
Applied Mathematics and Computation 219 (2013) 5185–5197

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX
Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate/amc
Particle swarm optimization using dimension selection methods

Xin Jin a,b,c,⇑, Yongquan Liang b, Dongping Tian a,c, Fuzhen Zhuang a

a Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
b College of Information Science and Engineering, Shandong University of Science and Technology, Qingdao 266510, China
c Graduate University of Chinese Academy of Sciences, Beijing 100049, China

a r t i c l e i n f o
Keywords:
Particle swarm optimization (PSO)
Deterministic particle swarm optimization
Randomness
Random dimension selection
Deterministic dimension selection
0096-3003/$ - see front matter � 2012 Elsevier Inc
http://dx.doi.org/10.1016/j.amc.2012.11.020

⇑ Corresponding author at: Key Laboratory of Intel
100190, China.

E-mail addresses: sdjinxin@gmail.com, jinx@ics.i
a b s t r a c t

Particle swarm optimization (PSO) has undergone many changes since its introduction in
1995. Being a stochastic algorithm, PSO and its randomness present formidable challenge
for the theoretical analysis of it, and few of the existing PSO improvements have make an
effort to eliminate the random coefficients in the PSO updating formula. This paper ana-
lyzes the importance of the randomness in the PSO, and then gives a PSO variant without
randomness to show that traditional PSO cannot work without randomness. Based on our
analysis of the randomness, another way of using randomness is proposed in PSO with ran-
dom dimension selection (PSORDS) algorithm, which utilizes random dimension selection
instead of stochastic coefficients. Finally, deterministic methods to do the dimension selec-
tion are proposed, and the resultant PSO with distance based dimension selection
(PSODDS) algorithm is greatly superior to the traditional PSO and PSO with heuristic
dimension selection (PSOHDS) algorithm is comparable to traditional PSO algorithm. In
addition, using our dimension selection method to a newly proposed modified particle
swarm optimization (MPSO) algorithm also gets improved results. The experiment results
demonstrate that our analysis about the randomness is correct and the usage of determin-
istic dimension selection method is very helpful.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Particle swarm optimization (PSO) is a relatively new kind of global search method. This derivative-free method is par-
ticularly suited to continuous variable problems and has received increasing attention in the optimization community. PSO is
originally developed by Kennedy and Eberhart [1] and inspired by the paradigm of birds flocking. PSO consists of a swarm of
particles and each particle represents a potential solution for a problem. Every particle flies through the multi-dimensional
search space with a velocity, which is constantly updated by the particle’s previous best position and by the global best
position found by the whole swarm so far. PSO has been used in many applications as it can be easily implemented and
is computationally inexpensive. Many researchers have done a lot of work on the improvements, theoretical analysis and
applications of PSO [2,3]. As known to all, when a particle learns from its personal best positions and the global best solution,
there is randomness in the form of random coefficients. Little work has been done to analyze the importance of the random-
ness and the randomness places great challenges for the theoretical analysis of PSO. This paper tries to look into the random-
ness of PSO and to eliminate the randomness, which is favorable for the theoretical analysis of PSO and for a better
understanding of PSO, even for the improvements of PSO.
. All rights reserved.

ligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing

ct.ac.cn (X. Jin).

https://core.ac.uk/display/357285383?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.amc.2012.11.020
mailto:sdjinxin@gmail.com
mailto:jinx@ics.ict.ac.cn
http://dx.doi.org/10.1016/j.amc.2012.11.020
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc

5186 X. Jin et al. / Applied Mathematics and Computation 219 (2013) 5185–5197
Simple as it seems, the PSO presents formidable challenge for the people who want to understand it through theoretical
analysis. A fully comprehensive mathematical model of particle swarm optimization is still not available by now. One reason
for this is that the forces are stochastic, which means the use of standard mathematical tools used in the analysis of dynam-
ical systems is impossible. Another reason is that the PSO is made up of a large number of interacting particles. Although
each particle’s behavior is simple, understanding the dynamics of the whole is nontrivial. Because of these difficulties, most
researchers have often been forced to make simplified assumptions in order to obtain models that could be studied math-
ematically. Ozcan and Mohan [4] presented a simplified model where the behavior of one particle, in isolation, in one dimen-
sion, in the absence of randomness, and during stagnation was considered. Similar assumptions were used by Clerc and
Kennedy’s model [5], which includes one particle, one dimension and deterministic behavior. Yasuda et al. [6] studied a
model with a one-dimensional particle, stagnation, and absence of randomness. Inertia was included in this model. Brands-
tatter and Baumgartner [7] gave a model using the notions of damping factor and natural vibratory frequency, however, ran-
domness is also not considered in this model. An uniform model of PSO was described and the convergence was analyzed
with linear control theory in [8]. Hu and Li [9] proposed and analyzed a simple PSO without particle velocity. Most of the
theoretical models did not consider the randomness of PSO, so the conclusions drawn from these models tend to be
approximate.

Many adjustments and improvements have been made to the basic PSO algorithm over the past decade to deal with the
premature convergence problem and to get a high search speed. As the parameters used in PSO are believed to have great
influence on the performance of the algorithm, many researches [10–12] had been done to adaptively adjust the parameters
for different problems. PSO is also hybridized with other methods [12–17] to enhance its ability on a larger number of appli-
cations. Unlike the conventional PSO which have identical particles, some researches [18,19] proposed heterogeneous PSO in
which the particles have different behaviors. The information dissemination of several neighborhood topologies is analyzed
theoretically and a PSO with varying topology is proposed in [20]. To avoid the premature convergence problem, the meth-
ods to keep the swarm diversity were proposed [21,22]. Zhan et al. [23] gives a thorough analysis of the evolution process of
PSO and proposed a novel adaptive algorithm. Several approaches to improve the performance of the PSO were described in
[24]. Some of the previous methods improved the general performance of PSO and others improved performance on partic-
ular kinds of problems, but they all did not analyze the effects of the randomness, let alone the efforts to eliminate the
randomness.

This paper first analyzes the importance and effects of the randomness in the canonical PSO and points out that the ran-
domness cannot be eliminated by simply replace the random coefficients with their expectations, which is used in many
simplified theoretical models of PSO. Then, a new method to randomly select some dimensions in the search space for each
particle to evolve without the stochastic coefficient is proposed, and this method has comparable performance on ten dif-
ferent benchmark functions compared with the canonical PSO. To further reduce the randomness in the selection of the
dimensions that need to be updated, deterministic methods to do the dimension selection based on the swarm’s character-
istics are studied, and it is expected that these methods will reduce the complexity of the PSO algorithm, even improve the
performance of the algorithms as well.

The rest of this paper is organized as follows: Section 2 describes the traditional PSO algorithm. In Section 3, the impor-
tance of the randomness in the PSO and its reasons are given. Then four PSO variants are given to demonstrate the correct-
ness of our analysis and to show the methods to the dimension selection. Experiments and results analysis are presented in
Section 4. Finally, Section 5 concludes this paper.

2. Particle swarm optimization algorithm

A standard particle swarm optimization maintains a swarm of particles which are flying with some velocities in the n-
dimensional search space. The particles have no weight and no volume. The velocity of each particle is determined by the
particle’s cognitive knowledge, that is its personal best position, and social knowledge, i.e., the best position found by the
whole swarm so far. The current position of each particle is represented by Xi ¼ ðxi1; xi2; . . . ; xiDÞ, where D is the dimension
of the search space. The personal best position of each particle is pbesti ¼ ðpbesti1; pbesti2; . . . ; pbestiDÞ, and the current veloc-
ity of each particle is Vi ¼ ðv i1;v i2; . . . ;v iDÞ. The global best position found by the whole population so far is
gbest ¼ ðgbest1; gbest2; . . . ; gbestDÞ. To construct the search course, for each particle we update its velocity Vi and position
Xi through each variable dimension d using Eqs. (1) and (2) as follows:
v tþ1
id ¼ v t

id þ c1 � rt
1d � pbestt

id � xt
id

� �
þ c2 � rt

2d � gbestt
d � xt

id

� �
; ð1Þ

xtþ1
id ¼ xt

id þ v tþ1
id : ð2Þ
In Eq. (1), c1 is a coefficient for individual confidence, c2 is a coefficient for social confidence, and rt
1d and rt

2d are random real
numbers which are uniformly distributed on ½0;1�. Clerc and Kennedy [5] proposed a modified form of PSO that has constric-
tion factor. The velocity update formula is illustrated in Eqs. (3) and (4).
v tþ1
id ¼ v� v t

id þ c1 � rt
1d � pbestt

id � xt
id

� �
þ c2 � rt

2d � gbestt
d � xt

id

� �� �
; ð3Þ

X. Jin et al. / Applied Mathematics and Computation 219 (2013) 5185–5197 5187
v ¼ 2 2� ðc1 þ c2Þ �
ffi
ðc1 þ c2Þ2 � 4� ðc1 þ c2Þ

q����
����

� ��
: ð4Þ
According to Clerc’s constriction method, c1 and c2 are set to 2.05, respectively, and the constriction factor, v, is approxi-
mately 0.7298. The initial swarm and their velocities are often randomly generated, the initialization methods used in this
paper are as follows. If the search space is ½l;h�D , then every particle’s every dimension’s position is randomly selected
according to a uniform distribution on ½l;h�. Velocities are generated similarly, if the maximum velocity limit is Vmax, then
every particle’s every dimension’s velocity is randomly selected according to a uniform distribution on ½�Vmax;Vmax�. We
randomly generate 1000 particles using the above method, and then choose a number of particles with best fitness to form
the initial swarm, the number of particles is often given by the user. The specific algorithm of the PSO with constriction factor
is shown in Algorithm 2.

Algorithm 1. Update fitness for the swarm

Input:
S: a swarm S of particles,
f ðxÞ: fitness function.

Method:
1: for all particle xi in swarm S do
2: Evaluate the particle’s fitness using function f ðxiÞ;
3: Denote the particle’s personal best position as pbesti, the swarm’s global best position as gbest; {suppose it is a

minimization problem};
4: if f ðxiÞ < f ðpbestiÞ then
5: pbesti xi

6: if f ðxiÞ < f ðgbestÞ then
7: gbest xi

8: end if
9: end if
10: end for
Algorithm 2. PSO algorithm with constriction factor

Input:
S: size of the swarm,
D: dimensions of the search space,
l; h: lower and upper bound of the search space.

Method:

1: Initialize 1000 particles with random positions and velocities in the search space ½l;h�D, and then choose the best S
particles to form the initial swarm;

2: repeat
3: Update the swarm’s fitness, pbesti and gbest using Algorithm 1;
4: Update the velocities and positions of the particles according to the Eqs. (2)–(4);
5: until A termination criterion is met (usually a sufficiently good fitness or a maximum number of iterations)
6: return The global best position gbest and its fitness value.
3. The effects of the randomness in PSO and four PSO variants

It is obvious that the PSO algorithm is a stochastic algorithm as it has two random coefficients in the velocity update for-
mulas, which are shown in Eqs. (1) and (3). The randomness is believed to have great importance to the PSO, but few
researchers had studied its effects thoroughly. Besides, most of the improvements to the PSO preserve the randomness. In
this section, the effects of the randomness and why it is indispensable for the traditional PSO are analyzed. Also, the methods
to remove the random coefficients are discussed.
3.1. The importance of the randomness in the PSO

From the velocity updating formula, it can be seen that the particles will fly towards their personal best positions and
the global best position of the whole swarm. But they do not fly straightly to the best solution, as there are

−100 −50 0 50 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

x1

x 2

gbest
particle1
particle2
particle3
particle4

−100 −50 0 50 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

x1

x 2

gbest
particle1
particle2
particle3
particle4

Fig. 1. Particles’ movements in PSO and PSOnoR algorithms. The function to be minimized is f1ðxÞ in Eq. (9), and the dimension of the search space is 2.

5188 X. Jin et al. / Applied Mathematics and Computation 219 (2013) 5185–5197
stochastic factors that influence their ability to learn from the social optimum and their own experience. The particles’
movements in the PSO algorithm can be seen in Fig. 1(a). It is clear that in the PSO algorithm, the particles movements
are more complex than that in PSOnoR algorithm (Fig. 1(a)) and can explore more area in the search space, which
proved the importance of the random coefficients. The result of the randomness is that the particle will search a large
area around the current best solution and probably find a better solution. The randomness guarantees a good balance
between straying off-course and staying close to the optimal solution. This type of behavior seems to be ideal when
exploring large error surfaces. Some particles can explore far beyond the current optimum, while the population still
remembers the global best solution. This can also keep a population with certain degree of diversity, preventing the
swarm from becoming premature.

In the process of finding a better solution, the PSO displays a ‘‘two steps forward, one step back’’ phenomenon [25,26], and
some researchers [25–27] try to reduce the effects of this phenomenon by cooperative learning among the particles in the
swarm. A similar example of this phenomenon as in [25,26] is described as follows. Given a problem, f0ðxÞ, which is defined
in Eq. (5), and it is to be maximized.
f0ðxÞ ¼
XD

i¼1

xi: ð5Þ
Let the dimension of the search space be 3, the search range as ½0;20�3. Obviously, the optimal solution is ð20;20;20Þ. Con-
sider a swarm containing two particles, Xi and Xj, and Xi’s three components xi1; xi2 and xi3 is 18, 5 and 18 respectively, three
components of Xj is 4, 20 and 4 respectively. So, Xi is the current global best solution, and Xj will fly towards Xi. In the next
iteration, Xj will be updated and suppose its new value is ð16;10;16Þ. The new value of Xj is better than its previous value,
this will be considered as an improvement. However, the valuable information contained in the middle component of Xj has
been lost, as xj2 previously is the same value as required in the optimal solution ð20;20;20Þ. The reason for this behavior is
that the error function is computed only after all the components in the solution vector have been updated to their new val-
ues. This means an improvement in two components (two steps forward) will overrule a potentially good value for a single
component (one step back).

The PSO has certain ability to overcome the ‘‘two steps forward, one step back’’ problem through the random factor r1d and
r2d in its velocity update formulas (Eqs. (1) and (3)). Because r1d and r2d can be any values between 0 and 1 with certain prob-
ability, so when a particle updates its position in one iteration, there are many different possibilities. Some cases are given
below:

� In case 1, suppose r2 ¼ ðr21; r22; r23Þ ¼ ð1;0;1Þ, which means that Xj only learns from the best solution Xi’s first and third
dimensions, and does not learn from Xi’s second dimension, and the new position for Xj maybe ð16;20;16Þ.
� In case 2, suppose r2 ¼ ð0;1;0Þ, which means that Xj does not learn from the best solution’s first and third dimension, and

only learn from the Xi’s second dimension, and the new position for Xj maybe ð4;10;4Þ.
� In case 3, suppose r2 ¼ ð1;1;1Þ, which means that Xj learns from all of the best solution Xi’s three dimensions, as is

discussed in the ‘‘two steps forward, one step back’’ phenomenon, and the resulting new position for Xj maybe ð16;10;16Þ.

X. Jin et al. / Applied Mathematics and Computation 219 (2013) 5185–5197 5189
Of course, there are other possibilities. In the three cases described above, the case 1 can get the best solution, and it is the
solution that has the best fitness value can become the global best solution and provide search information for the whole
swarm. So the case 1 is the least affected by the ‘‘two steps forward, one step back’’ problem and can be selected by the
PSO as the new best solution. So the PSO can reduce the effects of the ‘‘two steps forward, one step back’’ problems to some
extent, although not completely. The effect of the random coefficient r1 is similar. This is a reason why randomness is impor-
tant for the PSO.
3.2. Directly eliminate the randomness of the canonical PSO

To demonstrate the importance of the randomness in the PSO, a new form of PSO, PSO algorithm with no randomness
(PSOnoR) is given. When a particle in the swarm updates its velocity on every dimension, there is no stochastic coefficient
r1d and r2d, and they are replaced by their expectations as are used in many theoretical models for the PSO. rt

1d and rt
2d are

random real numbers which are uniformly distributed on ½0;1�, so both their expectations are 0.5. Then we can get the new
form of the velocity update formula as shown in Eq. (6).
v tþ1
id ¼ v� v t

id þ c1 � 0:5� pbestt
id � xt

id

� �
þ c2 � 0:5� gbestt

d � xt
id

� �� �
: ð6Þ
In fact, PSOnoR cannot get acceptable results with any constant coefficients, we have tested the values
½0:01;0:05;0:1;0:2; :;0:9;1�, none of these values can get acceptable results. The process of the PSOnoR algorithm is the same
as the PSO in Algorithm 2, except it uses the new velocity update formula which is shown in Eq. (6). From the discussion in
Section 3.1, it can be seen that the randomness has essential effects for the PSO, and we speculate that the PSOnoR algorithm
may not perform well on the optimization problems. The experiment results will be shown later.

3.3. PSO algorithm with random dimension selection

As discussed in Section 3.1, the randomness guarantees the swarm flies towards the best solutions while search a larger
area in the search space around the best solution. Also, the stochastic coefficient can ensures the swarm keeps a high degree
of diversity and prevents the swarm converge to the local optimum. Most importantly, the randomness can reduce the harm
of the ‘‘two steps forward, one step back’’ problem. Simply eliminate the randomness without taking any measures to make up
for that as in the PSOnoR algorithm may result in a worse performance. To maintain the advantage of the randomness in the
traditional PSO, a new method is proposed. Instead of using stochastic coefficients in velocity update process on every
dimension, some dimensions are randomly selected for every particle in every iteration. These selected dimensions will up-
date their velocities according to a new formula without random coefficients, which is shown in Eq. (7). Then these dimen-
sions will update its positions according to Eq. (2). Every particle’s every dimension is selected at a certain probability. The
rest dimensions, which are not selected in this iteration, will keep their old positions and velocities without any
modification.
v tþ1
id ¼ v� v t

id þ c1 � pbestt
id � xt

id

� �
þ c2 � gbestt

d � xt
id

� �� �
: ð7Þ
The specific algorithm of PSO with random dimension selection (PSORDS) is shown in Algorithm 3.

Algorithm 3. PSO algorithm with random dimension selection (PSORDS)

Input:
S: size of the swarm,
D: dimensions of the search space,
l; h: lower and upper bound of the search space.

Method:

1: Initialize 1000 particles with random positions and velocities in the search space ½l;h�D, and then choose the best S
particles to form the initial swarm;

2: repeat
3: Update the swarm’s fitness, pbesti and gbest using Algorithm 1;
4: Every particle’s every dimension is selected at a certain probability;
5: For every particle’s every selected dimension, update its velocity and position according to Eqs. (2), (4) and (7). For

the dimensions that are not selected, their velocities and positions will keep unchanged;
6: until A termination criterion is met (usually a sufficiently good fitness or a maximum number of iterations)
7: return The global best position gbest and its fitness value.

5190 X. Jin et al. / Applied Mathematics and Computation 219 (2013) 5185–5197
3.4. PSO algorithm with heuristic dimension selection

As the randomness has significant impacts on the performance of the PSO, simply eliminating it would cause a deterio-
rated performance. So the PSORDS algorithm uses the random dimension selection strategy to reduce the effects of removing
the stochastic coefficients. But in the process of the dimension selection, dimensions are selected randomly, so the PSORDS
algorithm does not eliminate the randomness completely. To further reduce the randomness, a heuristic strategy for select-
ing the dimensions is given. In the heuristic strategy, the current global worst particle gworst and the global best solution
gbest are used, specific details are given in Rule 1.

Rule 1. Denote the global best position as gbest and global worst position as gworst. Let D be the dimensions of the search
space, for each dimension d in D, replace the gworstd with gbestd, if the new value gworst0 has a better fitness, that is
f ðgworst0Þ < f ðgworstÞ, then dimension d is selected.

The dimension selection process is taken when the gbest has changed. In this strategy it is supposed that a dimension of
the gbest’s position vector is a real optimal value if we can get a better solution by replace the gworst’s position’s correspond-
ing dimension with it. If the supposition is right, then the ‘‘two steps forward, one step back’’ problem can be eliminated, be-
cause only the best dimensions of the gbest are selected. There is only ‘‘two steps forward’’ and no ‘‘one step back’’. The specific
algorithm of the PSO with heuristic dimension selection (PSOHDS) is shown in Algorithm 4.

Algorithm 4. PSO algorithm with heuristic dimension selection (PSOHDS)

Input:
S: size of the swarm,
D: dimensions of the search space,
l; h: lower and upper bound of the search space.

Method:

1: Initialize 1000 particles with random positions and velocities in the search space ½l;h�D, and then choose the best S
particles to form the initial swarm;

2: repeat
3: Update the swarm’s fitness, pbesti and gbest using Algorithm 1;
4: If the gbest has changed, then execute the dimension selection process according to Rule 1;
5: If a dimension is selected, for every particle, update this dimension’s velocity and position according to Eqs. (2), (4)

and (7). For the dimensions that are not selected, their velocities and positions will keep unchanged;
6: until A termination criterion is met (usually a sufficiently good fitness or a maximum number of fitness evaluations)
7: return The global best position gbest and its fitness value.
3.5. Dimension selection based on difference from the global best individual

In Section 3.4, dimension selection is based on the global best individual and global worst individual, and a dimension is
selected if it can help the global worst particle to improve its position. Although this selection method takes advantage of
more information than the random dimension selection method, the dimensions selected maybe not suitable for all individ-
uals in the swarm. So, instead of selecting dimensions for the whole swarm, it could be more appropriate that every particle
in the swarm selects its own dimensions that need to learn from the gbest based on its own characteristics. Thus, a method
that select the dimensions for each particle base on their difference from the gbest is proposed. The dimension selection is
done according to Rule 2.

Rule 2. For each particle xi, compute its mean distance from the gbest, as shown in Eq. (8).
mdistancei ¼
1
D

XD

d¼1

absðgbestd � xidÞ; ð8Þ
where D is the dimension of the search space. For each dimension d of particle xi, if its distance to the gbest’s corresponding
dimension is longer than mean distance mdistancei, that is, absðgbestd � xidÞ > mdistancei, then the dimension d is selected for
particle xi.

For every particle’s every dimension, we use the Rule 2 to decide whether it is selected. The selected dimensions will up-
date their velocities according to a formula without random coefficients, which is shown in Eq. (7). Then these dimensions
will update its positions according to Eq. (2). The rest dimensions, which are not selected in this iteration, will keep their old
positions and velocities without any modification. In this method, it is thought that if a particle’s dimension is far away from
the gbest, then learning from gbest is very urgent than the dimensions that are similar to the gbest. Also, as the more similar
dimensions will not change their velocities and positions in this generation, it will help to keep the diversity of the swarm,
preventing the premature convergence. PSO with distance based dimension selection algorithm is referred as PSODDS for
short, its specific procedure is described in Algorithm 5.

X. Jin et al. / Applied Mathematics and Computation 219 (2013) 5185–5197 5191
Algorithm 5. PSO with distance based dimension selection (PSODDS)

Input:
S: size of the swarm,
D: dimensions of the search space,
l; h: lower and upper bound of the search space.

Method:

1: Initialize 1000 particles with random positions and velocities in the search space ½l;h�D, and then choose the best S
particles to form the initial swarm;

2: repeat
3: Update the swarm’s fitness, pbesti and gbest using Algorithm 1;
4: Using Rule 2 to choose the dimensions that need to update for each particle;
5: For every particle’s every selected dimension, update its velocity and position according to Eqs. (2), (4) and (7). For

the dimensions that are not selected, their velocities and positions will keep unchanged;
6: until A termination criterion is met (usually a sufficiently good fitness or a maximum number of fitness evaluations)
7: return The global best position gbest and its fitness value.
4. Experiments and results

We have conducted intensive experiments to verify our analysis of the effects of the randomness in the PSO and to eval-
uate the performance of the proposed algorithms. Also, the dimension selection method is used to a newly proposed PSO
variant and comparison of the results are given.

4.1. Test functions and experimental settings

Ten mathematical functions are chosen to test the proposed algorithms. These 10 test functions are given below, f1ðxÞ �
f5ðxÞ are 5 unimodal functions and f6ðxÞ � f10ðxÞ are 5 complex multimodal functions with many local optima. All these func-
tions are to be minimized. For PSOnoR, PSORDS and PSOHDS algorithms, the dimensions of the functions are all set to 30 and
every function’s search range, their actual minimum and the acceptable worst solutions are shown in Table 1. Following the
settings in [28], for PSO, PSODDS, modified particle swarm optimization (MPSO) and MPSO with distance based dimension
selection (MPSODDS) algorithms, for each benchmark function, three different dimension sizes are tested, which are 10, 20, 30.
Table 1
Specific

Func

f1ðxÞ
f2ðxÞ
f3ðxÞ
f4ðxÞ
f5ðxÞ
f6ðxÞ
f7ðxÞ
f8ðxÞ
f9ðxÞ
f10ðx
f1ðxÞ ¼
XD

i¼1

x2
i ; ð9Þ

f2ðxÞ ¼
XD

i¼1

jxij þ
YD

i¼1

jxij; ð10Þ

f3ðxÞ ¼
XD

i¼1

Xi

j¼1

xj

 !2

; ð11Þ
ation of the 10 test functions.

tion D Search range fmin Accept

30 ½�100;100�D 0 0.01

30 ½�10;10�D 0 0.01

30 ½�100;100�D 0 200

30 ½�100;100�D 0 0.01

30 ½�10;10�D 0 100

30 ½�500;500�D �12596.5 �5000

30 ½�5:12;5:12�D 0 150

30 ½�32;32�D 0 5

30 ½�600;600�D 0 1

Þ 30 ½�50;50�D 0 1

Table 2
Experim

Func

f1ðxÞ
f2ðxÞ
f3ðxÞ
f4ðxÞ
f5ðxÞ
f6ðxÞ
f7ðxÞ
f8ðxÞ
f9ðxÞ
f10ðx

5192 X. Jin et al. / Applied Mathematics and Computation 219 (2013) 5185–5197
f4ðxÞ ¼max jxij; 1 6 i 6 Df g; ð12Þ

f5ðxÞ ¼
XD�1

i¼1

100 xiþ1 � x2
i

	
2 þ ðxi � 1Þ2
h i

; ð13Þ

f6ðxÞ ¼
XD

i¼1

� xi sin
ffiffiffiffiffiffiffi
jxij

p� �
; ð14Þ

f7ðxÞ ¼
XD

i¼1

x2
i � 10 cosð2pxiÞ þ 10

� �
; ð15Þ

f8ðxÞ ¼ �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

XD

i¼1

x2
i

vuut
0
@

1
A� exp

1
D

XD

i¼1

cos 2pxi

 !
þ 20þ e; ð16Þ

f9ðxÞ ¼
XD

i¼1

x2
i =4000�

YD

i¼1

cos xi=
ffiffi
i
p� �
þ 1; ð17Þ

f10ðxÞ ¼ p=D 10 sin2ðpy1Þ þ
XD�1

i¼1

ðyi � 1Þ2 1þ 10 sin2ðpyiþ1Þ
h i

þ ðyD � 1Þ2
()

þ
XD

i¼1

uðxi;10;100;4Þ; ð18Þ
where,
yi ¼ 1þ ðxi � 1Þ=4;

uðxi; a; k;mÞ ¼
kðxi � aÞm; xi > a;

0; �a 6 xi 6 a;

kð�xi � aÞm; xi < a:

8><
>:
The PSO related parameters for the traditional PSO and the proposed PSO variants are the same. That is, the c1 and c2 are
both set to 2.05, and the constriction factor, v, is approximately 0.7298. Moreover, every particle’s velocities are constricted
within 20% of the search range of the corresponding dimension. In the PSORDS algorithm, every dimension is selected with
the probability of 0.5, as in the traditional PSO when a particle learns from the global best solution the random coefficient c2’s
expectation is 0.5. To compare the performances of different methods, the PSO and its variants use the same population size
of 40. Moreover, these algorithms use the same maximal number of 2� 105 fitness evaluations (FEs) for each test function.
For the PSO, PSOnoR, PSORDS and PSODDS algorithms, in every iteration the fitness evaluation times are the same, that is 40,
but for the PSOHDS algorithms, when execute the dimension selection process, extra times of FE which is equal to the num-
ber of the dimensions is required, and this must be considered.

On the purpose of avoiding stochastic error, we simulate 25 independent trials on each test function and use the average,
median, best and worst results and the standard deviation over 25 runs for comparisons. The success rate is also considered,
which means the percentage of the runs that get acceptable solutions. Wilcoxon rank sum test [29] is used to show whether
the difference between different algorithms’ results is statistically significant. We perform a two-sided rank sum test of the
null hypothesis that results of two algorithms are independent samples from identical continuous distributions with equal
medians, against the alternative that they do not have equal medians. If a rejection of the null hypothesis at the 5% significance
level is got, it is considered that the difference is statistically significant (using Y to denote statistically significant in Table 4).
ent results for the PSO algorithm on the ten test functions.

tion Success (%) Best Mean Median Worst STD

100 6.35E�107 9.06E�100 7.70E�103 1.30E�98 2.70E�99
100 6.02E�52 1.35E�40 2.21E�45 2.04E�39 4.68E�40
100 4.85E�13 2.53E�11 1.60E�11 1.05E�10 2.95E�11
100 3.20E�08 1.01E�06 4.40E�07 7.79E�06 1.58E�06
100 0.0184258 18.480248 11.668977 73.887093 23.396476
100 �9547.685 �8108.587 �8068.612 �7180.167 615.84703
100 25.86892 52.218198 48.752933 96.581798 16.656965
100 7.99E�15 0.9541351 1.1551485 2.3161618 0.8572157
100 0 0.0256187 0.0221561 0.1050763 0.0251739

Þ 96 1.57E�32 0.1580123 1.60E-32 1.6656984 0.3717751

Table 3
Experiment results for the PSOnoR algorithm on the ten test functions.

Function Success (%) Best Mean Median Worst STD

f1ðxÞ 0 438.59 1013.68 913.23 1955.94 440.14
f2ðxÞ 0 11.06 17.76 17.06 29.34 4.02
f3ðxÞ 0 1184.72 4415.31 3585.51 11837.45 2822.19
f4ðxÞ 0 12.3 18.84 19.14 29.22 4.37
f5ðxÞ 0 302.82 2493.24 2054.58 7520.08 1798
f6ðxÞ 60 �7502.67 �5462.19 �5309.72 �3792.24 969.87
f7ðxÞ 92 57.57 102.89 101.38 163.56 29.33
f8ðxÞ 0 6.41 9.53 9.6 11.72 1.35
f9ðxÞ 0 3.37 11.2 9.88 28.77 5.65
f10ðxÞ 0 6.97 34.17 25.39 163.4 38.06

Table 4
Performance comparison of different algorithms. For each algorithm, the mean result are given. Also, Wilcoxon rank sum test is used to show whether the result
difference between the PSO and PSO variants is statistically significant at the 5% significance level, Y denotes significant, N denotes not. (Y does not implies that
one algorithm is better than the other, just means that the two are significantly different.)

Function PSO PSOnoR PSORDS PSOHDS PSODDS

f1ðxÞ 9.06E�100 1013.68 Y 9.08E�35 Y 6.88E�102 N 1.36E�81 Y
f2ðxÞ 1.35E�40 17.76 Y 2.38E�18 Y 6.79E�54 Y 2.31E�43 Y
f3ðxÞ 2.53E�11 4415.31 Y 1.12E�06 Y 74.919185 Y 2.11E�21 Y
f4ðxÞ 1.01E�06 18.84 Y 7.97E�05 Y 76.828155 Y 7.60E�09 Y
f5ðxÞ 18.480248 2493.24 Y 28.044785 Y 33.469738 N 1.1162856 Y
f6ðxÞ �8108.587 �5462.19 Y �7328.097 Y �6506.112 Y �7984.568 N
f7ðxÞ 52.218198 102.89 Y 61.093211 N 80.28489 Y 58.264668 N
f8ðxÞ 0.9541351 9.53 Y 0.0924119 Y 1.047658 N 0.1062758 Y
f9ðxÞ 0.0256187 11.2 Y 0.0131507 Y 0.3773746 Y 0.0144671 N
f10ðxÞ 0.1580123 34.17 Y 0.0124403 N 0.1021139 Y 0.1368918 Y

X. Jin et al. / Applied Mathematics and Computation 219 (2013) 5185–5197 5193
4.2. Results of the PSO and PSOnoR algorithms

The results of the PSO and PSOnoR algorithms on the ten test functions are shown in Tables 2 and 3, where success means
the success rate and STD means the standard deviation. Almost every run of the PSO algorithm on every function can get an
acceptable result. However, the PSOnoR algorithm can hardly get an acceptable result, which is the same as speculated. Also,
as shown in Table 4, the Wilcoxon rank sum test demonstrates that PSOnoR is significantly poorer than PSO. Without ran-
domness, the traditional PSO cannot find a right solution for most of the problems. The PSOnoR algorithm eliminates the
random coefficients, which means that every particle flies toward the global best position and its personal best solution
on every dimension, regardless of whether the dimension of the global best has a real better value. So the swarm will lose
its diversity rapidly. In fact, the particles’ velocities in the PSOnoR algorithm reduce to less than 0.001 after 200 iterations,
which is a premature convergence. Also, the PSOnoR algorithm cannot take advantage of the randomness and reduce the
harm effects of the ‘‘two steps forward, one step back’’ problem as discussed in Section 3.1, which also decreased its ability
to find a better solution. The poor performance of the PSOnoR algorithm conforms to the analysis of the importance about
randomness in Section 3.1.
Table 5
Experiment results for the PSORDS algorithm on the ten test functions.

Function Success (%) Best Mean Median Worst STD

f1ðxÞ 100 4.14E�38 9.08E�35 1.26E�35 1.11E�33 2.28E�34
f2ðxÞ 100 4.71E�20 2.38E�18 6.46E�19 2.26E�17 4.93E�18
f3ðxÞ 100 3.82E�09 1.12E�06 2.44E�07 1.50E�05 2.99E�06
f4ðxÞ 100 4.29E�06 7.97E�05 3.20E�05 0.0003956 0.000108
f5ðxÞ 96 0.0727298 28.044785 15.495931 315.79205 61.139181
f6ðxÞ 92 �9608.363 �7328.097 �7512.655 �3873.635 1331.6239
f7ðxÞ 100 32.833629 61.093211 57.70753 127.35427 20.087955
f8ðxÞ 100 1.15E�14 0.0924119 2.22E�14 1.1551485 0.3198461
f9ðxÞ 100 0 0.0131507 0.0098573 0.0633896 0.0179166
f10ðxÞ 100 1.57E�32 0.0124403 1.61E�32 0.103669 0.0343831

5194 X. Jin et al. / Applied Mathematics and Computation 219 (2013) 5185–5197
4.3. Results of the PSORDS algorithm

The results of the PSORDS algorithm are shown in Table 5. Because the PSO is a stochastic algorithm, some bad results can
substantially influence the average and standard deviation of the results, so the success rate, the best solution and the med-
ian solution can better indicate the algorithm’s performance. Most of the median results are better than the average results.
Also, as shown in Table 4, the Wilcoxon rank sum test gives a more clear comparison of PSO and PSORDS. On the unimodal
functions f1ðxÞ � f5ðxÞ, PSO algorithm gets better results. But it must be noted that PSORDS also gets excellent results, for
f1ðxÞ � f4ðxÞ, the errors from true optimal value is very small, which are less than 1� 10�5. For the multimodal functions,
PSO and PSORDS get similar results for functions f7ðxÞ and f10ðxÞ, and PSO is better than PSORDS for f6ðxÞ while PSORDS is
better than PSO for f8ðxÞ and f9ðxÞ. This proves the PSORDS algorithm has considerable capabilities to find a good solution.
Although without stochastic coefficients, in PSORDS algorithm the swarm can keep a high degree of diversity by the random
selection of the dimensions to be updated. This guarantees the swarm can search a large area for potential solutions while
flying towards the current best solution. Through the random dimension selection, the algorithm can also reduce the detri-
ment of the ‘‘two steps forward, one step back’’ problem.

4.4. Results of the PSOHDS algorithm

The results of the PSOHDS algorithm are displayed in Table 6. Also, Wilcoxon rank sum test gives a more clear comparison
of PSO and PSOHDS, which is shown in Table 4. PSO and PSOHDS algorithms get similar results for functions f1ðxÞ; f 5ðxÞ and
f8ðxÞ, PSOHDS gets better results for functions f2ðxÞ and f10ðxÞ, and PSO algorithm gets better results on other functions. PSO-
HDS can get comparable results for most of the test functions, while for functions f3ðxÞ and f4ðxÞ, the results are much worse.
The well performance of PSOHDS algorithm demonstrates that it is possible to eliminate the random coefficients of the PSO
algorithm. Through the heuristic dimension selection strategy, the particles can avoid converge to the bad dimensions of the
current best solution, which can prevent the fast losing of diversity. Also, the particles only update its positions according to
the good dimensions of the current best solution, and this can guarantee there are only ‘‘two steps forward’’ and no ‘‘one step
back’’, which increase the probability of finding a better solution. But the results of PSOHDS algorithm show no superiority to
PSO algorithm, this possibly because the heuristic dimension strategy can not ensure that all the good dimensions are se-
lected and none of the bad dimensions is selected. In fact, the used strategy perceives the dimensions that cause better re-
sults for the global worst particle as the good dimensions for the whole swarm, but this is possibly not the case. Function
f4ðxÞ is the evidence that the strategy is not a perfect one, as the PSOHDS algorithm cannot find a correct solution. So better
strategies for dimension selection need to be proposed.
Table 6
Experiment results for the PSOHDS algorithm on the ten test functions.

Function Success (%) Best Mean Median Worst STD

f1ðxÞ 100 6.07E�106 6.88E�102 1.84E�103 4.60E�101 1.24E�101
f2ðxÞ 100 4.03E�56 6.79E�54 1.76E�54 4.82E�53 1.10E�53
f3ðxÞ 96 13.818195 74.919185 57.54334 229.14366 56.067009
f4ðxÞ 0 68.916951 76.828155 77.255096 81.751701 3.1926958
f5ðxÞ 96 0.1086075 33.469738 16.247792 152.88202 39.6307
f6ðxÞ 88 �8582.52 �6506.112 �6511.663 �3886.202 1092.4477
f7ðxÞ 100 40.26331 80.28489 80.012511 133.666 25.112593
f8ðxÞ 100 4.35E�14 1.047658 1.1551485 2.2201128 0.7344387
f9ðxÞ 100 0.00E+00 0.3773746 0.4207715 0.9167278 0.2910044
f10ðxÞ 96 1.59E�32 0.1021139 1.84E�32 1.4339354 0.2878731

Table 7
Experiment results for the PSODDS algorithm on the ten test functions.

Function Success (%) Best Mean Median Worst STD

f1ðxÞ 100 4.04E�84 1.36E�81 4.69E�82 1.13E�80 2.77E�81
f2ðxÞ 100 2.13E�44 2.31E�43 1.01E�43 1.32E�42 3.36E�43
f3ðxÞ 100 3.78E�24 2.11E�21 3.71E�22 2.23E�20 4.71E�21
f4ðxÞ 100 1.79E�11 7.60E�09 6.78E�10 8.69E�08 2.04E�08
f5ðxÞ 100 4.07E�08 1.1162856 4.24E�05 3.9866722 1.8268891
f6ðxÞ 100 �9052.755 �7984.568 �8007.99 �6854.148 607.01625
f7ðxÞ 100 36.81344 58.264668 57.70755 78.601548 10.697031
f8ðxÞ 100 1.51E�14 0.1062758 2.22E�14 1.5017466 0.3712169
f9ðxÞ 100 0 0.0144671 0.012321 0.0541378 0.01358
f10ðxÞ 100 1.65E�32 0.1368918 2.56E�32 0.8299968 0.2294781

Table 8
Experiment results for PSO and PSODDS algorithms for the ten functions with different dimensions. For each algorithm, the mean result are given. Also,
Wilcoxon rank sum test is used to show whether the result difference between PSO and PSODDS algorithm is statistically significant at the 5% significance level,
Y denotes significant, N denotes not. (Y does not implies that one algorithm is better than the other, just means that the two are significantly different.)

D 10 dimensions 20 dimensions 30 dimensions

PSO PSODDS PSO PSODDS PSO PSODDS
f1ðxÞ 1.63E�152 8.43E�81 Y 3.86E�154 5.48E�109 Y 9.06E�100 1.36E�81 Y
f2ðxÞ 2.45E�81 6.28E�41 Y 6.70E�76 4.45E�55 Y 1.35E�40 2.31E�43 Y
f3ðxÞ 3.97E�71 1.68E�71 Y 1.74E�30 5.03E�48 Y 2.53E�11 2.11E�21 Y
f4ðxÞ 2.20E�54 1.89E�39 Y 1.93E�23 2.96E�28 Y 1.01E�06 7.60E�09 Y
f5ðxÞ 0.3436055 1.59E�01 Y 1.8498873 0.31893 Y 18.48 1.11629 Y
f6ðxÞ �3480.7 �3079.282 Y �5943.327 �5722.115 N �8108.5 �7984.568 N
f7ðxÞ 7.2034981 7.8402711 N 28.415991 33.510168 N 52.22 58.26 N
f8ðxÞ 4.44E�15 5.58E�15 Y 0.2065569 1.30E�14 Y 0.954 0.106 Y
f9ðxÞ 0.07015 0.1386538 Y 0.0379026 0.023063 Y 0.0256 0.014 N
f10ðxÞ 4.71E�32 4.54E�32 Y 0.0435384 0.01866 Y 0.158 0.137 Y

Table 9
Experiment results for MPSO and MPSODDS algorithms for the ten functions with different dimensions. For each algorithm, the mean result are given. Also,
Wilcoxon rank sum test is used to show whether the result difference between MPSO and MPSODDS algorithm is statistically significant at the 5% significance
level, Y denotes significant, N denotes not. (Y does not implies that one algorithm is better than the other, just means that the two are significantly different.)

D 10 dimensions 20 dimensions 30 dimensions

MPSO MPSODDS MPSO MPSODDS MPSO MPSODDS
f1ðxÞ 1.82E�186 1.16E�63 Y 1.3E�194 1.398E�93 Y 2.6E�110 1.579E�69 Y
f2ðxÞ 1.34E�60 1.93E�43 Y 3.239E�08 4.34E�51 Y 1.042E�06 1.96E�42 Y
f3ðxÞ 1.32E�80 1.03E�66 Y 8.196E�12 4.83E�42 Y 0.0894217 6.62E�18 Y
f4ðxÞ 6.80E�81 4.39E�40 Y 5.41E�22 3.63E�22 Y 8.559E�06 8.39E�09 Y
f5ðxÞ 0.0007567 2.38E�05 Y 0.0088749 1.16E�06 Y 0.8755834 0.604493 Y
f6ðxÞ �1230.404 �3412.65 Y 46.882519 �6195.67 Y 44.918094 �8500.64 Y
f7ðxÞ 5.894367 23.539226 Y 13.95048 104.49795 Y 51.98043 187.44934 Y
f8ðxÞ 6.72E�15 5.00E�15 Y 1.965E�14 1.368E�14 N 5.304E�14 2.23E�14 Y
f9ðxÞ 0.021262 0.2014979 Y 0.048 0.0516112 N 0.0198142 0.0275372 N
f10ðxÞ 4.71E�32 4.90E�32 N 2.36E�32 2.623E�32 Y 1.57E�32 0.0540318 Y

X. Jin et al. / Applied Mathematics and Computation 219 (2013) 5185–5197 5195
4.5. Results of the PSODDS algorithm

The results of the PSODDS algorithm are displayed in Table 7. Following the settings in [28], for each benchmark function,
three different dimension sizes are tested, which are 10, 20, 30, and the corresponding maximum number of generations are
set as 3000, 5000 and 5000, other parameters are the same as described in Section 4.1. Also, Wilcoxon rank sum test gives a
more clear comparison of PSO and PSODDS (the test setting is given in Section 4.1), the results are given in Table 8 (also in
Table 4 for the 30 dimensions case). For the 30 dimensions case, it can be seen that PSODDS is considerably superior to PSO
algorithm. Specifically, PSODDS gets better results for functions f2ðxÞ � f5ðxÞ; f 8ðxÞ and f10ðxÞ, and similar results to PSO are
got for functions f6ðxÞ; f 7ðxÞ and f9ðxÞ. PSO only gets better results than PSODDS for f1ðxÞ, however, PSODDS’s result is also
very satisfying, its error is less than 1� 10�81. PSODDS is also much better than PSO for the 20 dimensions case. However,
for the simple 10 dimensions functions, the PSO is better than PSODDS. The perfect performance of PSODDS algorithm for
complex functions demonstrates that it is possible to eliminate the random coefficients of the PSO algorithm. Through
the distance based dimension selection strategy, the particles only learn from these dimensions that can give great help
for the particles, while other dimensions keep unchanged, which can keep the diversity of the swarm and prevent the pre-
mature convergence.

4.6. Using dimension selection methods in recently proposed PSO variant

To show the usefulness of the dimension selection methods proposed in Section 3.5, we apply it to a newly proposed PSO
variant. In [30], a modified particle swarm optimization algorithm (MPSO) is developed, in which the mean value of past
optimal positions (in Eq. (19)) for each particle and the mutation operation (Rule 3) are considered for avoiding premature.
The specific procedure of MPSO algorithm can be found in [30]. Apply the dimension selection method into MPSO, the resul-
tant MPSODDS algorithm can be found, its specific procedure is in Algorithm 6.
mbest ¼ 1
n

Xn

i¼1

pbesti; ð19Þ

5196 X. Jin et al. / Applied Mathematics and Computation 219 (2013) 5185–5197
Rule 3. The mutation take place with mutation probability Pm, each time select Dm dimension to mutate. Let
xmind ¼minifxidg; xmaxd ¼maxifxidg, if a dimension d is selected to mutate, than gbestd ¼ xmind þ r � ðxmaxd � xmindÞ,
where r is uniformly distributed random number in the interval ð0;1Þ.

Algorithm 6. MPSO with distance based dimension selection (MPSODDS)

Input:
S: size of the swarm,
D: dimensions of the search space,
l; h: lower and upper bound of the search space,
Pm; Dm: mutation probability and the number of dimensions need to mutate each time.

Method:

1: Initialize 1000 particles with random positions and velocities in the search space ½l;h�D, and then choose the best S
particles to form the initial swarm;

2: repeat
3: Update the swarm’s fitness, pbesti and gbest using Algorithm 1;
4: Renew pbesti and gbest according to Eq. (19) and Rule 3 respectively.
5: Using Rule 2 to choose the dimensions that need to update for each particle;
6: For every particle’s every selected dimension, update its velocity and position according to Eqs. (2), (4) and (7). For

the dimensions that are not selected, their velocities and positions will keep unchanged;
7: until A termination criterion is met (usually a sufficiently good fitness or a maximum number of fitness evaluations)
8: return The global best position gbest and its fitness value.
Following the settings in [28], for each benchmark function, three different dimension sizes are tested, which are 10, 20,
30, and the corresponding maximum number of generations are set as 3000, 5000 and 5000, the population size is 40. Same
as in MPSO [30], the inertia weight is linearly decreased from 0.9 to 0.4, c1 ¼ c2 ¼ 1:4945. The mutation probability Pm is
linearly decreased from 0.1 to 0.01. The number of dimensions that need to mutate every time is Dm = 5, 5, 2 for 30, 20,
10 dimension test functions respectively. Also, Wilcoxon rank sum test gives a more clear comparison of MPSO and MPS-
ODDS (the test setting is given in Section 4.1), the results are given in Table 9. It can be seen that the MPSODDS is more supe-
rior than MPSO for the 20 and 30 dimension cases, while MPSO got better results for the much simpler 10 dimension case. So,
the dimension selection method is very useful.

5. Conclusions

The randomness in the PSO algorithm plays an essential role in guaranteeing the PSO’s performance, and it presents con-
siderable obstacle for the researchers who want to build a theoretical model for the PSO. This paper analyzes the importance
of the randomness in the PSO and explains why randomness is important. Then PSOnoR algorithm, a PSO variant without
randomness, is presented to demonstrate that the randomness is indispensable for the traditional PSO. Based on our analysis,
an equivalent stochastic PSO algorithm, PSORDS, is presented to show another way of using the randomness. Dimension
selection using more deterministic methods, i.e., dimension selection based on global best and worst particles and based
on distance to the global best particle, resulting in PSOHDS and PSODDS algorithms, are discussed. Experiments show that
PSOHDS is comparable with traditional PSO on most of the test functions and PSODDS is greatly superior to traditional PSO
algorithm. In addition, using our dimension selection method in a newly proposed MPSO algorithm also gets improved re-
sults. Experiment results proved the analysis about the randomness in the paper is correct and the effort to eliminate the
random coefficients and use more deterministic dimension selection methods in the PSO is helpful.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61175052, 60975039, 61203297,
60933004, 61035003, 71240003), Natural Science Foundation of Shandong Province, China (No. ZR2012FM003), National
High-tech R&D Program of China (863 Program) (No.2012AA011003) and National Program on Key Basic Research Project
(973 Program) (No. 2013CB329502).

References

[1] J. Kennedy, R. Eberhart, Particle swarm optimization, IEEE International Conference on Neural Networks, vol. 4, IEEE, 1995, pp. 1942–1948.
[2] R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization, Swarm Intelligence 1 (1) (2007) 33–57.
[3] X. Xie, W. Zhang, Z. Yang, Overview of particle swarm optimization, Control and Decision 18 (2) (2003) 129–134.
[4] E. Ozcan, C. Mohan, Analysis of a simple particle swarm optimization system, Intelligent Engineering Systems through Artificial Neural Networks 8

(1998) 253–258.
[5] M. Clerc, J. Kennedy, The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE Transactions on Evolutionary

Computation 6 (1) (2002) 58–73.

X. Jin et al. / Applied Mathematics and Computation 219 (2013) 5185–5197 5197
[6] K. Yasuda, A. Ide, N. Iwasaki, Adaptive particle swarm optimization, IEEE International Conference on Systems, Man and Cybernetics, vol. 2, IEEE, 2003,
pp. 1554–1559.

[7] B. Brandstatter, U. Baumgartner, Particle swarm optimization–mass-spring system analogon, IEEE Transactions on Magnetics 38 (2) (2002) 997–1000.
[8] J. Zeng, Z. Cui, A new unified model of particle swarm optimization and its theoretical analysis, Journal of Computer Research and Development 1

(2006) 96–100.
[9] W. Hu, Z. Li, Simpler and more effective particle swarm optimization algorithm, Ruan Jian Xue Bao (Journal of Software) 18 (4) (2007) 861–868.

[10] R. He, Y. Wang, Q. Wang, J. Zhou, C. Hu, Improved particle swarm optimization based on self-adaptive escape velocity, Ruan Jian Xue Bao (Journal of
Software) 16 (12) (2005) 2036–2044.

[11] C. Kurosu, T. Saito, K. Jinno, Growing particle swarm optimizers with a population-dependent parameter, in: Neural Information Processing, Springer,
2009, pp. 234–241.

[12] C. Zhang, J. Sun, D. Ouyang, Y. Zhang, A self-adaptive hybrid particle swarm optimization algorithm for flow shop scheduling problem, Chinese Journal
of Computers 11 (2009) 2137–2146.

[13] S. Yu, Z. Wu, H. Wang, Z. Chen, A hybrid particle swarm optimization algorithm based on space transformation search and a modified velocity model,
High Performance Computing and Applications (2010) 522–527.

[14] P. Kim, J. Lee, An integrated method of particle swarm optimization and differential evolution, Journal of Mechanical Science and Technology 23 (2)
(2009) 426–434.

[15] P. Yin, F. Glover, M. Laguna, J. Zhu, Cyber swarm algorithms-improving particle swarm optimization using adaptive memory strategies, European
Journal of Operational Research 201 (2) (2010) 377–389.

[16] M. Chen, X. Li, X. Zhang, Y. Lu, A novel particle swarm optimizer hybridized with extremal optimization, Applied Soft Computing 10 (2) (2010) 367–
373.

[17] H. Liu, Z. Cai, Y. Wang, Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization,
Applied Soft Computing 10 (2) (2010) 629–640.

[18] L. Cartwright, T. Hendtlass, A heterogeneous particle swarm, Artificial Life: Borrowing from Biology (2009) 201–210.
[19] C. Hu, B. Wang, Y. Wang, Multi-swarm particle swarm optimiser with cauchy mutation for dynamic optimisation problems, International Journal of

Innovative Computing and Applications 2 (2) (2009) 123–132.
[20] Q. Ni, Z. Zhang, Z. Wang, H. Xing, Dynamic probabilistic particle swarm optimization based on varying multi-cluster structure, Ruan Jian Xue Bao

(Journal of Software) 20 (2) (2009) 339–349.
[21] J. Jie, J. Zeng, C. Han, Self-organized particle swarm optimization based on feedback control of diversity, Jisuanji Yanjiu yu Fazhan (Computer Research

and Development) 45 (3) (2008) 464–471.
[22] X. Zhao, A perturbed particle swarm algorithm for numerical optimization, Applied Soft Computing 10 (1) (2010) 119–124.
[23] Z. Zhan, J. Zhang, Y. Li, H. Chung, Adaptive particle swarm optimization, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 39 (6)

(2009) 1362–1381.
[24] T. Chen, T. Chi, On the improvements of the particle swarm optimization algorithm, Advances in Engineering Software 41 (2) (2010) 229–239.
[25] F. van den Bergh, A. Engelbrecht, Cooperative learning in neural networks using particle swarm optimizers, South African Computer Journal (2000) 84–

90.
[26] F. Van den Bergh, A. Engelbrecht, A cooperative approach to particle swarm optimization, IEEE Transactions on Evolutionary Computation 8 (3) (2004)

225–239.
[27] Z. Zhan, J. Zhang, Parallel particle swarm optimization with adaptive asynchronous migration strategy, Algorithms and Architectures for Parallel

Processing (2009) 490–501.
[28] G. Ma, W. Zhou, X. Chang, A novel particle swarm optimization algorithm based on particle migration, Applied Mathematics and Computation 218 (11)

(2012) 6620–6626, http://dx.doi.org/10.1016/j.amc.2011.12.032.
[29] F. Wilcoxon, Individual comparisons by ranking methods, Biometrics Bulletin 1 (6) (1945) 80–83.
[30] G. He, N. Huang, A modified particle swarm optimization algorithm with applications, Applied Mathematics and Computation 2012, http://dx.doi.org/

10.1016/j.amc.2012.07.010, <http://www.sciencedirect.com/science/article/pii/S0096300312007102>.

http://dx.doi.org/10.1016/j.amc.2011.12.032
http://dx.doi.org/10.1016/j.amc.2012.07.010
http://dx.doi.org/10.1016/j.amc.2012.07.010
http://www.sciencedirect.com/science/article/pii/S0096300312007102

	Particle swarm optimization using dimension selection methods
	1 Introduction
	2 Particle swarm optimization algorithm
	3 The effects of the randomness in PSO and four PSO variants
	3.1 The importance of the randomness in the PSO
	3.2 Directly eliminate the randomness of the canonical PSO
	3.3 PSO algorithm with random dimension selection
	3.4 PSO algorithm with heuristic dimension selection
	3.5 Dimension selection based on difference from the global best individual

	4 Experiments and results
	4.1 Test functions and experimental settings
	4.2 Results of the PSO and PSOnoR algorithms
	4.3 Results of the PSORDS algorithm
	4.4 Results of the PSOHDS algorithm
	4.5 Results of the PSODDS algorithm
	4.6 Using dimension selection methods in recently proposed PSO variant

	5 Conclusions
	Acknowledgements
	References

