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Abstract 

 
In this paper, we study various K nearest neighbor 

(KNN) algorithms and present a new KNN algorithm 
based on evidence theory. We introduce global 
frequency estimation of prior probability (GE) and 
local frequency estimation of prior probability (LE). A 
GE for a class is the prior probability of the class 
across the whole training data space based on 
frequency estimation; on the other hand, a LE for a 
class in a particular neighborhood is the prior 
probability of the class in this neighborhood space 
based on frequency estimation. By considering the 
difference between the GE and the LE of each class, we 
present a solution to the imbalanced data problem in 
some degree without doing re-sampling. We compare 
our algorithm with other KNN algorithms using two 
benchmark datasets. Results show that our KNN 
algorithm outperforms other KNN algorithms, 
including basic evidence based KNN.  
 
1. Introduction 

Classification is a broad ranging research field 
which includes many decision-theoretic approaches for 
identifying data. A datum is typically described 
numerically via a vector (x1, x2, ...xn) where n is the 
number of attributes/features. Therefore, each piece of 
data can be treated as one point in an n dimensional 
space, and belongs to one or more classes. 
Classification algorithms normally employ two steps, 
training and testing. Characteristic properties of data 
(or the partition of n dimensional space) calculated 
through the analysis of labeled training data will be 
applied to classify unlabeled testing data. For example, 
for image data, classifiers trained through the use of 
training images will be used for the prediction of 
unseen images. Obviously, there is a hidden 
assumption behind classification, i.e. that training data 
and testing data share the same distribution in the n 
dimensional space.  

Many classification algorithms are available, such 
as the K nearest neighbor (KNN) algorithm, neural 
network, decision tree, Bayesian network, and support 

vector machine (SVM). In general, it is hard to say 
which classification algorithm is better. We can only 
say one classification algorithm is better than others for 
a specific problem. In this paper, we study various 
KNN algorithms. KNN is a very popular classification 
algorithm demonstrating good performance 
characteristics and a short period of training time. 
However, the shortcomings of KNN are also obvious. 
First, each neighbor is equally important in the 
standard KNN. Second, KNN is prone to be affected 
by the imbalanced data problem. Large classes always 
have a better chance to win. To solve the first problem, 
many modified KNN algorithms have been published 
[2], [3], [4], [6]. Here, we are presenting a new KNN 
algorithm based on evidence theory. The novelties of 
our algorithm include two parts. First, according to the 
distribution of K nearest neighbors, we define a set of 
neighborhoods which will favor the close neighbors. 
Second, in order to address the imbalanced data 
problem, we introduce frequency estimation of prior 
probability (GE) and local frequency estimation of 
prior probability (LE). We define a GE for each class, 
which is the prior probability of the class across the 
whole training data space based on frequency 
estimation. We also define an LE for each class in each 
neighborhood, which is the prior probability of the 
class in this neighborhood space based on frequency 
estimation. By considering the difference between the 
GE and the LE of each class, we solve imbalanced data 
problem to some degree without doing re-sampling. 
We then compare our algorithm with other KNN 
algorithms for classification accuracy based on two 
benchmark datasets. Results show that our KNN 
algorithm outperforms other KNN algorithms.  

The contributions of this work can be summarized 
as follows: first, we extend evidence KNN based on 
GE and LE. Second, we demonstrate how our proposed 
method can to a certain extent address the imbalanced 
data problem without considering re-sampling.  
Finally, we test our proposed method using various 
benchmark datasets from various domains, and 
constantly show that our method outperforms all 
classical KNNs, including basic evidence based KNN. 
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The paper is organized as follows: In section 2, we 
discuss related work on KNN algorithm and its 
extensions. In section 3, we introduce evidence-theory-
based KNN which is the basis for our algorithm. In 
Section 4, we present the modified evidence-theory-
based KNN. Finally, in section 5, we present 
experimental results.  
2. Related Work 

A main drawback of KNN algorithm is that each of 
the K nearest neighbors is equally important. 
Intuitively, the closer the neighbor, the more possible 
that the unknown vector f will be in the class of this 
neighbor. Hence, assigning neighbors with different 
voting weights based on their distances to the vector f 
is intuitively appealing. Dudani [3] proposes a distance 
weighted k-nearest neighbor rule. Given the k nearest 
neighbor v1, v2, ...., vk of the vector f, the d1, d2, …, dk 
are corresponding distances which are sorted in 
increasing order. The label of the neighbor vi will be 
assigned more voting weight than the label of the 
neighbor vj if di < dj.  

In addition, Keller et al. propose a fuzzy KNN 
algorithm [4], [8]. Denoeux et al. generate an evidence 
theoretic KNN [2]. Wang et al. present an extended 
KNN based on evidence theory [6], which we will 
discuss in the next section. All these various KNN 
algorithms modify standard KNN in different ways, 
but the basic idea is common. They try to improve the 
performance of KNN algorithm by treating the 
neighbors of the unknown pattern differently. 
However, imbalanced data is still a problem. Large 
classes are always favored in these algorithms. 
Favoring large classes is not always bad. If training 
data and testing data share the same distribution, the 
unknown pattern is more likely to go to large classes 
than to small classes. The problem is determining 
when we should favor large classes and when we 
should not. In this paper, we present an evidence–
theory-based KNN algorithm to solve this problem by 
considering the difference between GE and LE of 
classes. 
3. Background 

In this section first, we present Dempster-Shafer 
evidence theory and next, we present evidence-theory-
based KNN.  Note that our approach relies on these 
two.  

 
 3.1 Dempster-Shafer evidence theory 

Evidence theory was proposed by Shafer in 1976 
[5]. Evidence theory represents the degree of belief that 
may be attributed to a given hypotheses on the basis of 
given evidence, and combines evidences from different 
sources using Dempster’s rule. Evidence theory is 
applied to combine outputs of multiple classifiers to 

generate a more accurate classification procedure. 
Classifier combination has received more and more 
attention.  

We define Ω as frame of discernment [5], which is a 
finite set of mutually exclusive and exhaustive 
hypotheses in a problem domain. The size of power set 
of Ω is 2Ω which includes the empty set Ø and the 
entire set Ω. In evidence theory, the contribution of 
evidence to the credibility of different hypotheses is 
described by a basic probability assignment (BPA) 
function m, the belief function Bel, and the plausibility 
function Pl. The BPA function m assigns a number 
between 0 and 1 to each non-empty subset of Ω, and 0 
to the empty set Ø. The sum of BPAs for all subsets A 
of Ω is equal to 1.  

The mass m(A) measures the quotient of belief that 
is contributed exactly to A. The subsets A of Ω are 
called the focal elements of the belief function, if 
m(A)>0. It is obvious that the degree of belief 
committed to a hypothesis A must be committed to all 
hypotheses it implies. For example, an animal is a 
subset of creatures, if the evidence shows that X is an 
animal, this evidence also shows that X is a creature. 
Therefore, to obtain the total belief in hypotheses A, we 
must add BPAs for all subsets B of A. It is very easy to 
prove that the summation of the belief of hypotheses A 
and its contradiction A  is not necessarily equal to 1. 
So, Bel(A) cannot show the summation of our belief in 
A . The plausibility of A 

∑
≠∩

=−=
emptyAB

BmABelAPl )()(1)(  defines the 

degree to which we find A plausible. 
3.2 Evidence-theory-based KNN (EKNN) 

The first evidence theoretic KNN algorithm was 
published in [2]. In this approach, each neighbor of a 
pattern is considered as evidence supporting some 
hypotheses about the class membership of that pattern. 
The BPAs are calculated for each of the k nearest 
neighbors. The belief of each hypothesis is obtained by 
aggregating BPAs using Dempster’s rule of 
combination. However, the Dempster Shafer rule is 
highly complex. 

Wang et al. generate an extended KNN based on 
evidence theory [6]. Instead of combining k BPAs in 
[2], they construct a mass function based on 
neighborhoods. We will present this work and show 
how our work differs from them.  

As we discussed before, each image is represented 
by d visual features with a vector of d 
attributes/dimensions <x1, x2,…xd>. Each image will 
belong to one and only one class in the finite set 

},...,{ 21 McccC = where M is the number of classes. 

794798

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 18:54:14 UTC from IEEE Xplore.  Restrictions apply. 



V is the data space which has d dimensions. The 
labeled training dataset will be specified as: 

{ , : , , 1, 2, ..., ;i j i jD s c s V c C where i N= < > ∈ ∈ =

11, 2, ... ; ( ) ... ( )}dj M V dom x dom x= = × ×  

Definition 1: Neighborhood is a region in V which 
covers a set of neighbors of an unknown pattern/data 
point s. V could have different shapes according to the 
definition of space and the metric used to calculate the 
distance for nearest neighbor methods. 

We consider V as the frame of discernment Ω. In 
[6], Wang et al. adopt the hypercube interpretation of 
neighborhood. Each neighborhood is a hypercube in V 
which contains s. The metric used to compute distance 
is important for nearest neighbor algorithms. In this 
paper, we choose to use Euclidean Distance and 
therefore a hyper sphere interpretation of a 
neighborhood rather than a hypercube interpretation. 
We define h neighborhoods of s: H1, H2, …, Hh. Each 
neighborhood is a hyper sphere in V covering a set of 
neighbors of s. When we consider k nearest neighbors, 
the largest neighborhood Hh is the hyper sphere which 
covers and only covers the k nearest neighbors. Then 
we divide the radius of the hyper sphere Hh into h 
equal intervals and define multiple hyper spheres with 
different radii. Each hyper sphere will be one 
neighborhood. If we say the radius of the neighborhood 
Hh is r, then the radius of the neighborhood Hi will be 

hri × . Let us consider the definition of 
neighborhoods by projecting all neighborhoods (hyper 
spheres) onto a 2 dimensional space. The origin here 
represents the unknown pattern s, and the number of 
neighborhoods is 10. The neighborhood H10 in this 
example contains all k nearest neighbors of s. Each 
neighborhood is a source of evidence supporting 
hypotheses concerning the class membership of the 
pattern s.  

Definition 2: Joint probability ),( cHP i  is the 
probability that a random data point is in the 
neighborhood Hi ( Ω∈ 2iH ) and belongs to class c 

( Cc ∈ ).  
Because data distribution information is not 

available, we assume data is uniformly distributed in V 
and give a prior estimation of joint probability 

),( cHP i  as below [11]. 

DHcHP c
ii =),(  (1) 

c
iH  is the number of data in  Hi which belongs to 

class c. D  is the number of training data. 
Definition 3: The mass function ms induced for s 

from neighborhoods H will be defined as below: 

⎪
⎩

⎪
⎨

⎧ =
= ∑ ∑= ∈

otherwise

HAif
cHP

cAP
cAm ih

i Cc is

0
),(

),(
),(

1
  (2) 

where ,2Ω∈A and Cc ∈ . 

New patterns are classified by applying a 
conditional pignistic probability function . 

∑ =

∩
×= h

i
i

i
is H

HA
cHmcABetP

1
),(),(  (3) 

Wang et al. show that BetP  is a probability 
function on Ω [11]. Because Hi is the neighborhood of 
s, so iHs ∈ . If we consider the pattern s as a 
singleton set, we have  

∑ =
= h

i iis HcHmcsBetP
1

),(),(  (4) 

∑ ∈
=

Cc
csBetPsBetP ),()(  (5) 

Now, based on Bayes rule, we can calculate 

conditional probability )|( scBetP as below, 

)(),()|( sBetPcsBetPscBetP = (6) 

For the pattern s, we calculate )|( scBetP  for 
all Cc ∈ , s will be classified as the class having the 

maximal )|( scBetP . 
 

4. Density based EKNN (DEKNN) 
In this section, we will present our KNN algorithm. 

As we discussed, the meaning of the joint probability 
),( cHP i  in equation (1) is the probability that a 

random data point is in the neighborhood Hi and 
belongs to class c. By expanding equation (1), we can 
see that the joint probability ),( cHP i  is the 

multiplication of two parts (see equation (7)). iH  is 
the number of data in the neighborhood Hi. The first 

part i
c
i HH  is the capability of the neighborhood 

Hi for discriminating the class c. The second part 
DH i  is the degree of support from the 

neighborhood Hi. Therefore, we can explain the joint 
probability ),( cHP i  in another way. ),( cHP i  can 
be thought as the support which the class c obtains 
from the neighborhood Hi. 

D
H

H

H
DHcHP i

i

c
ic

ii ×==),(  (7) 
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i
c
i HH  is the percentage of the class c in the 

neighborhood Hi. If the neighborhood Hi contains more 
data points of the class c than data points of any other 
classes, the class c always gets more support from the 
neighborhood Hi than other classes. Therefore, large 
classes are always favored which is also a major 
problem of the KNN algorithm. To solve this problem, 
we modify EKNN by changing the probability 
function ),( cHP i . To describe our algorithm, we 
need to define two concepts, GE and LE of classes. 

Definition 4: GE of a class c, GEc, is the proportion 
of the class c in the training dataset.  

DcGE c =  (8) 

|c| is the number of data in the class c. 

Definition 5: LE of a class c in the neighborhood 
Hi, 

c
iLE , is the proportion of the class c in the 

neighborhood Hi. 

i
c
i

c
i HHLE =  (9) 

In EKNN, the capability of the neighborhood Hi for 
discriminating the class c is totally determined by 

c
iLE , the LE of the class c in the neighborhood Hi. 

Without data distribution information, large classes 
usually have larger LE than small classes, explaining 
why EKNN favors large classes. To address this 
problem, a highly dense neighborhood will get a higher 
weight as compared to lightly dense neighborhoods. In 
other words, intuitively, in a particular neighborhood, 
if the LE of a class is larger than its GE, this class will 
get more support from this neighborhood. If the LE of 
the class is less than its GE, the class will get less 
support from this neighborhood. We would like to 
exploit the notion of LE and GE. We formalize the idea 
and modify the equation (7) as below. 

D
H

LE
GELE

wLEwcHP i
c
i

cc
ic

ii ×
−

×+×= )21(),( (10) 

D
H

LEcHP ic
ii ×=),(  (11) 

In Equation (10), w1 and w2 are weights and w1 + 
w2 = 1. In our experiment, we assign equal weight 0.5 
to w1 and w2. The construction of mass function in our 
algorithm is same as EKNN in equation (2).  

In DEKNN Equation (10) is similar to Equation 
(11) in EKNN except for second additional terms. In 
both DEKNN and EKNN, the classes having larger LE 
will get more support. This is reasonable in most cases 
when we don’t have information about data 

distribution. The difference is that the support in 
DEKNN is not totally determined by the LE of the 
classes. DEKNN depends on the difference between 
LE and GE (second term in equation (10)). When the 
LEis larger than the GE ( cc

i GELE > ), the second 
part in equation (10) will be positive and the class c 
will get more support from the neighborhood Hi (i.e., 
reward model). If the LE is less than GE 
( cc

i GELE < ), the second part in equation (10) will 
be negative and the class c will get less support from 
the neighborhood Hi (punish model).  If the LE is equal 
to GE ( cc

i GELE = ), the second part in equation 
(10) will be zero and the equation (10) will be similar 
to the equation (7). Recall that EKNN only considers 

c
iLE  for ),( cHP i  by ignoring other factors (GE). 

Therefore, we can notice that for ),( cHP i  
calculation DEKNN is aggressive as compared to 
EKNN in terms of punishing and rewarding of a class. 

 
4.1 Imbalanced Dataset  

We know that the imbalanced data problem is a 
serious problem for most classification algorithms. 
Normally, a re-sampling method will be applied to 
handle imbalanced data. Compared with the re-
sampling method, the DEKNN algorithm will solve the 
data imbalance problem more effectively. This is 
because re-sampling is expensive to generate new data 
points. Furthermore, DEKNN does not always favor 
small classes like re-sampling methods do. If the LE of 
a small class in a specific neighborhood is smaller than 
its GE, the small class will get even less support. At 
the same time, DEKNN does not increase 
computational load because it does not require re-
sampling. Experimental results show that DEKNN has 
better classification accuracy than EKNN.   

In general, without knowing data distribution, it is 
more likely that larger classes have higher LE as 
compared to small classes for a certain neighborhood. 
Hence, in some cases according to Equation (11), 
EKNN may still favor large classes for prediction even 
when the unknown pattern belongs to the small class. 
With DEKNN, ),( cHP i  calculation will be modified 
by the difference between LE and GE. Intuitively, if a 
small class’s LE is greater than its GE in a certain 
neighborhood, this neighborhood should provide more 
support to this small class even if the value of this 
small class’s LE is small. Considering this, DEKNN 
will modify ),( cHP i  value for this small class 
accordingly by positive difference between LE and GE 
for this small class. In addition, a large class may have 
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a higher LE for a certain neighborhood than a small 
class. But if the GE of this large class is even higher 
than its LE, it will still be punished and get less 
support. However, if a large class’s LE is greater than 
its GE for a certain neighborhood, this positive 
difference will award ),( cHP i  value to give this 
large class more support. Hence, DEKNN adds some 
values for ),( cHP i  in such a way that a small class 
will not be penalized and a large class will not be 
favored always.  

Now, question will arise whether DEKNN 
outperforms EKNN in both large and small classes or 
only in large classes (i.e., not in small classes) or only 
in small classes (i.e., not in large class). We observe in 
experimental results that DEKNN outperforms EKNN 
for small classes with the same margin as for large 
classes. This demonstrates that DEKNN is less 
sensitive to small classes (i.e., solves imbalance dataset 
problem at some extent). 

  
5.  Experiment Results 

The dataset we applied is from the forest covertype 
dataset [7]. There are 58,377 instances (observations) 
in the dataset which belong to 7 different cover types. 
54 features of data include 4 binary wilderness areas, 
40 binary soil type variables and 10 quantitative 
variable such as elevation, hill shade at different time 
of a day etc. We randomly select 58,377 (around 10%) 
instances as our dataset. Here, Spruce-Fir and 
Lodgepole Pine are two large classes and 
Cottonwood/Willow is a small class with only 54 
instances. 

As we discussed, DEKNN solves the data 
imbalance problem more effectively (see Section 4.1).  
In Table 1, we compare the average classification 
accuracy of EKNN and DEKNN for large classes, 
small classes in the Forest CoverType dataset. Results 
are shown in Table 1. Note that for small class, 
DEKNN outperforms EKNN with larger gap as 
compared to larger classes. For example, for 
Cottonwood/Willow class, DEKNN (accuracy 66.67%) 
outperforms EKNN (42.59%) with a large margin of 
24.08. On the other hand, for Spruce-Fir large class, 
DEKNN (accuracy 91.30%) outperforms EKNN 
(83.85%) with a margin of 7.5. For Lodgepole Pine 
class, accuracy of DEKNN is slightly lower than that 
of EKNN. This demonstrates that DEKNN still gives 
better accuracy for small and large classes (some 
extent) —handles imbalance data problem. In other 
words, DEKNN is more sensitive to small classes 
positively as compared to EKNN.  
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Table 1.Classification accuracies 
 # of 

instance 
Accuracies 
using 
EKNN(%) 

Accuracies 
using 
DEKNN(%) 

Spruce-Fir 4216 83.85 91.30 
Lodgepole Pine 5602 91.68 89.18 
Ponderosa Pine 686 86.30 91.25 
Cottonwood/Willow 54 42.59 66.67 
Aspen 176 23.86 77.27 
Douglas-Fir 352 54.26 80.97 
Krummholz 396 61.87 90.91 
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