused by the pressure

distribution of 2\/6]}; /61/ over the free surface. Inserting the

second solution into the free surface condition, we have:
LHS.=08/ez(2voy:; [ov)—v(2vay: [ov)

—21/8]}]”/8\/
=2wloloy Joz vy Yov i o fov]
=2wy; =RH.S

This shows that the corresponding free surface is satisfied.
Finally the third one w¢ is considered. Since the

general solution of /¥ satisfies a homogeneous free surface

condition, the validation is quite simple and is referred to
Emmerhoff and Sclavounos (1992).
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