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ABSTRACT 

This paper examines the degree of correlation between lip 
and jaw configuration and speech acoustics. The lip and 
jaw positions are characterised by a system of measure- 
ments taken from video images of the speaker’s face and 
profile, and the acoustics are represented using line spectral 
pair parameters and a measure of RMS energy. A correl- 
ation is found between the measured acoustic parameters 
and a linear estimate of the acoustics recovered from the 
visual data. This correlation exists despite the simplicity 
of the visual representation and is in rough agreement with 
correlations measured in earlier work by Yehia et al. using 
different techniques. However, analysis of the estimation 
errors suggests that the visual information, as paramet- 
erised in our experiment, offers only a weak constraint on 
the acoustics. Results are discussed from the perspective 
of models of early audio-visual integration. 

1. INTRODUCTION 

A recent study by Yehia, Rubin and Vatikiotis- 
Bateson [8] h as examined linear associations between 
vocal-tract configuration, facial behaviour and speech 
acoustics. Their results indicate that around 80% of 
the variance observed in the vocal-tract configuration 
can be estimated from the 3D position of a set of fixed 
points on the surface of the face. Furthermore, simple 
linear estimates derived from the face, are sufficient 
to determine between 72 and 85% of the variance ob- 
served in an RMS and line-spectral pair representation 
of the acoustics. These surprising results seem to sug- 
gest that knowledge on the formantic structure of the 
speech may be heavily constrained by visual informa- 
tion. The existence of such constraints would offer a 
mechanism for models of primitive audio-visual integ- 
ration as proposed in [l]. 

cognition. In particular, we are concerned with the 
question of whether linear estimates of the spectrum 
are sufficiently reliable to aid the segregation of a 
speech source from a competing noise source. 

The current study closely follows that of Yehia et al. 
but differs in a number of important details. First, 
whereas the earlier study was based on the analysis of 
a single pair of sentences, the present work examines 
a corpus of isolated nonsense words having a VCVCV 
vowel-consonant structure. The systematic structure 
of the corpus allows the audio-visual correlations to be 
separately analysed for both consonants and vowels. 
Second, there is an important difference in the visual 
parameterisation. Yehia et al. employ OPTOTRAK 
parameters which measure the 3D coordinates of 12 
markers fixed to the lower part of the speaker’s face. 
In contrast the present study employs 15 parameters 
which are extracted from video images through the 
application of ‘Chroma-Key’ processing. These para- 
meters are exclusively concerned with lip and jaw con- 
figuration. 

The present study also extends the analysis of Yehia 
et al. by directly examining the estimation errors. 
The audio-visual associations were previously reported 
solely in terms of the correlation between the measured 
acoustics and the linear estimate recovered from the 
visual parameters. Although significant, these correl- 
ations say little about the size and distribution of the 
errors. Knowledge of the errors is important because it 
is the accuracy of the estimates that determines their 
practical value for robust audio-visual speech recog- 
nition. Also, the reliability of the estimates has dir- 
ect implications for models of audio-visual integration 
based on simple linear audio-visual associations. 

This paper examines the association between facial be- 2. EXPERIMENTATION 
haviour and spectral envelope shape, focusing on the 
implications for audio-visual speech perception and re- An existing audio-visual speech corpus was employed 

This work was supported by European Commission Network [a]. This corpus consists of VI CV&‘V~ sequences 
TMR ERBFMRXCT970150 (SPHEAR) uttered by a native French speaker. VI and Vz are 
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taken from a set of 3 French vowels, [a, i, U] and C is 
one of the following 6 consonants, [b, j, I, r, ~1, x]. Each 
of the 54 possible nonsense words (3x3~6) of this form 
are spoken 10 times each. 

2.1. Lip and Jaw Configuration 

The visual parameters were extracted automatically 
from the video images with the aid of make-up applied 
to the speaker’s lips and reference points attached to 
the chin and the bridge of the nose. ‘Chroma-Key’ 
video processing was then employed to separate the 
lips and reference points from the rest of the image. 
The database was recorded using two cameras - one 
giving an image of the full face and the other giving 
an image of the profile. From the two processed images 
a set of 15 measurements were made as illustrated in 
figure 1. This parameterisation proceeds at the video 
frame rate, that is, 50 frames per second. The corpus 
consists of a total of almost 13,000 frames. 

Pl 
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Figure 1: The parameterisation of the lip images. 

The data are unnatural in two respects. First, the fea- 
ture extraction relies on the use of lip makeup. By us- 
ing the ‘Chroma-Key’ technique we are able to greatly 
simplify the technical problem of reliable visual fea- 
ture extraction. We are assuming that, in principle 
at least, the same features can be extracted from a 
natural image. A second issue is the use of simultan- 
eous front and profile views. Such views are obviously 
not typically available to human speech readers in nat- 
ural conditions. However, as will be shown later, the 
lip protrusion parameters measured in the profile view 
may be estimated with a very high degree of accuracy 
from the parameters extracted from the full face view, 
so in this respect the profile view is largely redundant. 

2.2. Speech Acoustics 

The speech signal was sampled at 8 kHz. For the 
acoustic analysis the frame length was 24 ms and the 
frame shift was set to 20 ms to match the 50 Hz 
sampling rate of the visual data. Each frame was mul- 
tiplied by a Hamming window and 10th order linear 
prediction (LP) coefficients were calculated. Following 

[8] the LP coefficients were converted into line spec- 
trum pairs (LSP) [5]. The 10 LSP coefficients were 
supplemented by the root mean squared (RMS) amp- 
litude of the signal to form an 11 dimensional feature 
vector representing the acoustics of each speech frame. 

It is believed that LSP parameters are preferable to 
LP based representations (such as employed in other 
studies of audio-visual association, such as [4, 31) be- 
cause they have better temporal interpolation and are 
more closely related to the formant frequencies and 
hence the vocal tract geometry. The LSP paramet- 
ers should therefore highlight the relation between the 
acoustics and the visual parameters which are them- 
selves related to the configuration of the vocal-tract. 

2.3. Analysis 

Linear estimators were employed to evaluate to what 
extent the acoustic features may be recovered from the 
visual features (and vice versa). An affine transforma- 
tion was calculated that provides a minimum-variance 
unbiased estimate of one feature set given an observa- 
tion of the other. This analysis closely follows that of 
Yehia et al. and the reader is referred to [8] for details. 

The data were randomly divided into three sets each 
containing an equal number of utterances. Two of 
these were selected to form a ‘training set’, that is 
to say, two thirds of the data were used to define the 
linear transformation. This transformation was then 
applied to the remaining one third of the data (i.e. 
the ‘test set’) to produce the linear estimates. The 
Pearson product-moment correlation between the lin- 
ear estimate and the observed data was calculated. 
The three data partitions were rotated between the 
training and test sets to give three separate estimates 
of the product-moment correlation. The mean and 
variance of these estimates was calculated. 

As a further refinement, the data were separated into 
frames corresponding to vowels (64% of the data) 
and frames corresponding to consonants. This was 
achieved by performing a forced alignment of each ut- 
terance and its phonetic transcription using Hidden 
Markov Models trained on the full corpus. Correlation 
coefficients were then calculated exclusively training 
and testing on either the vocalic or the consonantal 
frames. 

3. RESULTS 

Table 1 shows the correlations between the estimates 
and the measured data for various transformations. 
The estimates of the visual data are correlated with 
the true data with a coefficient of 0.75, which agrees 
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well with the figure of 0.72 reported by Yehia et al. 
using a different visual representation. Note also that 
the visual parameters can be more reliably reconstruc- 
ted during vowels than during consonants. As expec- 
ted, stronger correlations are achieved using the LSP 
parameterisation than the LP parameterisation. 

Profile/Front 0.97 0.97 0.97 
Front/Profile 0.88 0.90 0.85 

Table 1: Estimation performance. Figures show the 
mean correlation between the estimates and the meas- 
ured data for various transformations. e.g. ‘LSP/Face’ 
is the correlation between the measured and estimated 
LSP data where the LSP data has been estimated from 
the measured lip motion data. (Standard deviations 
for all these figures are around 0.01). 

When attempting the inverse mapping, that is, the re- 
construction of the acoustics from the visual lip data, 
the correlation is only 0.55. Correlations are stronger 
between the measured and reconstructed LSP para- 
meters than for the LP parameters, and again correl- 
ation is highest for vocalic intervals. The correlations 
are somewhat weaker than those measured by Yehia et 
al. of around 0.73 for the LSP parameters and 0.83 for 
the RMS energy. Possible reasons for this significant 
difference will be discussed later. 

The last two rows of Table 1 illustrate the redundancy 
in the visual parameterisation. The visual parameters 
have been split into those that can be measured in the 
x-y plane of the front view and those measured in the z 
direction of the profile view. The front view paramet- 
ers have been used to estimate the profile parameters 
and vice versa. The correlation between measured and 
recovered profile parameters (C, Pl and P2) is 0.97. 
Remarkably, if the profile is estimated from the front 
view A and B parameters alone (see figure 1) the cor- 
relation remains high, 0.82. The ability to estimate lip 
protrusion accurately from a full face camera has po- 
tential practical application for automatic audio-visual 
speech recognition systems. However, it is uncertain 
to what extent this result will generalise across speak- 
ers and will extend to utterances of greater phonetic 
diversity. 

Table 2 summarises the estimation errors. The figures 
show the variance of the estimation error expressed 
as a fraction of the variance of the data being estim- 
ated. Although the estimates and the measured data 
are fairly well correlated, the variance of the LP es- 
timation errors remains at 73% of the variance of the 

Variance of estimation errors 
Estimate/Measure All Data Vowels Consonants 

LSP/Face 0.69 0.66 0.70 
LP/Face 0.73 0.70 0.75 

RMS/Face 0.66 0.60 0.76 

Table 2: The variance of the residuals expressed as a 
fraction of the variance of the signal being estimated. 
(Standard deviations are around 0.02). 

LP data. Hence, the estimated spectra only weakly 
constrain the true spectra. Examination of the er- 
ror distributions for the LP parameters reveals them 
to be multimodal, i.e. clearly non-Gaussian. This is 
evidence that the linear estimates are essentially an in- 
adequate model of the true mapping. To the degree to 
which the vocal tract can be controlled independently 
of the lips and jaw several acoustic modes may exist 
with the same identical facial configurations. Accept- 
ing this, the distribution of LP values given the facial 
configuration will be multimodal and cannot therefore 
be meaningfully represented by a single valued estim- 
ate. 

Table 3: Left: 95% confidence interval (CI) for the 
true RMS energy (arbitrary units) given various estim- 
ates of RMS energy (using the vocalic regions only). 
The final row shows the 95% CI for the unconditioned 
data. Right: The same analysis for the frequency of 
the 2nd LSP parameter. 

As a rough assessment of the practical value of the lin- 
ear estimates, Table 3 gives an indication of the prob- 
abilistic constraint that the linear mapping places on 
the acoustics. The figures show the spread of the true 
values given a value for the linear estimate (or more 
precisely, given a value within a small window centred 
at the value shown in the table). The interval is that 
within which the true value will lie 95% of the time. 
The final row in each table shows this 95% confidence 
interval as measured over all the data i.e. the interval 
that can be estimated prior to forming the acoustic 
estimate. Table 3 (right) shows results of this analysis 
for the 2nd LSP parameter. Of the 10 estimated LSP 
parameters the 2nd was found to be the most highly 
correlated with the true value (correlation coefficient 
of 0.70). Nevertheless, it can be seen that the interval 
of uncertainty is not greatly reduced by conditioning 
on the acoustic estimate (compare the first three rows 
with the final row). The left hand side of the table 
shows results of the same analysis applied to the RMS 
energv estimates. 

c 
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4. DISCUSSION AND CONCLUSIONS 

As noted earlier there are significant differences in the 
results of the present study and the earlier study of 
Yehia et al. Although both show equal recovery of 
the the visual representations from the acoustics, in 
the present work the acoustics are not as well estim- 
ated from the visual data. How can this difference be 
accounted for? 

Yehia et al. represented the facial behaviour through 
the trajectories in 3D space of 12 markers attached to 
the face. A dimensional analysis of this data showed 
that 8 eigenvectors were required to account for 99% 
of the total variance of the data. In contrast, a similar 
analysis of the 15 dimensional visual feature repres- 
entation employed in the present study revealed that 
99% of the variance could be accounted for using just 
3 eigenvect ors. One reason for the lower dimensional- 
ity of our data is that the representation concentrates 
solely on capturing the behaviour of the lips and jaw 
while ignoring the rest of the face. However, there 
are doubtless subtle acoustic cues available in facial 
details which exist independently of lip and jaw con- 
figuration. For example, Vatikiotis-Bateson and Yehia 
report a strong correlation between small movements 
of the cheeks and the horizontal position of the tongue 
[6]. The ‘outer-face’ may also contribute to the estim- 
ation of RMS amplitude [7]. 

It is tempting to interpret the linear relationship 
uncovered between the facial configuration and the 
acoustics in terms of a model of production, i.e. to 
say that the degree to which the correlation exists is 
the degree to which the lip movements are responsible 
for the acoustic patterns. Such a relationship could 
be termed a ‘functional coupling’ [8]. Such logic is, 
however, misguided. A large part of the correlation 
may occur because all parts of the speech apparatus 
are being driven in a coordinated manner to achieve a 
common goal. Consider as an analogy someone play- 
ing the piano - the movements of either hand may 
be highly correlated but the movements of one are not 
caused by the movements of the other. It is impossible 
to tell from the present data to what extent the correl- 
ation is due to the control systems and to what extent 
it is due to the physical linkage between the face and 
the rest of the speech apparatus. 

It is possible that through the use of a mapping from 
a visual representation to an estimate of the speech 
acoustics, the visual and auditory processing could be 
integrated at a very early stage. This is the tenet 
of models of audio-visual scene analysis (such as that 
suggested by Barker, Berthommier and Schwartz), in 
which visual information is employed alongside prim- 
itive acoustic cues to aid sound source segregation [l]. 
However, the success of such a scheme would depend 

heavily on the reliability of the visual-acoustic map- 
ping. As shown here, for the case of a simple linear 
mapping, despite the correlation that exists between 
the observed and estimated acoustics, the estimation 
errors are such that the acoustics are only weakly con- 
strained. Whether or not such weak constraints can 
be of any practical value is an open question. Future 
work will address this question through the construc- 
tion of audio-visual recognition models making direct 
use of the findings reported here. 

As a final point, note that the acoustic estimates have 
been recovered from the static facial configuration and 
make no use of dynamic visual features. Dynamic fea- 
tures have proved to be extremely significant in auto- 
matic audio-visual speech recognition studies, it might 
therefore be expected their use could lead to improved 
linear estimates. 
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