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Abstract

We derive an explicit formula for a marginalist and efficient value for TU game which
possesses the null-player property and is either continuous or monotonic. We show that every such
value has to be additive and covariant as well. It follows that the set of all marginalist, efficient,
and monotonic values possessing the null-player property coincides with the set of random-order
values, and, thereby, the last statement provides an axiomatization without the linearity axiom for
the latter which is similar to that of Young for the Shapley value. Another axiomatization without
linearity for random-order values is provided by marginalism, efficiency, monotonicity and
covariance.  1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Cooperative game theory is intensively developed now. Many new solutions appear
and most of them have axiomatizations. But the standard approach is first to construct a
solution or a set of them and then to characterize their properties in terms of axioms.
Meanwhile the social choice theory related very closely to that of cooperative games
seems to be much more conceptually developed. It starts with a desirable set of
properties the solutions should have, and after that the entire set of mappings
representing these solutions is described. We adopt the social choice theoretical approach
to cooperative game solutions and start with their axiomatic characterizations thereupon
deriving a functional description for the associated set of them.

We consider single-valued solutions usually called values. The most famous value for
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cooperative games is the Shapley value (Shapley, 1953) which is linear in its definition.
However, as was first shown by Young (1985) and then strengthened by Chun (1989),
(1991) the Shapley value may be characterized without the linearity axiom. It turns out
that the Shapley value is not the only case, and a class of values defined without the
linearity assumption and which appear to be linear is rather wide. We exploit the
property of marginalism introduced by Young in his characterization of the Shapley
value, what means a dependence of any player’s payoff upon only his /her marginal
utilities. We derive an explicit formula for a marginalist and efficient value which
possesses the null-player property and is either continuous or monotonic. We show that
every such value must be additive and covariant as well.

It follows that the set of all marginalist, efficient and monotonic values possessing the
null-player property coincides with the set of random-order values introduced and
studied by Weber (1988), and thereby the last statement provides an axiomatization
without the linearity axiom for the latter which is similar to that of Young for the
Shapley value. Another axiomatization without linearity for random-order values is
provided by marginalism, efficiency, monotonicity and covariance. So, removing the
symmetry assumption in Young and replacing it by monotonicity and either null-player
or covariance it is possible to characterize the whole class of random-order values. Thus,
it is shown that Young’s result is robust without symmetry provided we assume
monotonicity and something else. Therefore, this paper closes an open question raised
by Hart in the survey (Hart, 1990).

Note that an axiomatic characterization of weighted Shapley values, which are a
subset of random-order ones (Monderer et al., 1992), without imposing the additivity
axiom but still requiring homogeneity, was obtained by Chun (1991). It is also worth
noting a recent work of Nowak (1997) presenting an axiomatization of the Banzhaf
value without the additivity assumption.

The paper is organized as follows. In Section 2 we introduce basic definitions and
notation. Section 3 presents our main results. Section 4 provides some concluding
remarks.

2. The framework

An n-person game in characteristic function form or a transferable utility game (TU
N 1game) is a pair kN,vl where N 5 h1, . . . ,nj and v is a mapping v:2 →R such that

Nv(5)50. N is the set of players and 2 denotes the family of all coalitions S,N. In this
context a class of games with a fixed set N is naturally identified with the Euclidean

n2 21
S,Nspace R of vectors v, v 5 v (we shall occasionally refer to v setting v 5 0). Ah j S±5S 5 5

n n2 21 n 2 21value is a mapping j :R → R which associates with every game v [ R a vector
n

j(v) [ R . The real number j (v) represents the payoff to player i in the game v.i n2 21A value j is efficient if for all v [ R

O j (v) 5 v .i N
i[N
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n2 21A value j is marginalist if for all v [ R and every i[N j (v) depends only uponi

the ith marginal utility vector v 2 v S,N• i , i.e.h jh jS< i Sh j

j (v) 5 f ( v 2 v S,N• i )h jh ji i S< i Sh j

n212 1where f :R → R .i n2 21Let P be the set of n! permutations of N and let for all v [ R and for any p [P,
p n

pN5hi ,i , . . . i j, x (v)[R denote the n-dimensional marginal contribution vector1 2 n

px (v) 5 v 2 v . (1)i i , . . . ,i ,i i , . . . ,ih j h jk 1 k21 k 1 k21

n2 21 pIt is not difficult to check that for all v [ R and for all p [P the vector x (v) is
efficient. One can easily see that for every marginalist value the payoff to any player
i[N may be represented in the form

p
j (v) 5 f ( x (v) ) (2)h ji i i p [P

n! 1where f :R →R .i
2n21A value j is monotonic if for any i[N for all v,v9 [ R

9v $ v , ;S ] i,S S ⇒ j (v9) $ j (v).J i i9v 5 v , ;S ]⁄ i,S S

Remark. Under marginalism monotonicity is equivalent to all functions f , i[N, in thei

definition of marginalism and in particular in Eq. (2), being monotonic.
Notice that this notion of monotonicity coincides with the coalitional monotonicity in

Young (1985).
n2 21A player i is a null-player in the game v [ R if v 5v for every S,N\hij. AS<hi j S

n2 21value j possesses the null-player property if for all v [ R for every null-player i in
v j (v)50.i n2 21A value j is additive if for any v ,v [ R1 2

j(v 1 v ) 5 j(v ) 1 j(v ).1 2 1 2

n2 21 nA value j is covariant if for all v [ R for any a .0 and b [R

aj(v) 1 b 5 j av 1O b .S,NSH J DS j
j[S S±5

n2 21A value j is a random-order value if for all v [ R and every i[N

p
j (v) 5 O r x (v)i p i

p [P

for some probability distribution hr :p [P j over the set P.p n2 21In the sequel the Shapley value in a game v [ R we denote by Sh(v). For the
n n¯ ¯mean value of any vector x 5 hx j we use notation x, i.e. x 5 o x . By 0 and e wei i51 i51 i

denote the vectors with all components equal to 0 or to 1, respectively.
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3. Main results

We start with the next lemma. The similar statement was proved earlier by Rubinstein
and Fishburn (1986) but under somewhat stronger conditions being aimed for applica-
tion to purpose of preference aggregation and not to cooperative game theory.

mLemma 1. Let n$3 and let A be some fixed constant. Let D#R be such that 0[D, for
]1any x[D Ae2x[D, and for any x , x [ D x 1 x [ D, and let c :D → R , i[1,n,1 2 1 2 i

possess the property c (0)50. Then:i

(1) for the equality

n
mjO c ( x ) 5 A (3)h j j51i i

i51

j m j n j j nto hold for every set hx j of m vectors x [R , x 5hx j , satisfying the conditionsj51 i i51] ]j m(i) for all i [1,n hx j [D and (ii) for all j [1,mi j51

n
jO x 5 A, (4)i

i51

] ]
the functions c , i [1,n, have to be identical and additive, i.e. for all i,k [1,n, i±k,i

1
c 5c 5c under some c :D→R , and for any x ,x [D c(x )1c(x )5c(x 1x );i k 1 2 1 2 1 2

m(2) if, moreover, D forms a subspace R and the function c appears to be continuous
j m j n j j nor monotonic, Eq. (3) is valid for every set hx j , x [R , x 5hx j , complying withj51 i i51

j mthe conditions (i) and (ii), if and only if c is linear, i.e. for any x[D, x5hx j , c(x)j51

has the form
m

j
c(x) 5O a x , (5)j

j51

]m mfor some ha j [R and besides, if A±0 the coefficients a , j [1,m, are such thatj j51 j

mO a 5 1, (6)j
j51

m mand furthermore, for monotonic c ha j [R .j j51 1

j mProof of Lemma 1. First we take an arbitrary y[D, y5hy j , and fix any twoj51] j m j ndistinct indices i ,i [1,n, i ±i . Consider the set of vectors hx j , x [R , such that1 2 1 2 j51]
for every j [1,m

jy , i 5 i ,1
j jx 5 A 2 y , i 5 i ,i 25

0, i ± i ,i .1 2

j mEvidently, the set hx j meets the conditions (i) and (ii). Hence, due to the conditionj51]
c (0)50, i [1,n, we arrive ati
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n
mjO c ( x ) 5 c ( y) 1 c (Ae 2 y).h j j51i i i i1 2

i51

By Eq. (3) for all y[D the last is equal to A. From here since n$3 and because of the
] ]

arbitrariness of i ,i [1,n, it follows that all functions c , i [1,n, are identical ( further1 2 i

we will denote them by c), and besides, for every y[D

c( y) 5 A 2 c(Ae 2 y). (7)

j mNext we take two arbitrary points y ,y [D, y 5hy j , i51,2, fix three distinct1 2 i i j51] ]j m j nindices i ,i ,i [1,n and consider the set hx j , x [R , such that for all j [1,m1 2 3 j51

jy , i 5 i ,1 1
jy , i 5 i ,j 2 2x 5i j jA 2 ( y 1 y ), i 5 i ,1 2 35

0, i ± i ,i ,i .1 2 3

The conditions (i) and (ii) are true and therefore

n
mjO c( x ) 5 c( y ) 1 c( y ) 1 c(Ae 2 y 2 y ).h j j51i 1 2 1 2

i51

Whence by Eqs. (7) and (3) we arrive at

c( y ) 1 c( y ) 5 c( y 1 y ),1 2 1 2

what completes the proof of the first issue.
mNow we turn to the proof of the second one. One can easily check that for any D # R

j m j n j j nfor every set hx j , x [R , x 5hx j , satisfying the conditions (i) and (ii) thej51 i i51
nequality Eq. (3) is true for every set of identical functions hc j of the form of Eqs. (5)i i51

and (6). Indeed,

n n m m n
mj j jO c( x ) 5O O a x 5O a O x 5 A.h j j51i j i j i

i51 i51 j51 j51 i51

mLet us give evidence to the contrary. It is not difficult to verify that for any D # R
]jfor every additive function c and for all x[D with rational components x , j [1, m, the

m mequality Eq. (5) is valid under a 5 c(e ) where vectors he j , e [R , form a basis ofj j j j51 j
mR . The last statement can be extended easily to all vectors x[D with real components

mprovided D is a subspace in R and the function c is either continuous or monotonic.
An equality Eq. (6) is a direct corollary of Eqs. (5), (3), (4) under condition A±0.

m mThe equivalence of the condition ha j [R to the monotonicity of any c havingj j51 1

the form Eq. (5) is obvious. j

Remark 1. It is worth to note that for a function c to possess the property c(0)50 it
suffices to be continuous and homogeneous.
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Remark 2. The condition n$3 is an essential condition in Lemma 1. Indeed, in the case
m 1 m j mn52 the functions c :R →R , i51,2, which for every x[R , x5hx j , have thei j51

form

c (x) 5 f(x)1

c (x) 5 A 2 f(Ae 2 x)2

m 1under any f :R →R possessing the properties f(0)50 and f(Ae)5A satisfy the
conditions of Lemma 1. However, for instance for

]]] ]]m mm13 j 3 j j]f(x) 5 O (x ) , f(x) 5 P x (if m is odd), or f(x) 5 min x
]m j51œ j[1,mj51œ

functions c and c are neither identical nor additive. Note that in all three latter cases1 2

functions c and c are also monotonic.1 2

n2 21 nTheorem 1. Let n$3 and a mapping j :R → R be a marginalist and efficient value
possessing the null-player property which is also continuous or monotonic. Then

n2 21(1) for every v [ R j(v) has the form

p
j(v) 5 O r x (v) (8)p

p [P

n!with some hr j [R such thatp p [P

O r 5 1; (9)p
p [P

n!and moreover, for monotonic j hr j [R ;p p [P 1

(2) the value j is additive and covariant.

Proof of Theorem 1. We use for j the representation in the form of Eq. (2). Fix any
value v of the worth of grand coalition N and consider a restriction of j to a subclass ofN

n2 21 9games G(v )5hv9 [ R uv 5 v j with the worth of grand coalition equal to v . NextN N N N

note that: first, the null-player property for j is just the condition of f (0)50 for alli
n! 1 p

f :R →R , i[N, in Eq. (2); second, all marginal contribution vectors x (v), p [P arei

efficient; third, due to hypothesis of continuity or monotonicity for j all functions f ,i
i[N, are either continuous or monotonic because of Remark after the Definition of

pMonotonicity; and fourth, for every i[N the set of all n!-vectors hx (v)j underi p [P
n n!v [ G(v ) forms a (2 22)-dimensional subspace in R . Whence due to Lemma 1 onN n2 21G(v ) j has the form of Eqs. (8) and (9). Notice that R 5 < G(v ). Thus, for1N v [R NNn2 21every v [ R j(v) has the form

p
j(v) 5 O r (v )x (v)p N

p [P

n!with some hr (v )j [R such thatp N p [P
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O r (v ) 5 1,p N
p [P

n!and for monotonic j hr (v )j [ R .p N p [II 1

But because of marginalism all r (v ), p [P, must be independent of v . Therefore,p N N
n2 21for all v [ R j(v) has the form of Eqs. (8) and (9).

pThe additivity of j follows directly from Eq. (8) and the definition of vectors x (v),
p [P.

Finally, the covariance of j(v) runs out from Eq. (9). Indeed, for any a .0 and
nn 2 21

b [R for all v [ R for every i[N

p p
j ( av 1O b 5 O r (ax (v) 1 b ) 5 a O r x (v) 1 b O r 5S,NH Ji S j p i i p i i p

j[S p [P p [P p [PS±5

aj (v) 1 b . ji i

A direct corollary to Theorem 1 is the following axiomatization without the linearity
property for random-order values.

Theorem 2. Let n$3 then the only set of marginalist, efficient, and monotonic values
possessing the null-player property is the set of random-order values.

It turns out that the null-player property may be avoided via replacing by covariance.

Theorem 3. Let n$3 then the only set of marginalist, efficient, monotonic, and
covariant values is the set of random-order values.

The validity of Theorem 3 arises from Theorems 1 and 2 and the next lemma.

Lemma 2. Every marginalist, monotonic, and covariant value possesses the null-player
property.

Proof of Lemma 2. As usual, for j we use a representation in the form of Eq. (2). Due
pto covariance of j and the definition Eq. (1) of x (v), p [P, for every i[N for all

n! 1x[R for any a .0 and b [R

n!af (x) 1 b 5 f ( ax 1 b ). (10)h ji i j j51

From where first, setting b 50 it follows that every f , i[N, is the first degreei

homogeneous and second, it is not hard to verify the continuity of any f . Indeed, if fori

any vector y by ( y) and ( y) we denote its maximum and minimum component,M m

respectively, then because the monotonicity of j and since Eq. (10) for all i[N and
n!every x,Dx[R

f (x) 1 (Dx) # f (x 1 Dx) # f (x) 1 (Dx) .i m i i M

Whereby the continuity of every f , i[N, follows immediately. To complete the proof iti

remains to refer to Remark 1 of Lemma 1. j

Remark 1. The marginalism is an essential condition in Lemma 2: not every monotonic
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and covariant value possesses the null-player property. Indeed, the value j defined for all
n2 21v [ R for any i[N by formula

j (v) 5 v 2O vi N jh j
j[N

j±i

is monotonic and covariant but it does not possess the null-player property and is not a
marginalist one.

]p¯Remark 2. Setting a 51 and b 5x in Eq. (10), and noticing that Sh (v) 5x (v) one cani
n2 21easily see that every marginalist and covariant value j for all v [ R for every i[N

has the form

p
j (v) 5 Sh (v) 1 f (hx (v) 2 Sh (v)j )i i i i i p [P

n! 1under some homogeneous of the first degree function f : R → R .i

Theorem 4. All the axioms in the hypothesis of both Theorem 2 and Theorem 3 are
independent.

The proof of Theorem 4 is provided by the next list of examples showing that if we
remove anyone of axioms from the hypothesis of Theorem 2 or Theorem 3, more than
the random-order values can meet the others.

(i) Marginalism:
(a) The center of imputation set value (CIS-value)

1 n 2 1 1
] ]] ]j (v) 5 v 1 v 2 O vi N i jh jn n n j[N

j±i

is an efficient, monotonic, and covariant value which violates marginalism.
n2 21 1(b) Consider a function r:R → R

1 1
] ]r(v) 5 arctan(v 2 v 2 v 1 v ) 1 .N N•hnj N• n21 N• n21,nh j h jp 2

and two permutations: p 51,2, . . . ,n21,n and p 51,2, . . . ,n,n21. The next non-1 2
n2 2 21marginalist value j defined for all v [ R by the formula

2 p p1 2j (v) 5 r(v)x (v) 1 (1 2 r(v))x (v)

or which is the same

v 2 v , i ± n 2 1,n1, . . . ,i21,i 1, . . . ,i21h j h j

2 r(v)(v 2 v ) 1 (1 2 r(v))(v 2 v ), i 5 n 2 1N•hnj N• n21,n N N• n21h j h jj (v) 5i 5r(v)(v 2 v ) 1 (1 2 r(v))(v 2 v ), i 5 nN N•hnj N• n21 N• n21,nh j h j

presents an example of an efficient and monotonic value possessing the null-player
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1 2property. (To check monotonicity it suffices only to show that derivatives ≠j /≠v ,n21 N
2 2 2

≠j /≠v , ≠j /≠v , ≠j /≠v $0.)n N n21 N•hnj n N• n21h j

(ii) Efficiency: The Banzhaf value gives an example of a marginalist, monotonic, and
covariant value who possesses the null-player property but that is not efficient.

n3 2 21(iii) Monotonicity: Every value j (v) that for each v [ R j (v) has the form3

3 p
j (v) 5 O r x (v)i p i

p [P

n!with some r [ R such thath jp p [P

O r 5 1p
p [P

is a marginalist, efficient, and covariant value also possessing the null-player property
n!but if r [⁄ R it has not be a monotonic one.h jp p [P 1

(iv) Covariance and null-player: Fix any i [N and any arbitrary permutation p [P0 0n4 2 21and consider the value j defined for every v [ R for all i[N as follows

n 2 1
]], i 5 i ;0n4 p0j (v) 5 x (v) 1i i 15 ]2 , i ± i .0n

4Just defined value j is a marginalist, efficient, and monotonic one who is neither
covariant nor possesses the null-player property and violates additivity as well.

(v) n52: The value

5 p
j (v) 5min x (v)1 1

p [P

5 p
j (v) 5max x (v)2 2

p [P

provides an example of a marginalist, efficient, monotonic and covariant value which
possesses the null-player property but which is neither a random-order value nor is
additive.

4. Concluding remarks

The original Weber’s axiomatization for random-order values comes out of the
classical one for the Shapley value via replacing symmetry by monotonicity and
homogeneity which is of course true for the latter as well but is not necessary for
completeness of the axiomatic system. Our axiomatization for random-order values
differs from that of Young for the Shapley value in a similar way. We replace symmetry

1 This example is due to Elena Yanovskaya.
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by either monotonicity and the null-player property or monotonicity and covariance. All
these properties are certainly valid for the Shapley value too, but no one of them is
required for completeness of Young’s system of axioms. In addition it is also worth to
notice that the notions of monotonicity in these two cases are slightly distinct: Weber
(1988) applied the definition of monotonicity that some other authors call positivity (in
particular, Chun, 1991) which means that a value for any monotonic game is non-
negative.
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