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1. Introduction. In a recently published paper [ST], R. J. Stroeker and
the author describe in detail—with examples included—a general method
for computing all integer solutions of a Weierstrass equation, which defines
an elliptic curve over Q. A little later, J. Gebel, A. Pethő and H. G. Zim-
mer worked independently on similar lines and solved a number of impressive
numerical examples (see [GPZ]); for some history of the main ideas under-
lying that method see the introduction in [ST]. The main advantage of the
method, which combines the Arithmetic of Elliptic Curves with the The-
ory of Linear Forms in Elliptic Logarithms, is that it is very easily—almost
mechanically—applicable, once one knows a Mordell–Weil basis for the el-
liptic curve associated with the given equation. In this way, one can solve,
with reasonable effort, many elliptic diophantine equations that are “of the
same type”; for an interesting application see [Str], where fifty elliptic equa-
tions are solved. We note that the ineffective part of the method (i.e. the
computation of a Mordell–Weil basis) is completely independent of all the
remaining steps; this helps a great deal in organizing the computational
work in practice.

In this paper we extend the aforementioned method to the class of quartic
elliptic equations, i.e. we describe a general practical method for computing
explicitly all integral solutions of equations of the form V 2 = Q(U), where
Q(U) ∈ Z[U ] is a quartic polynomial with non-zero discriminant. Such
equations have a long history; see Chapter XXII of [Di] and sections D24
of [LV] and [G]. However, very few results concerning such equations are
of a general character and these deal with special types of quartic elliptic
equations (like, for example, x4 − Dy2 = 1). In most cases, specific nu-
merical examples are solved completely by clever but often very laborious
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ad hoc arguments; typical examples are the papers [L1], [L2] and [L3] by
W. Ljunggren and [B] by R. Bumby. The method we propose in the present
paper has a general character; it is reasonable therefore to apply it to equa-
tions which are already well known for the difficulty of their solution, like,
for example, those mentioned above. This we do in Section 6 (Examples 2
through 7). The uniformity and simplicity of the way they are solved by
the method of the present paper, compared to the ad hoc elaborate ways
found in older literature, is apparent. It is worth noticing that these “his-
toric”examples are associated with elliptic curves of rank 1 or 2 with an
easily found Mordell–Weil basis. Example 1 has been chosen by the author
for illustrating the method in more detail.

As the reader will see in the next section, the proposed method consists
in finding all points m1P1 + . . . + mrPr—with P1, . . . , Pr a Mordell–Weil
basis for the elliptic curve—that have integral coordinates. This is done in
three steps: (1) One finds an upper bound for M = max1≤i≤r |mi| by using
an explicit result of S. David [Da]. (2) This upper bound is reduced by using
the LLL-basis reduction algorithm. (3) All points P1, . . . , Pr are checked in
that reduced range of M . In case of equations associated with elliptic curves
of rank ≥ 4 (say), the necessary computations might be quite heavy: First,
the computation of the Mordell–Weil basis is then far from easy. Second,
the calculations needed for the reduction of the large upper bound of M
depend heavily on the rank r. Third, to check all points m1P1 + . . .+mrPr

in the range M ≤ small constant is not trivial if r is large (1). In this paper
we do not deal with the solution of such complicated examples, a task that
will be the subject of a future work. J. Top [T2] has already constructed
interesting examples of quartic equations corresponding to elliptic curves
of high rank; we have good reasons to believe that, apart from the much
heavier computations that will be needed, the method of the present paper
will work for these examples too.

2. Preliminaries. We are interested in computing explicitly all so-
lutions (U, V ) ∈ Z × Z of an equation V 2 = Q(U), where Q is a quartic
polynomial with rational integer coefficients and non-zero discriminant. We
suppose that this equation has at least one rational solution (u0, v0). Let
u0 = m/n, with m, n relatively prime integers. For any integer solution
(U, V ) of V 2 = Q(U) we put U = (U1 +m)/n, where U1 is an integer. Then
our equation is transformed into an equation V 2

1 = Q1(U1), where Q1 is a
quartic polynomial with integer coefficients and constant term which is a
perfect square (V1 = n2V ). Thus (omitting the subscripts 1), our initial

(1) Analogous difficulties arise also when we are considering cubic elliptic equations
as in [ST] and [GPZ].
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problem is reduced to solving in integers the following type of equations:

(1) V 2 = Q(U) := aU4 + bU3 + cU2 + dU + e2, a, b, c, d, e ∈ Z, a, e > 0.

This equation defines an elliptic curve E/Q and by an explicit birational
transformation we obtain a Weierstrass model W (X, Y ) = 0 of E, with
coefficients

a1 =
d

e
, a2 =

4e2c− d2

4e2
, a3 = 2eb, a4 = −4e2a, a6 = ad2 − 4e2ac;

see [Cn]. The transformation and its inverse can be performed e.g. by Ian
Connell’s Apecs, based on MapleV. Finally, the transformation

X = x− c

3
, Y = σy − d

2e
x +

cd

6e
− eb, σ ∈ {+1,−1},

transforms W (X, Y ) = 0 into

y2 = q(x) := x3 + Ax + B,

A = −1
3
c2 + bd− 4e2a, B =

2
27

c3 − 1
3
bcd− 8

3
e2ac + e2b2 + ad2.

For any point P ∈ E, we will denote its coordinates by

(U(P ), V (P )), (X(P ), Y (P )), (x(P ), y(P )),

depending on which model of E we refer to.
We will need to integrate the differential form dU/V along an infinite

path on the real axis. Since dU/V and dx/y are differential forms on the
same elliptic curve, we expect that they differ multiplicatively by a rational
function. An actual calculation shows that dU/V = −σdx/y, but we need
to know how the integration limits of the two integrals are related; this is
what we do below.

It is easy to prove that at least one of the two quantities d
√

a + eb and
8e3

√
a + 4e2c− d2 is non-zero. We put

σ =
{

sgn(d
√

a + eb) if d
√

a + eb 6= 0,
sgn(8e3

√
a + 4e2c− d2) if d

√
a + eb = 0,

x0 = 2e
√

a + c/3.

For u > 0 sufficiently large, so that Q(u) > 0, we define the functions

F∗(u) =
2e

√
Q(u) + du + 2e2

u2
, f∗(u) = F∗(u) +

c

3
.

We can find explicitly a positive parameter u0 such that Q(u) > 0 for u > u0

and F∗ is strictly monotonic in the interval (u0,+∞) (decreasing if σ = 1,
increasing if σ = −1) and F∗((u0,+∞)) does not contain the two numbers
−2e

√
a and (d2 − 4e2c)/(4e2). We also note that limu→+∞ = 2e

√
a and

F∗((u0,+∞)) is the interval with endpoints F∗(u0) and 2e
√

a.
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Proposition 1. Let U > u0. Then
+∞∫
U

du√
Q(u)

= σ

f∗(U)∫
x0

dx√
x3 + Ax + B

.

We omit the proof, because it is somewhat technical and without any
theoretical interest.

3. The elliptic integral as a linear form in elliptic logarithms.
Let U be any real number > u0, where u0 is as in end of Section 2. In this
section we express the integral

(2)
+∞∫
U

du√
Q(u)

, U > u0,

as a linear form in the φ-values of certain fixed points on E. Here φ denotes
the group isomorphism

φ : E0(R) → R/Z,

where E0(R) is the infinite component of the model y2 = x3 + Ax + B,
defined in [Z], p. 429, or in the introduction of [ST]. Let us denote by ω
the fundamental real period of the Weierstrass ℘ function associated with
y2 = q(x) (for the practical computation of ω see Section 7). For any point
P ∈ E0(R) we have by [Z],

ωφ(P ) ≡ ±
+∞∫

x(P )

dt√
q(t)

(mod 1).

Now we make correspond to U the point P ∈ E defined by

x(P ) = f∗(U), y(P ) ≥ 0.

Note that if both U and
√

Q(U) are rationals, then, in view of the birational
transformation between the models V 2 = Q(U) and y2 = q(x), we see that
x(P ) and y(P ) are rationals. If P is on E0(R) then, by [Z], p. 429, or the
introduction of [ST], we can take (by identifying R/Z with the interval [0, 1)
equipped with the addition mod1)

ωφ(P ) =
+∞∫

x(P )

dt√
q(t)

.

By Proposition 1 the integral in (2), which corresponds to the particular
value U we consider, is, up to sign, equal to ωφ(P ). It may happen, however,
that P does not belong to the infinite component E0(R). In this case, there
is no direct relation between the integral in (2) and φ(P ). At this point, a
critical role is played by the position of x0 relative to the roots e1, e2, e3

of q(x). Throughout this paper we denote by e1 the real root of q(x) if it



Elliptic diophantine equations 169

has only one; in case of three real roots we assume e1 > e2 > e3. It is not
difficult to prove the following fact:

If d
√

a+eb 6= 0, then either x0 > e1 or x0 ∈ (e3, e2) (this interval should
be understood as the empty set if e2, e3 6∈ R). If d

√
a + eb = 0, then x0 = e1

or e2, depending on whether σ = +1 (if e2, e3 6∈ R this is always the case)
or −1, respectively.

Another fact is the following:

There is an explicit positive constant U0 such that

U > U0 ⇒ x(P ) ∈
{

(e1,+∞) if x0 ≥ e1,
(e3, e2) otherwise.

Note that the complementary case to x0 ≥ e1 is: e1, e2, e3 are reals—
hence e1 > e2 > e3—and x0 ∈ [e3, e2]. Below we describe how we can
calculate a value for U0. First, we consider the function

F(X) =
4e2X + 4e2c− d2

−dX − 2e2b + σe
√

4X3 + b2X2 + 2b4X + b6

,

defined on the interval with endpoints F∗(u0) and 2e
√

a; here b2, b4, b6

have their usual meaning in connection with the parameters a1, . . . , a6 of
the Weierstrass model given at the beginning of Section 2. It can be proved
that the functions F and F∗ are inverse to each other. The following two
facts can be proved. We omit their proof, as it is merely technical and
without any theoretical interest.

Let x0 ≥ e1. Put e′1 = e1 if e1 − c/3 is not a root of the denominator
of F and e′1 = e1 + ε, where the “small” positive number ε can be chosen
arbitrarily , otherwise. Put

U0 := max(u0,F(e′1 − c/3))

and let U > U0. Then, for the point P ∈ E which, according to the beginning
of this section, corresponds to U , we have x(P ) > e1.

Let e1 > e2 > e3. Let x0 ∈ (e3, e2]. Put e′2 = e2 if e2 − c/3 is not
a root of the denominator of F and e′2 = e2 − ε2, where ε2 is a “small”
positive number , otherwise; similarly , put e′3 = e3 if e3 − c/3 is not a root
of the denominator of F and e′3 = e3 + ε3, where ε3 is a “small” positive
number , otherwise. The ε’s can be chosen arbitrarily , but in such a way
that e3 ≤ e′3 < e′2 ≤ e2. Let

U > U0 := max(u0,F(e′2 − c/3),F(e′3 − c/3)).

Then, for the point P ∈ E corresponding to U , we have x(P ) ∈ (e3, e2).

R e m a r k. It is easy to see that, for i = 1, 2, 3, ei − c/3 is a root of the
denominator of F if dei = cd/3− 2e2b.
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Let now U > U0 and denote by P the point on E which corresponds
to U .

First, suppose that eb + d
√

a 6= 0. According to the above discussion,
either x0 > e1 or e2, e3 ∈ R and x0 ∈ (e3, e2). Moreover, in the first case we
have x(P ) > e1, so that we can write

(3)
x(P )∫
x0

dx√
q(x)

=
+∞∫

x0

dx√
q(x)

−
+∞∫

x(P )

dx√
q(x)

and in the second case we have x(P ) ∈ (e3, e2), so that we can write
(4)

x(P )∫
x0

dx√
q(x)

=
e2∫

x0

dx√
q(x)

−
e2∫

x(P )

dx√
q(x)

=
+∞∫

x′
0

dx√
q(x)

−
+∞∫

x(P )′

dx√
q(x)

.

Here and in the sequel, in case that e1, e2, e3 are reals, we put

X ′ = e2 +
(e1 − e2)(e2 − e3)

e2 −X
,

for every X ∈ R, X 6= e2; hence, if X ∈ (e3, e2), then X ′ > e1 and
e2∫

X

dx√
q(x)

=
+∞∫

X′

dx√
q(x)

.

The last relation was used in the rightmost side of (4).
Next, suppose that be + d

√
a = 0. According to our previous discussion,

either σ = 1 and x0 = e1 or e2, e3 ∈ R and σ = −1 and x0 = e2. In the first
case, x(P ) > e1, so that we can write

(5)
x(P )∫
x0

dx√
q(x)

=
+∞∫

e1

dx√
q(x)

−
+∞∫

x(P )

dx√
q(x)

;

in the second case, x(P ) ∈ (e3, e2) and we can write

(6)
x(P )∫
x0

dx√
q(x)

=
x(P )∫
e2

dx√
q(x)

= −
+∞∫

x(P )′

dx√
q(x)

.

Now we express the integrals on the left-hand sides of (3)–(6) in terms
of φ-values and ω. In case e2, e3 ∈ R, we denote by Q2 the point with
x(Q2) = e2, y(Q2) = 0, and for any point Π ∈ E, we put Π ′ = Π + Q2.
Observe that

y(Π ′) ≥ 0 ⇔ y(Π) ≥ 0 and x(Π ′) = x(Π)′.

The last relation permits us to replace the lower limits x(P )′ of the integrals
in (4) and (6) by x(P ′). Observe also that, if x(Π) ∈ (e3, e2), then Π ′ ∈
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E0(R). Finally, we denote by P0 the point with x(P0) = x0, y(P0) = σ(be +
d
√

a).
By Proposition 1, the definition of φ and the fact that y(P ) ≥ 0, relations

(3)–(6) imply respectively:

• If either e2, e3 6∈ R or e2, e3 ∈ R and x0 > e1:

(7)
1
ω

+∞∫
U

du√
Q(u)

= σ(φ(P0)− φ(P )).

• If e2, e3 ∈ R and x0 ∈ (e3, e2):

(8)
1
ω

+∞∫
U

du√
Q(u)

= σ(φ(P ′0)− φ(P ′)).

• If e2, e3 ∈ R and x0 = e1:

(9)
1
ω

+∞∫
U

du√
Q(u)

=
1
2
− φ(P ).

• If e2, e3 ∈ R and x0 = e2:

(10)
1
ω

+∞∫
U

du√
Q(u)

= φ(P ′).

Consider now a basis P1, . . . , Pr for the free part of the group E(Q), and
for every i = 1, . . . , r put

Ri =
{

Pi if Pi ∈ E0(R),
P ′i otherwise.

Note that Ri ∈ E0(R) (although, in general, Ri 6∈ E0(Q)), so that φ(Ri)
is defined. More precisely, Ri ∈ E0(Q) and this fact plays an important role
below.

Let U ∈ Z, U > 0, be such that
√

Q(U) ∈ Z and let P be the point
which corresponds to U , as explained at the beginning of this section. Since
all such U in the interval [0, U0] can be easily found, we may assume that
U > U0. We write

(11) P = m1P1 + . . . + mrPr + T,

where m1, . . . ,mr are integers and T is a torsion point of E. In order to
find all integers U as above, it suffices to find a “small” upper bound for

M = max{|m1|, . . . , |mr|}.
We note here that the assumption U > 0 is not actually a restriction.

Indeed, for the solution of (1) with negative U , it suffices to solve

(12) V 2 = aU4 − bU3 + cU2 − dU + e2, U > 0.
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Therefore, when we calculate the various constants which result in an upper
bound for M (these are functions of a, b, c, d, e), we must also calculate the
corresponding constants for a, −b, c, −d, e and consider in each case the
worst value.

In view of the definition of the Ri’s and the relation 2 ·Q2 = O, relation
(11) implies that

either P or P ′ = m1R1 + . . . + mrRr + T0,
where T0 is a torsion point belonging to E0(R). Then,

either φ(P ) or φ(P ′) = m1φ(R1) + . . . + mrφ(Rr) + s/t + m0;
here we put s/t = φ(T0), s, t ∈ Z, 0 ≤ s < t and t ≤ 12 by Mazur’s

theorem. Also, m0 is an integer with absolute value not exceeding rM + 1,
since the φ-values belong to the interval [0, 1). Going back to (7)–(10) and
replacing, if necessary, the mi’s by their opposites, we are led to the following
relations:

• If either e2, e3 6∈ R or e2, e3 ∈ R and x0 > e1:

(13)
σ

ω

+∞∫
U

du√
Q(u)

=
(

m0 −
s

t

)
+ φ(P0) + m1φ(R1) + . . . + mrφ(Rr).

• If e2, e3 ∈ R and x0 ∈ (e3, e2):

(14)
σ

ω

+∞∫
U

du√
Q(u)

=
(

m0 −
s

t

)
+ φ(P ′0) + m1φ(R1) + . . . + mrφ(Rr).

• If e2, e3 ∈ R and x0 = e1:

(15)
1
ω

+∞∫
U

du√
Q(u)

=
(

m0 −
s

t
+

1
2

)
+ m1φ(R1) + . . . + mrφ(Rr).

• If e2, e3 ∈ R and x0 = e2:

(16)
1
ω

+∞∫
U

du√
Q(u)

=
(

m0 +
s

t

)
+ m1φ(R1) + . . . + mrφ(Rr).

Let ℘ denote the Weierstrass function associated with the equation y2 =
q(x). By the definition of the function φ, we have, for any point Π on
E0(R), ℘(ωφ(Π)) = x(Π), hence ωφ(Π) is the elliptic logarithm of either
Π or of −Π; also, ω is the elliptic logarithm of the point O. It follows that,
on multiplying by ω the relations (13)–(16), we express the left-hand side
integrals as non-zero linear forms in elliptic logarithms of points belonging
to E0(Q).

R e m a r k. In case of (13) (respectively (14)), if φ(P0) (respectively
φ(P ′0)) is linearly dependent on φ(R1), . . . , φ(Rr) over Q (see e.g. Examples
1–4 in Section 6), the term φ(P0) (respectively φ(P ′0)) can be removed, at
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the cost of a slight change of the mi’s and, probably, the appearance in some
of the modified mi’s of small (known) denominators. Even in such a case,
we can find an upper bound for the (unknown) numerators of the modified
mi’s, which is of the form c′12M + c′13 and c′12, c′13 are trivial to compute
explicitly.

4. An upper bound of M . In this section we assume that U is an
integer > U0 such that

√
Q(U) ∈ Z and denote by P the point on E that

corresponds to U , as explained at the beginning of Section 3. Therefore one
of the four relations (13)–(16) holds. In any of these relations, we denote
the linear form on the right-hand side by Φ(U). We intend to compute an
upper and a lower bound of Φ(U) in terms of M and of various explicitly
computable positive constants ci depending on Q and U0. Then we will
combine the two bounds to obtain an upper bound of M .

Obviously, the integral on the left-hand side is positive and we can find
for it an upper bound of the form c9U

−1, hence

(17) 0 < Φ(U) <
c9

ω
|U |−1.

Now, consider any Weierstrass equation with rational integer coefficients
defining our elliptic curve E; say, W (X1, Y1) = 0. The coordinates X1(P )
and X(P ), for any point P , are related by an equation of the form X1(P ) =
α2X(P ) + β, for some rational numbers α and β and since we have, by the
definition of P ,

X(P ) = x(P ) +
c

3
= f∗(U) +

c

3
=

2e
√

Q(U) + dU + 2e2

U2
,

and U is an integer, it follows that a non-negative constant c10 can be
explicitly calculated (2), such that

(18) h(X1(P )) ≤ c10 + 2 log U if U is not “very small”.

Here h(·) denotes the Weil height. If we denote by ĥ(·) the Néron–Tate
height, then, by applying Theorem 1.1 of J. Silverman [S2], we can easily
calculate an explicit positive constant c11, such that

(19) ĥ(P )− 1
2h(X1(P )) ≤ c11.

Note that the choice of the Weierstrass equation W (X1, Y1) = 0 is arbitrary
(but, as already noted, the coefficients must be rational integers); therefore
if we have at our disposal several such equations, we choose the one that
implies the smallest value for c11. In the examples that we solve in Section 6,

(2) We remind the reader here that, for the actual calculation of c9 and c10 in a
specific numerical example, one has to take into account the comment after relation (12).
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we choose the minimal Weierstrass equation, computed by Apecs (Laska’s
algorithm).

By Inequality 1 in Section 3 of [ST], we have ĥ(P ) ≥ c1M
2 for some

positive constant c1 (the computation of c1 is rather easy with the help
of Apecs and MapleV, for example; actually, c1 is the least eigenvalue of
the regulator matrix corresponding to the points P1, . . . , Pr; see the end of
Section 2 of [ST]), therefore, by (19),

− 1
2h(X1(P )) ≤ c11 − ĥ(P ) ≤ c11 − c1M

2

and now by (18) and (17),

(20) |ωΦ(U)| ≤ c9 exp
(
c11 + 1

2c10

)
· exp(−c1M

2).

Now we compute a lower bound of |Φ(U)| by applying Theorem 2.1 of
S. David [Da], as stated in Section 7. As we saw at the end of the previous
section, ωΦ(U) is a linear form in elliptic logarithms, say,

n0

d0
ω +

n1

d1
u1 +

n2

d2
u2 + . . . +

nν

dν
uν .

Here, the u’s are either of the form ωφ(Ri) or ωφ(P0), or ωφ(P ′0), ν = r
or r + 1 and the fractions ni/di, in lowest terms, are defined explicitly by
means of the mi’s and they differ from them “very little”, if at all. We now
define

N = max{|n0|, |n1|, . . . , |nν |}.
Since |m0| ≤ rM + 1 and 0 < t ≤ t0, 0 ≤ s < t0, where t0 is the maximal
order of torsion points, we easily find explicit constants c12, c13 such that

(21) N ≤ c12M + c13.

By David’s theorem (see Theorem 5), we have

(22) |ωΦ(U)| ≥ exp(−c4(log N + c5)(log log N + c6)ν+2)

(the computation of the constants c4–c6 is discussed in detail in Section 7).
The combination of (20) and (22) gives

c1M
2 ≤ log c9 + 1

2c10 + c11 + c4(log N + c5)(log log N + c6)ν+2.

In view of (21) and the fact that we may assume M ≥ 16, this implies

(23) M2 ≤ c−1
1

(
log c9 + 1

2c10 +c11

)
+c−1

1 c4(log M +c7)(log log M +c8)ν+2,

where

c7 = c5 + log c12 +
c13

16c12
, c8 = c6 +

(
log c12 +

c13

16c12

)/
log 16

and thus we have gotten the desired upper bound for M .
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5. Reduction of the upper bound. In view of inequality (20) and
the upper bound obtained from (23) we can write

(24) |Φ| < K1 exp(−K2M
2), M < K3,

where we have put, for simplicity in the notation, Φ instead of Φ(U) and, of
course,

K1 =
c9

ω
exp

(
c11 +

c10

2

)
, K2 = c1

and K3 is “very large”. We put

s′

t′
=

−s/t in case of (13), (14),
−s/t + 1/2 in case of (15),
s/t in case of (16),

t′ > 0, gcd(s′, t′) = 1.

We also put for simplicity in the notation

φ(Ri) = %i, i = 1, . . . , r,

and in case of (13) and (14) only,

%0 =
{

φ(P0) in case of (13),
φ(P ′0) in case of (14).

We distinguish three cases:

C a s e 1: One of the relations (15) or (16) holds. In this case our linear
form is

Φ = m1%1 + . . . + mr%r + (m0 + s′/t′).
C a s e 2: One of the relations (13) or (14) holds and %0 is linearly inde-

pendent of %1, . . . , %r over Q. In this case our linear form is

(25) Φ = %0 + m1%1 + . . . + mr%r + (m0 + s′/t′).

C a s e 3: One of the relations (13) or (14) holds and %0 is linearly de-
pendent on %1, . . . , %r over Q. In this case our linear form is

Φ =
n0

d0
+

n1

d1
%1 + . . . +

nr

dr
%r;

here the ni’s are explicit (usually very simple) linear combinations of the
mi’s, max0≤i≤r |ni| ≤ c12M + c13 and the di’s are small integers (usually 1
or 2).

Next, we consider the (r + 1)-dimensional lattice Γ generated by the
columns of the matrix

A =


1 · · · 0 0
0 · · · 0 0
...

. . .
...

...
0 · · · 1 0

[K0%1] · · · [K0%r] K0


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([·] means rounding towards zero, i.e. [α] = bαc if α ≥ 0 and [α] = dαe if
α < 0). Here K0 is a conveniently chosen integer, somewhat larger than
(2r/2t′K3

√
r2 + r)r+1 (note that t′ is, at most, 2t0, where t0 ≤ 12 is the

maximal possible order for torsion points of E). We compute an LLL-
reduced basis (see [LLL]) b1, . . . ,br+1, using the “integral version” of the
LLL-algorithm (which avoids rounding off errors) due to de Weger (see Sec-
tion 3.5 of [dW]). The propositions of this section imply a reduction of the
large upper bound K3 to something of the size of (K−1

2 log K3)1/2. In Case 1
we apply the following result, proved in Section 5 of [ST].

Proposition 2. If |b1| > 2r/2t′K3

√
r2 + r, then

M2 ≤ K−1
2 (log(K0K1)− log(

√
t′−22−r|b1|2 − rK2

3 − rK3)).

In Case 3, we apply the following result, the proof of which is essentially
identical to that of Proposition 2.

Proposition 3. Let

d = lcm(d0, . . . , dr), max
1≤i≤r

|ni| ≤ c′12M + c′13

(note that c′12 ≤ c12 and c′13 ≤ c13; cf. (21)) and

K4 = max
1≤i≤r

|d/di| · (c′12K3 + c′13).

If |b1| > 2r/2K4

√
r2 + r, then

M2 ≤ K−1
2 (log(dK0K1)− log(

√
2−r|b1|2 − rK2

4 − rK4)).

Finally, in the “non-homogeneous” Case 2 we work as follows: We con-
sider the point

x =


0
...
0

−t′[K0%0]

 ,

as a point of Rr+1 and we express it with respect to the reduced basis of Γ
that we have computed. The coordinates x1, . . . , xr+1 of x with respect to
this basis are given by  x1

...
xr+1

 = B−1x,

where B denotes the matrix with columns formed by the vectors of the
reduced basis. De Weger’s version of the LLL-algorithm computes at the
same time matrices U and V = (vij), such that B = AU and V = U−1.
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In view of the simplicity of the shape of A, we can easily compute the
coordinates x1, . . . , xr+1; indeed, x1

...
xr+1

 = VA−1x = − t′[K0%0]
K0

 v1,r+1

...
vr+1,r+1

 .

On the other hand, we can compute a lower bound for the distance d(x, Γ )
of the point x from the lattice Γ : By Lemma 3.5 of [dW] we have

(26) d(x, Γ ) ≥ 2r/2‖xi0‖|b1|,
where ‖ · ‖ denotes “distance from the nearest integer” and i0 ∈ {1, . . . ,
r +1} is so chosen that ‖xi0‖ be minimal among ‖x1‖, . . . , ‖xr+1‖. Next we
consider the lattice point

y = A


t′m1

...
t′mr

t′m0 + s′

 =


t′m1

...
t′mr

λ0

 ,

where λ0 = t′m1[K0%1] + . . . + t′mr[K0%r] + (t′m0 + s′)K0. In view of (26)
we have

2r/2‖xi0‖|b1| ≤ |y − x| = t′2(m2
1 + . . . + m2

r) + λ2,

where λ = t′[K0%0] + λ0, hence, as is easily seen,

|λ−K0t
′Φ| < t′(1 + rM) ≤ t′(1 + rK3).

In view of this and (26) we easily see that

1 + rK3 + K0|Φ| ≥
√

2−rt′−2‖xi0‖2|b1|2 − rK2
3 ,

which, combined with (24), gives

K0K1 exp(−K2M
2) >

√
2−rt′−2‖xi0‖2|b1|2 − rK2

3 − rK3 − 1.

If the right-hand side is a real positive number, we can take logarithms of
both sides and obtain thus the following result, which we apply in case Φ is
given by (25):

Proposition 4. If ‖xi0‖|b1| > 2r/2t′
√

(r2 + r)K2
3 + 2rK3 + 1, then

M2 ≤ K−1
2 (log(K0K1)− log(

√
t′−22−r‖xi0‖2|b1|2 − rK2

3 − rK3 − 1)).

Note that, again, the upper bound obtained in this way is of the size of
(K−1

2 log K3)1/2.

6. Examples. In the examples of this section, the coordinates that we
give for the various points Π are always (x(Π), y(Π)), i.e. they correspond
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to the model y2 = x3 + Ax + B, in the notation of Section 2. Also, we do
not specially mention the values of the parameters u0 and U0; these can be
easily calculated and never, in these examples, exceed 12.

Example 1. Consider the equation

(27) V 2 = Q(U) := U4 − 8U2 + 8U + 1

and denote by E the elliptic curve defined by means of (27). Here,

a = 1, b = 0, c = −8, d = 8, e = 1,

A =
−76
3

, B =
1280
27

, σ = +1,

a1 = 8, a2 = −24, a3 = 0, a4 = −4, a6 = 96,

∆E = 212 · 17 = 69632, jE =
438976

17
,

e3 = −5
3
−
√

17 < x0 = −2
3

< −5
3

+
√

17 = e2 < e1 =
10
3

,

ω1 =
2πi

M(
√

e1 − e3,
√

e2 − e3)
= 2.133100331 . . . · i,

ω2 = − 2π

M(
√

e1 − e3,
√

e1 − e2)
= −3.438877420 . . . ,

τ = 1.612149869 . . . i, ω = −ω2.

We apply Silverman’s Theorem 1.1 [S2] to the Weierstrass minimal model
of E, which Apecs found by application of Laska’s algorithm:

Y 2
1 = X3

1 + X2
1 − 25X1 + 39.

This gives (cf. (19)) c11 = 3.19241. Therefore, in order to find c10, we must
find an upper bound for X1(P ). We have X1(P ) = X(P )− 3, hence

h(X1(P )) ≤ log max{|2
√

Q(U)− 3U2 + 8U + 2|, U2} = log U2,

provided that |U | ≥ 4. But we also have to check the analogous inequality
that results if the coefficients b and d are replaced by −b and −d, respectively
(see the comment just after (12)). Again, X1(P ) = X(P )−3 and the above
inequality becomes

h(X1(P )) ≤ log max{|2
√

U4 − 8U2 − 8U + 1− 3U2 − 8U + 2|, U2}
≤ 2 log U + 0.6366,

provided that U > 10. Also, if U ≥ 15 then
+∞∫
U

du√
u4 − 8u2 ± 8u + 1

< 1.02|U |−1;

hence c10 = 0.6366, c9 = 1.02.
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A basis, found by Apecs (without assuming any of the standard conjec-
tures), is given by

P1 = (−2/3,−8), P2 = (22/3, 16), T = (10/3, 0),

where P1, P2 are the free generators and T is the generator of the torsion
subgroup, of order 2. Apecs calculated, using Silverman’s algorithm [S1],
ĥ(P1) = 0.317137308 . . . , ĥ(P2) = 0.480233071 . . . and a simple program
based on MapleV and Apecs calculated the least eigenvalue of the regulator
matrix, which is c1 = 0.237336274 . . . Since P1 belongs to the compact
component of y2 = x3 + Ax + B, we replace it by

R1 = P1 + Q2 =
(

41
6
− 1

2

√
17,

17
2
− 7

2

√
17

)
,

where Q2 = (
√

17− 5/3, 0). We also put R2 = P2 and calculate

φ(R1) = 0.700983196 . . . , φ(R2) = 0.224621906 . . .

Since x0 ∈ (e3, e2), we also need the point P ′0 (cf. (14)); we have

P0 = (−2/3, 8) = −P1, P ′0 = P0 + Q2 = −P1 −Q2 = −R1,

which immediately imply that φ(P ′0) = φ(−R1) = 1− φ(R1) and the right-
hand side of (14), which we denoted by Φ(U) in Section 4, becomes

Φ(U) = (m0 + s/2) + φ(P ′0) + m1φ(R1) + m2φ(R2)
= (m0 + 1 + s/2) + (m1 − 1)φ(R1) + m2φ(R2).

From this we see that, in the notation of Section 5,

n0

d0
=

2m0 + 2 + s

2
,

n1

d1
= m1 − 1,

n2

d2
= m2

and, since |m0| ≤ 2M + 1 (see just before (21)),

c12 = 4, c13 = 5, c′12 = 1, c′13 = 1.

For the application of David’s theorem we calculate:

h

(
A

4
,
B

16

)
= h

(
−19
3

,
80
27

)
= log(9 · 19),

h(jE) = h

(
438976

17

)
= log 438976, hE = log 438976.

Also, the coordinates of points R1, R2 belong to a quadratic field, hence
D = 2 and

3πω2

D|ω1|2=τ
=

3π|τ |
2

= 7.597078, A0 = hE = 12.9922001,
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3πω2φ(R1)2

D|ω1|2=τ
=

3π|τ |φ(R1)2

2
= 3.733033, A1 = hE ,

3πω2φ(R2)2

D|ω1|2=τ
=

3π|τ |φ(R2)2

2
= 0.383311, A2 = hE

and E = 1.3077299e. Finally,

c4 = 2.9 · 1024 · 418 · 28 · 457.3 · 1.26829−7 · 2193.0479 = 6.6723 · 1074,

c5 = log(DE) = 1.96144, c6 = log(DE) + hE = 14.953641,

c7 = 3.42586, c8 = 15.482.

Now (23) implies M < 2.15 · 1041 and by the definition of K1, . . . ,K4 we
have

K1 = 9.9281, K2 = c1, K3 = 2.15 · 1041, K4 = 2(K3 + 1).

The hypothesis of Proposition 3 requires that |b1| > 2
√

6K4, and this is
satisfied if we choose K0 = 10128. Then, Proposition 3 gives the new bound
M ≤ 29. We repeat the process with K3 = 29 and K0 = 108 (of course, K1

and K2 remain the same) and get M ≤ 8. This bound cannot be essentially
improved further, therefore we give all points

m1P1 + m2P2, m1P1 + m2P2 + T

in the range 0 ≤ m1 ≤ 8, |m2| ≤ 8, as an input to a simple program based in
MapleV and Apecs, which transforms the (x, y)-coordinates of each one into
its (U, V )-coordinates and accepts only those with U and V integers. The
only accepted points turned out to be (U, V ) = (0,±1). For the computation
of c9 and c10, we have assumed that |U | ≥ 15, therefore we had to check one
by one all the values of U from −14 to 14 and this search gave no further
solution. We have thus proved that: the only integers satisfying (27) are
(U, V ) = (0,±1).

Example 2. Consider Fermat’s equation

(28) V 2 = Q(U) := U4 + 4U3 + 10U2 + 20U + 1

(see [T1]) and denote by E the corresponding elliptic curve. Here

a = 1, b = 4, c = 10, d = 20, e = 1,

A = 128/3, B = 5312/27, σ = +1,

a1 = 20, a2 = −90, a3 = 8, a4 = −4, a6 = 360,

∆E = −24 · 331 = −5296, jE =
131072

331
,

e1 = −3.556644723 . . . < x0 = 16/3, e2, e3 6∈ R,

ω1=Ω1 −Ω2, ω2=Ω1 + Ω2, Ω1=1.502217471 . . . , Ω2=1.108711951 . . . · i,
τ = 0.294734582 . . . + 0.955579157 . . . · i, ω = 2Ω1.
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The minimal Weierstrass model for the elliptic curve E is

Y 2
1 = X3

1 + X2
1 + 3X1 + 4

(
X1(P ) = 1

4X(P ) + 1
2

)
.

Then, working as in Example 1, we calculate c11 = 2.629582, c10 = 0.96,
c9 = 1.12, the last two constants resulting from

h(X1(P )) = log max{
√

U4 ± 4U3 + 10U2 ± 20U + 1 + U2 ± 10U + 1, 2U2}
≤ 2 log U + 0.96

and
+∞∫
U

du√
u4 ± 4u3 + 10u2 ± 20u + 1

< 1.12U−1,

respectively, provided that U ≥ 20. A basis is given by (see [T1]) P1 =
(4/3,−16), P2 =(16/3, 24); no torsion point other than O exists. We replace
this basis by P1−P2, P2, because to this new basis there corresponds K2 =c1,
better for the reduction process (i.e. greater). Thus, we take as a basis

R1 = (−8/3, 8), R2 = (16/3, 24);

ĥ(R1) = 0.176622454 . . . , ĥ(R2) = 0.317960695 . . . ,

c1 = 0.173655878 . . . ,

φ(R1) = 0.428683280 . . . , φ(R2) = 0.251223446 . . .

In this example, it is relation (13) that holds, hence we need the point P0,
which, as is straightforward to see, is equal to R2 and the right-hand side
of (13) becomes

Φ(U) = m0 + m1φ(R1) + (m2 + 1)φ(R2).

We see then that c12 = 2, c13 = 2, c′12 = 1, c′13 = 1.
For the application of David’s theorem we calculate hE = h(jE) =

log 131072. Also, the coordinates of points R1, R2 are rational, hence D = 1
and

3πω2

D|ω1|2=τ
= 6π

Ω1

|Ω2|
= 25.5396654.

From this, we easily find that A0 = 25.5396654, A1 = A2 = hE , E = e.
Finally,

c4 = 2.9 · 1024 · 418 · 457.3 · 3546.21 = 2.225 · 1073,

c5 = 1, c6 = 12.7835021, c7 = 1.7556472, c8 = 13.056045.

Now (23) implies M < 3.5 · 1040; also

K1 = 8.3547, K2 = c1, K3 = 3.5 · 1040, K4 = K3 + 1.

The hypothesis of Proposition 3 requires that |b1| > 2
√

6K4, and this
is satisfied if we choose K0 = 10125. Then, this proposition gives the
new bound M ≤ 33 and by repeating the process with K3 = 33 and
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K0 = 109 we get the bound M ≤ 9. Then a direct computer search, as
in Example 1, shows that: the only integers satisfying (28) are (U, V ) =
(−4,±9), (−3,±2), (0,±1),
(1,±6).

In the examples that follow, we only give briefly all information needed
for their solution. Bases for the Mordell–Weil groups of the corresponding
curves have been easily calculated with the aid of Apecs 3.2, unconditionally
(i.e. without assuming any of the standard conjectures).

Example 3. Consider the equation 3V 2 = 2U4 − 2U2 + 3, solved by
R. J. Stroeker and B. M. M. de Weger [SW]. On multiplying by 3 and
replacing 3V by V we get the equation

(29) V 2 = Q(U) := 6U4 − 6U2 + 9

and we denote by E the corresponding elliptic curve. Here

a = 6, b = 0, c = −6, d = 0, e = 3,

A = −228, B = 848, σ = +1, be + d
√

a = 0,
a1 = 0, a2 = −6, a3 = 0, a4 = −216, a6 = 1296,

∆E = 213 · 37 · 52 = 447897600, jE =
219488

75
,

e3 = −6
√

6− 2 < e2 = 4 < e1 = 6
√

6− 2 = x0,

ω1 = 1.262713190 . . . · i, ω2 = −1.535696208 . . . ,

τ = 1.216187666 . . . · i, ω = −ω2.

The minimal Weierstrass model for the elliptic curve E is

y2 = x3 + Ax + B (x(P ) = X(P )− 2);

from this we find, as in the previous examples, c11 = 3.39514, c10 = 2.54766,
c9 = 0.41, provided that |U | ≥ 15. A basis is given by P1 = (2, 20), P2 =
(−2, 36), with generator of the torsion group the point T = (4, 0). We
replace this basis by

R1 = P1 + P2 = (16, 36), R2 = P2 + T = (34, 180)

in order to get a greater value for c1, which is c1 = 0.187960977 . . . Also,

ĥ(R1) = 0.45320430 . . . , ĥ(R2) = 0.21172057 . . . ;
φ(R1) = 0.36241206 . . . , φ(R2) = 0.22774550 . . .

In this example, it is relation (15) that holds, which is

Φ(U) = (m0 + s/2) + m1φ(R1) + m2φ(R2).

We see then that c12 = 4 and c13 = 5.
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For the application of David’s theorem we calculate hE = h(jE) =
log 219488. Also,

3πω2

D|ω1|2=τ
= 3π|τ | = 11.46229871,

hence A0 = A1 = A2 = hE and E = 1.0358e.
Finally,

c4 = 2.9 · 1024 · 418 · 457.3 · 1.035174−7 · 1860.4372 = 9.163 · 1072,

c5 = log E , c6 = log E + hE , c7 = 2.49962, c8 = 13.862405.

Now (23) implies M < 2.35 · 1040; also

K1 = 28.457, K2 = c1, K3 = 2.35 · 1040.

The hypothesis of Proposition 2 requires that |b1| > 4
√

6K3 and this
is satisfied if we choose K0 = 10125. Then, this proposition gives the new
bound M ≤ 32 and by repeating the process with K3 = 32 and K0 = 109 we
get the bound M ≤ 10. Then, a direct computer search, as in Example 1,
shows that: the only integers satisfying (29) are given by

(|U |, |V |) = (0, 3), (1, 3), (2, 9), (3, 21), (6, 87), (91, 20283).

Example 4. Now we consider the equation 3u4 − 2v2 = 1, solved by
R. T. Bumby in an ingenious but complicated and quite ad hoc way (see
[B]). We put u = U + 1, v = V/2, so it suffices to solve in integers the
equation

(30) V 2 = Q(U) := 6U4 + 24U3 + 36U2 + 24U + 4.

We denote by E the corresponding elliptic curve. Here

a = 6, b = 24, c = 36, d = 24, e = 2,

A = 48, B = 0, σ = +1,

a1 = 12, a2 = 0, a3 = 96, a4 = −96, a6 = 0,

∆E = −1728, jE = 1728,

e1 = 0 < x0 = 4
√

6 + 12, e2, e3 6∈ R,

Ω1 = 1.408792103 . . . , Ω2 = Ω1 · i,
ω1 = Ω1 −Ω2, ω2 = Ω1 + Ω2, τ = i, ω = 2Ω1.

The minimal Weierstrass model for the elliptic curve E is

Y 2
1 = X3

1 + 3X1,
(
X1(P ) = 1

4X(P ) + 3
)
.

Then, c11 = 1.69123, and for |U | ≥ 20, c10 = 1.7927 and c9 = 0.4566.
The rank of E is 1 and R1 = P1 = (4, 16) is a generator of infinite

order; the point T = (0, 0) is a generator of the torsion group, which is of
order 2. Also, c1 = ĥ(P1) = 0.250591196 . . . and φ(R1) = 0.301121610 . . .
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In this example, it is relation (13) that holds, so we need the point P0 =
(4
√

6 + 12, 48 + 24
√

6), for which we observe that 2P0 = R1, hence (13) in
our case becomes

Φ(U) = (m0 + s/2) + (m1 + 1/2)φ(R1).

Then c12 = 2, c13 = 5, c′12 = 2 and c′13 = 1.
For the application of David’s theorem we calculate

hE = h(jE) = log 1728,
3πω2

D|ω1|2=τ
= 6π, A0 = 6π, A1 = hE , E = e.

Finally,

c4 = 2.9 · 1018 · 48 · 338.3 · 140.52 = 5.01603 · 1043,

c5 = 1, c6 = 1 + hE , c7 = 1.8493972, c8 = 8.761075225

and now (23) implies M < 5 · 1024; also

K1 = 2.155, K2 = c1, K3 = 5 · 1024, K4 = 2K3 + 1.

The hypothesis of Proposition 3 requires that |b1| > 2K4 and this is
satisfied if we choose K0 = 1052. Then, this proposition gives the new bound
M ≤ 15 and by repeating the process with K3 = 15 and K0 = 105 we get
the bound M ≤ 5. A direct computer search, as in Example 1, shows that:
the only integers satisfying (30) are (U, V ) = (−4,±22), (−2,±2), (0,±2),
(2,±22).

Example 5. Now we consider the equation u4 − 2u2 + 4 = 3v2, a very
difficult solution of which has been given by W. Ljunggren [L1]. We put
u = U + 1, v = V/3, so it suffices to solve in integers the equation

(31) V 2 = Q(U) := 3U4 + 12U3 + 12U2 + 9.

We denote by E the corresponding elliptic curve. Here

a = 3, b = 12, c = 12, d = 0, e = 3,
A = −156, B = 560, σ = +1,

a1 = 0, a2 = 12, a3 = 72, a4 = −108, a6 = −1296,

∆E = 21438, jE =
35152

9
,

e3 = −14 < e2 = 4 < e1 = 10 < x0 = 6
√

3 + 4,

ω1 = −1.376409401 . . . · i, ω2 = 1.760787652 . . . ,

τ = 1.279261571 . . . · i, ω = ω2.

The minimal Weierstrass model for the elliptic curve E is

y2 = x3 + Ax + B (x(P ) = X(P ) + 4).
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Then, c11 = 4.34, and for |U | ≥ 20, c10 = 2.7394 and c9 = 0.6455. The rank
of E is 1 and P1 = (2, 16) is a free generator; since it belongs to the compact
part of E(R), we replace it by P1 + Q2 = (2, 16) + (4, 0). Thus,

R1 = (58, 432), c1 = ĥ(R1) = 0.539636932 . . . , φ(R1) = 0.149818526 . . .

The only torsion point on E0(Q) is T = (10, 0), of order 2. In this example,
it is relation (13) that holds, so we need also the point P0 = (6

√
3 + 4, 36),

for which we observe that 2P0 + T = R1, hence 2φ(P0) = φ(R1) + 1/2 and
(13) in our case becomes

Φ(U) =
4m0 + 2s + 1

4
+

2m1 + 1
2

φ(R1).

Then c12 = 4, c13 = 11, c′12 = 2 and c′13 = 1.
For the application of David’s theorem we calculate

hE = h(jE) = log 35152,
3πω2

D|ω1|2=τ
= 3π|τ |,

A0 = 3π|τ |, A1 = hE , E = e.

Finally,

c4 = 2.9 · 1018 · 48 · 338.3 · 126.2033344 = 4.505 · 1043,

c5 = 1, c6 = 1 + hE , c7 = 2.55817, c8 = 12.02943

and now (23) implies M < 4.54 · 1024; also

K1 = 110.632, K2 = c1, K3 = 4.54 · 1024, K4 = 2(2K3 + 1).

The hypothesis of Proposition 3 requires that |b1| > 2K4 and this is
satisfied if we choose K0 = 1052. Then, this proposition gives the new
bound M ≤ 11 and one more reduction step with K3 = 11 and K0 = 105

implies M ≤ 4. A direct computer search shows that: the only integers
satisfying (31) are (U, V ) = (−3,±6), (−2,±3), (0,±3), (1,±6), (12,±291).

Example 6. Next, we consider the rather well known equation 2u4−1 =
v2. A very complicated solution has been given by W. Ljunggren [L2];
recently, R. Steiner and the author [StT] gave a conceptually much simpler
solution, based on the theory of linear forms in (ordinary) logarithms. Here
we offer one more solution.

We put u = U + 1, v = V , and solve the equation

(32) V 2 = Q(U) := 2U4 + 8U3 + 12U2 + 8U + 1.

We denote by E the corresponding elliptic curve. In this example

a = 2, b = 8, c = 12, d = 8, e = 1,

A = 8, B = 0, σ = +1,

a1 = 8, a2 = −4, a3 = 16, a4 = −8, a6 = 32,
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∆E = −215, jE = 1728,

e1 = 0 < x0 = 2
√

2 + 4, e2, e3 6∈ R,

Ω1 = 2.204878798 . . . , Ω2 = Ω1i,

ω1 = Ω1 −Ω2, ω2 = Ω1 + Ω2, τ = i, ω = 2Ω1.

Minimal Weierstrass model: y2 = x3 + Ax + B, (x(P ) = X(P ) + 4). Then,

c11 = 2.557661 and for |U | ≥ 20, c10 = 2.01801, c9 = 0.791.

The rank of E is 1 and P1 = (1, 3) is a free generator; thus,

R1 = (1, 3), c1 = ĥ(R1) = 0.608709032 . . . , φ(R1) = 0.341556449 . . .

Generator of the torsion group : T = (0, 0), of order 2. We are in case (13):

P0 = (2
√

2 + 4, 8
√

2 + 8), 2P0 = P1,

Φ(U) =
2m0 + s

2
+

2m1 + 1
2

φ(R1),

c12 = 2, c13 = 5, c′12 = 2, c′13 = 1.

For the application of David’s theorem we calculate

hE = h(jE) = log 1728,
3πω2

D|ω1|2=τ
= 6π = A0, A1 = hE , E = e,

c4 = 2.9 · 1018 · 48 · 338.3 · 140.518161 = 5.016 · 1043,

c5 = 1, c6 = 1 + hE , c7 = 1.8493972, c8 = 8.76108.

Relation (23) implies M < 3.5 · 1024; also

K1 = 6.3496, K2 = c1, K3 = 3.5 · 1024, K4 = 2K3 + 1, K0 = 1051.

First reduction: M ≤ 10, second reduction: M ≤ 4. The only integers
satisfying (32) are (U, V ) = (−14,±239), (−2,±1), (0,±1), (12,±239).

Example 7. Finally, we consider the equation u4 + 2u2 − 1 = 2v2 [L3].
We put u = U + 1, v = V/2, and solve the equation

(33) V 2 = Q(U) := 2U4 + 8U3 + 16U2 + 16U + 4.

We denote by E the corresponding elliptic curve. In this example

a = 2, b = 8, c = 16, d = 16, e = 2,

A =
32
3

, B =
1280
27

, σ = +1,

a1 = 8, a2 = 0, a3 = 32, a4 = −32, a6 = 0,
∆E = −28, jE = 27,

e1 = −8/3 < x0 = 4
√

2 + 16/3, e2, e3 6∈ R,

Ω1 = 2.018230827 . . . , Ω2 = 1.37367687 . . . · i,
ω1 = Ω1 −Ω2, ω2 = Ω1 + Ω2, |τ | = 1, ω = 2Ω1.
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Minimal Weierstrass model: Y 2
1 = X3

1 +X2
1 +X1 +1

(
X1(P ) = 1

4X(P )+1
)
.

c11 = 2.28301 and for |U | ≥ 20, c10 = 1.0181, c9 = 0.7911.

The rank of E is 1 and P1 = (4/3, 8) is a free generator; thus,

R1 = (4/3, 8), c1 = ĥ(R1) = 0.2161655 . . . , φ(R1) = 0.295679873 . . .

Generator of the torsion group: T = (−8/3, 0), of order 2. We are in case
(13):

P0 = (4
√

2 + 16/3, 16
√

2 + 16), 2P0 = P1,

Φ(U) =
2m0 + s

2
+

2m1 + 1
2

φ(R1),

c12 = 2, c13 = 5, c′12 = 2, c′13 = 1.

For the application of David’s theorem we calculate

hE = h(jE) = log 128,
3πω2

D|ω1|2=τ
= 6π

Ω1

|Ω2|
= A0, A1 = hE , E = e,

c4 = 2.9 · 1018 · 48 · 338.3 · 134.37266 = 4.7966 · 1043,

c5 = 1, c6 = 1 + hE , c7 = 1.8494, c8 = 6.252312.

Relation (23) implies M < 3.8 · 1024; also

K1 = 3.1975, K2 = c1, K3 = 3.8 · 1024, K4 = 2K3 + 1, K0 = 1051.

First reduction: M ≤ 17, second reduction: M ≤ 6. The only integers
satisfying (33) are (U, V ) = (−4,±14), (−2,±2), (0,±2), (2,±14).

7. Appendix: Lower bound for the linear form in elliptic log-
arithms. In this paper we need to know a non-trivial lower bound for a
linear form of the shape

L =
p0

q0
ω +

p1

q1
u1 + . . . +

pk

qk
uk,

where ω is the fundamental real period of the Weierstrass ℘ function asso-
ciated with the eliptic curve

E : y2 = q(x) := x3 + Ax + B, A, B ∈ Q,

and the ui’s are elliptic logarithms of points Πi ∈ E(Q) (in our case ui

= φ(Πi)ω and the Πi’s are the basic points R1, . . . , Rr and, possibly P0 or
P ′0); actually, these coordinates belong to a number field of degree D ≤ 3.

We view the numerators pi as unknown integers for the absolute value of
which we know a “very large” upper bound; in contrast, the denominators
qi are “very small”, explicitly known integers.

As always in this paper, let e1, e2, e3 be the (distinct) roots of q(x) = 0,
with e1 ∈ R and e1 > e2 > e3 if all three are real.
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First we give formulas for a pair of fundamental periods ω1, ω2 of ℘. In
general, for any pair (x, y) of real numbers, let M(x, y) denote the arithme-
tic-geometric mean of x, y (see [Cx]). Then (see the Appendix of [ST]),

• If q(x) = 0 has three real roots, we can take

ω1 =
2π

M(
√

e1 − e3,
√

e1 − e2)
, ω2 =

2πi

M(
√

e1 − e3,
√

e2 − e3)
.

• If q(x) = 0 has only one real root, we can take

ω1 = Ω1 + Ω2, ω2 = Ω1 −Ω2,

where

Ω1 =
π

M
(

4
√

3e2
1 + A, 1

2

√
3e1 + 2

√
3e2

1 + a
) ,

Ω2 =
πi

M
(

4
√

3e2
1 + A, 1

2

√
−3e1 + 2

√
3e2

1 + a
) .

By making a linear unimodular transformation to (ω1, ω2), if necessary,
we may always assume that τ := ω2/ω1 satisfies

|τ | ≥ 1, =τ > 0, −1/2 < <τ ≤ 1/2 with <τ ≥ 0 if |τ | = 1.

From ω1, ω2 we can also easily find the minimum positive real period ω.
We define now the height of a rational n-tuple. Let, in general, (a1/b1, . . .

. . . , an/bn), n ≥ 1, be an n-tuple of rational numbers ai/bi in lowest terms
(bi > 0) and let b > 0 be the least common multiple of the bi’s. Then we
define

h

(
a1

b1
, . . . ,

an

bn

)
= max

{
b,

b|a1|
b1

, . . . ,
b|an|
bn

}
(actually, this is the absolute logarithmic height of the point (1, a1/b1, . . .
. . . , an/bn) ∈ Pn(Q)).

Let jE = 2833A3/(4A3 + 27B2) be the j-invariant of E and define

hE = max{1, h(A/4, B/16), h(jE)}.
Finally, choose A0, A1, . . . , Ak and E such that

A0 ≥ max
{

hE ,
3πω2

D|ω1|2=τ

}
,

Ai ≥ max
{

hE ,
3πω2φ(Πi)2

D|ω1|2=τ
, ĥ(Πi)

}
, i = 1, . . . , k,

and

e ≤ E ≤ e ·min
{
|ω1|
ω

·
√

DA0=τ

3π
,

|ω1|
ωφ(Πi)

·
√

DAi=τ

3π
, i = 1, . . . , k

}
.
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The following theorem is a direct consequence of a result due to S. David
(Théorème 2.1 of [Da]). David’s theorem is the explicit version of a general
(effective but not explicit) result of N. Hirata-Kohno (Corollaire 2.16 of
[HK]).

Theorem 5. Let N = max0≤i≤k |pi|. If L 6= 0, then either

N < max{exp(eh), |qi|, exp(Ai/D), i = 0, . . . , k},
or

|L| > exp(−c4(log N + c5)(log log N + c6)k+2),
where

c4 = 2.9 · 106k+12D2k+442(k+1)2(k + 2)2k2+13k+23.3(log E)−2k−3
k∏

i=0

Ai,

c5 = log(DE), c6 = log(DE) + hE .
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