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Abstract

This paper develops a general method of solving rational expectations models with higher
order beliefs. Higher order beliefs are crucial in an environment with dispersed information and
strategic complementarity, and the equilibrium policy depends on infinite higher order beliefs. It
is generally believed that solving this type of equilibrium policy requires an infinite number of
state variables (Townsend, 1983). This paper proves that the equilibrium policy rule can always
be represented by a finite number of state variables if the signals observed by agents follow an
ARMA process, in which case we obtain a general solution formula. We also prove that when
the signals contain endogenous variables, a finite-state-variable representation of the equilibrium
may not exist. For this case, we develop a tractable algorithm that can approximate the solution
arbitrarily well. The key innovation in our method is to use the factorization identity and Wiener
filter to solve signal extraction problems conditional on infinite observables. This method can be
used in a wide range of applications. We demonstrate its strong practicability by solving several
classical models featuring higher order beliefs, and also a full-blown business cycle model that is
driven by confidence shocks.
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1 Introduction

In many economic models with information frictions, an agent’s payoff depends on his own actions,
the actions of others, and some unknown economic fundamentals. Rational behaviors not only
depend on an agent’s beliefs on economic fundamentals, but also depend on higher order beliefs,
that is, agents’ beliefs of others’ beliefs, agents’ beliefs of others’ beliefs of others’ beliefs, and so
on. If the economic fundamentals are persistent over time and hence the past information is worth
keeping track of, forecasting all the higher order beliefs would require an infinite number of priors of
them, which would amount to an infinite number of state variables. This type of problem is known
as the infinite regress problem, and has been explored by a large number of works.1

The difficulty of solving models with higher order beliefs lies in the fact that inferring others’ action
requires the functional form of the policy rule in the first place, but the policy rule is the solution
to the inference problem. As argued in Townsend (1983), if an agent assumes that other agents
keep track of n state variables, he in turn needs to keep track of n + 1 state variables (the prior of
the economic fundamental and the n priors of others’ state variables). Therefore, the equilibrium
policy rule does not permit a finite-state representation. In terms of higher order beliefs, to predict
k−th order belief requires at least k state variables, and to predict all the higher order beliefs requires
infinite state variables. In light of these considerations, it is generally believed that an infinite number
of state variables are needed to solve this type of model.

In this paper, we pursue the following question. With higher order beliefs, is it really impossible
to find a small set of state variables that are sufficient statistics for agents to make the optimal
inference? If possible, how do we find these state variables and what are the laws of motion for these
variables? If it does require an infinite number of state variables, how do we approximate the true
solution with a finite number of state variables?

Our first main result is that given a linear rational expectations model, when observed signals follow
an ARMA process, the equilibrium policy rule always allows a finite-state representation. To make
sure signals follow an ARMA process, we start from the case in which the information process is
given exogenously. Like in standard problems with symmetric information, solving for the equilibrium
requires finding the fixed point in the functional space. Unlike in standard models, when higher order
beliefs are involved, it is difficult to figure out the sufficient state variables in the first place. Given
this difficulty, we start from the state space that is spanned by the entire history of signals. This
implies that solving for the equilibrium requires solving for a lag polynomial with an infinite number
of coefficients. Our work is based on Whiteman (1983) and Kasa (2000). The idea is to transform

1A partial list of these works includes Chari (1979), Townsend (1983), Singleton (1987), Sargent (1991), Kasa
(2000), Woodford (2003), Lorenzoni (2009), Angeletos and La’O (2010), Hellwig and Venkateswaran (2009), Rondina
and Walker (2013), and so on.
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the problem which solves for a lag polynomial into a simpler problem which solves for an analytical
function, labelled as the frequency-domain method. When signals follow an ARMA process, we prove
that the equilibrium policy rule, the lag polynomial, is also of the ARMA form. Therefore, we can
find a finite-state representation for the equilibrium policy rule.

We extend the work of Kasa (2000) and others in two important ways. First, we do not restrict the
number of signals to being equal to the number of shocks. A necessary step in the inference problem
with infinite sample is to find the Wold (fundamental) representation for the signal process. Previous
works rely on the Blaschke matrices to find the fundamental representation, which require that the
number of signals equals the number of shocks.2 We adopt a different approach for finding the Wold
representation. We show that one can first convert the signal process into its state-space, and then
use the innovation representation and factorization identity to solve for the Wold representation
conveniently. This procedure works for any information structure that follows an ARMA process: it
is not restricted by the number of signals or the number of shocks. The restriction that there has
to be the same number of signals as shocks is quite limited. In general signal extraction problems,
there are more shocks than signals, as criticized in Nimark (2011). This restriction is indeed violated
in many applications, such as Woodford (2003), Angeletos and La’O (2010) and Angeletos and La’O
(2013). When this restriction is actually satisfied, agents often learn ‘too much’, in the sense that
the prediction error is not long-lasting, because there are insufficient numbers of noisy shocks to
really confuse them, unless assuming a confounding shock process in the first place.3 In both Kasa
(2000) and Acharya (2013), agents can learn the true state of the economy after one period. When
there are more shocks than signals, agents never fully learn the true state of the economy and the
prediction error is typically persistent. As a result, the model economy features more relevant and
richer dynamics.

Secondly, we allow agents to solve a general signal extraction problem. The majority of existing
literature that applies the frequency-domain technique only studies a pure forecasting problem. That
is, only future values of signals are pay-off relevant. To forecast future signals, one can simply use
the Hansen-Sargent formula. In the examples presented in this paper, agents need to solve a generic
signal extraction problem conditional on infinite observables. The Hansen-Sargent formula does not
apply in these environments. Instead, we apply the Wiener-Hopf prediction formula, which is well
suited for these types of problems and includes Hansen-Sargent formula as a special case. Applying
the Wiener-Hopf prediction formula in the univariate case has been discussed extensively in Sargent
(1987). In this paper, we extend the application to multivariate case.

We illustrate our method in various applications. We first consider a two-player model in which
2See Rondina and Walker (2013), Kasa, Walker, and Whiteman (2014) and Acharya (2013) for example. Walker

(2007) and Rondina (2008) solved a special signal process with more shocks than signals.
3In Rondina and Walker (2013), they assume a non-invertible shock process.
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asymmetric information and strategic complementarity make higher order beliefs relevant.4 We
discuss the case in which agents only receive private signals regarding the economic fundamental
(similar to Woodford (2003)), and the case in which agents also receive a public signal regarding
the economic fundamental (similar to Angeletos and La’O (2010)). In both cases, we obtain a sharp
analytic solution which can be characterized by finite state variables. The intuition for the finite-state
representation is that agents do not directly care about each of the higher order beliefs, but they
only care about a specific linear combination of all the higher order beliefs. The latter indeed follows
an ARMA process. We also consider a model where agents are randomly matched, an extension of
Angeletos and La’O (2013) with persistent shocks. In this case, an agent randomly interacts with a
different agent every period, and needs to form higher order beliefs on each of them. Even though it
complicates the inference problem, our method is general enough to solve these models as well.

The above first result is for the cases where agents solve their inference problem given an exogenous
ARMA signal process. We label them as problems with exogenous information. We also explore
cases when agents observe signals that contain information which is endogenously determined in
the equilibrium. We label them as problems with endogenous information. The equilibrium with
endogenous information imposes an additional cross-equation restriction, in the sense that the per-
ceived law of motion has to be consistent with the realized law of motion. The endogenous variable
that appears in the signal has an information role as well, similar to the concept of information
equilibrium defined in Rondina and Walker (2013).

Our second main result is that we prove that in our model with endogenous information, the equi-
librium cannot be represented by finite state variables.5 The endogenous variable that plays an
information role follows an infinite order process. This result is somewhat surprising given that the
exogenous driving force of the economy is very simple. It should be noted that it is not because
of the infinite regress problem that agents have to keep track of infinite state variables. For each
individual, they still take the signal process as exogenously given, even though the signals contain
an equilibrium object. From our first main result, once the endogenous variable follows an ARMA
process, the individual policy rule will also follow an ARMA process and permit a finite state variable
representation. If the endogenous variable does not follow an ARMA process, the signal received
by agents cannot follow an ARMA process. Note that in Kasa (2000) and other papers where the
number of signals is the same as the number of shocks, the equilibrium permits a finite-state rep-
resentation even with endogenous information. When we allow for this more general information
process, this result does not hold any more.

This finding is interesting from a theoretical point of view, but it also implies that finding the exact
4The two-player game should not be taken literally. The two players can be an individual agent and the whole

economy.
5Chari (1979) proved a similar impossibility theory.
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solution is no longer possible. To solve the problem with endogenous information, we approximate the
law of motion of the endogenous variable that shows up in signals by an ARMA process. We can prove
that as the order of the ARMA process increases, it can approximate the true solution arbitrarily well,
and we also find that a relatively low order ARMA process can give accurate approximation. Note
that this ARMA approximation method is different from Sargent (1991) and others in an important
way. Even though we approximate the law of motion of the endogenous variable, each individual
still faces the infinite regress problem. The prediction problem still cannot be solved by the Kalman
filter. Using our method, each individual’s policy rule is solved exactly.

To demonstrate that our method can be applied in an empirically relevant environment, we solve a
full-blown business cycle model in a companion paper (Huo and Takayama, 2014). In this paper, the
confidence shock is the sole driving force of business cycles, and agents face a complicated learning
problem, i.e., they need to forecast the forecasts of others. Different from the applications solved in
this paper, agents also make dynamic decisions (the investment decision), and the infinite regress
problem becomes much more involved. We show that there is a hump-shaped relationship between
the variance of output and the variance of the confidence shock, and under our favored calibration of
information frictions, the model with confidence shocks can account for a number of salient features
of business cycles.

Related literature Our paper is closely related to the literature that attempts to solve the infinite
regress problem. Broadly speaking, there are two approaches to solving the infinite regress problem.
The first approach is to short-circuit the infinite regress problem by modifying the original problems.
For example, by assuming that information becomes public after certain periods, the relevant state
space is finite and one can use the Kalman filter. A partial list of literature that employs this
method includes Townsend (1983), Hellwig and Venkateswaran (2009), Lorenzoni (2009), Bacchetta
and Wincoop (2006). This assumption is unsatisfying from a modeling perspective, and it is proved
by Walker (2007), Kasa (2000) and Pearlman and Sargent (2005) that the approximate solution can
be very different from the true solution. Another type of approximation is developed by Nimark
(2008) and Nimark (2011). The idea is that only a finite order of higher order beliefs matter for the
equilibrium, based on the observation that the effects of higher order beliefs diminish as the order
increases. This method provides important insights into the nature of the higher order beliefs, but
as shown in our examples, this method can be difficult to implement when the degree of strategic
complementarity is strong, or when the model is complicated to express the policy rule in terms
of higher order beliefs. Sargent (1991) approximated the equilibrium via the ARMA process. The
forecasting problem is transformed into fitting vector ARMA models, which is particularly useful
when agents do not need to solve a pure forecasting problem.

The second approach is to solve the infinite regress problem exactly without approximation. Kasa
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(2000) first uses the frequency-domain method to solve the Townsend (1983) original problem and
found that agents actually share the same belief and there is no infinite regress problem. Walker
(2007), Rondina and Walker (2013), and Kasa, Walker, and Whiteman (2014) apply the frequency-
domain method to study various asset pricing models proposed by Futia (1981) and Singleton (1987).
Acharya (2013) applies this method to study the effects of noises on business cycles. These papers
assume that the number of shocks equals the number of signals, a restriction that prevents this
method from being applied in more general settings. Furthermore, in previous literature, agents
solve a pure forecasting problem most of the time. This paper eliminates these restrictions and a
much broader class of models can be solved by our method.

Our applications in this paper complement the literature on macroeconomics with higher order
beliefs. We obtain analytical solutions for models closely related to Woodford (2003), Angeletos and
La’O (2010), and Angeletos and La’O (2013). We believe our method is also useful in solving models
similar to Lorenzoni (2009), Hellwig and Venkateswaran (2009), Graham and Wright (2010) and
others. In our companion paper (Huo and Takayama, 2014), we study a business cycle model driven
by confidence shocks. We characterize how information frictions affect the persistence and variance
of output, and show that the confidence shock could be an important factor in explaining business
cycles.

The rest of the paper is organized as follows. Section 2 sets up a two-player model to introduce
higher order beliefs and the infinite regress problem. Section 3 presents the main theorems. We show
how to jointly use the Kalman filter and the Wiener-Hopf prediction formula to form the optimal
expectation with infinite observables. We also show how to obtain a finite-state representation for
a rational expectations model with higher order beliefs. Section 4 solves the two-player game with
and without public signals. Section 5 explores the case in which the signals contain an endogenous
variable. We prove that the equilibrium policy rule does not have a finite-state representation in this
environment. Section 6 considers the case where an agent has to form higher order beliefs of many
different agents. Section 7 discusses an application of the method in a quantitative business cycle
model. Section 8 concludes.

2 A Two-Player Model with Infinite Regress Problem

In this section, we present a simple two-player model with the infinite regress problem. This model
naturally assigns an important role to infinite higher order beliefs, and numerous variations of it
have been used in the literature.
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2.1 Model setup

Consider a game between two agents i and j. Time is discrete and lasts forever. In period t,
agents’ payoff depends on a common persistent economic fundamental ξt. The payoff also depends
on the action of the other agent and we consider the case with strategic complementarity. However,
information frictions prevent agents from perfectly observing ξt or the action of the other agent.

We assume that the best response of agent i, denoted by yit, has to satisfy

yit = E[ξt|Ωit] + αE[yjt|Ωit],
6 (2.1)

where α ∈ (0, 1) determines the strength of strategic complementarity and Ωit denotes the informa-
tion set of agent i at time t. Agent j follows the same strategy. Note that agents make a purely
static decision every period, and the link across different periods is only through the information
set. There are various micro-foundations that lead to this specification, such as Woodford (2003)
and Angeletos and La’O (2010). For now we only focus on this abstract form and discuss its general
properties. The information structure of the model is specified as follows.

Signal process We assume that ξt follows a covariance stationary ARMA (p, q) process

ξt =
Πq
k=1(1 + θkL)

Πp
k=1(1− ρkL)

ηt, (2.2)

where ηt ∼ N(0, ση). As opposed to observing ξt directly, agents receive two signals that are related
to ξt. These two signals are simply the sum of ξt and some idiosyncratic noises.

x1
it = ξt + εit, (2.3)

x2
it = ξt + uit, (2.4)

where εit ∼ N(0, σ2
ε ) and uit ∼ N(0, σ2

u). Note that the idiosyncratic noises are indexed by i. More
compactly, the signal process can be expressed as

xit ≡

[
x1
it

x2
it

]
=

1 0
Πqk=1(1+θkL)

Πpk=1(1−ρkL)

0 1
Πqk=1(1+θkL)

Πpk=1(1−ρkL)


εituit
ηt

 ≡M(L)sit, (2.5)

The information set of agent i at time t contains all the signals he has received up to time t

Ωit =

{
x1
it, x

2
it, x

1
it−1, x

2
it−1, x

1
it−2, x

2
it−2, . . .

}
. (2.6)

6Here, yit ∈ R and yjt ∈ R. The operator E denotes the linear projection on the information set.
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Agent j receives signals of ξt, but are corrupted by his idiosyncratic noises εjt and ujt. As a result,
these two agents do not share the same information set.

To simplify notation, we will use Eit[ · ] to denote E[ · | Ωit] from now on.

Remark Several remarks about the model should be made here before we move on.

1. A wide range of models can be interpreted as the two-player model. If we assume that there are
a continuum of agents in the economy, and each individual agent i interacts with the economy
average yt =

∫
yjt, the model becomes

yit = Eit[ξt] + αEit[yt]. (2.7)

As we show in Section 4, the solution to this model remains the same as the original model
(2.1). What matters is whether to infer the action of a fixed agent (Section 4), or to infer the
action of a random agent that changes over time (Section 6).

2. To introduce the infinite regress problem, it will be sufficient if agents only receive one of the
two signals. The assumption that agents receive multiple signals is to demonstrate that our
method can manage multivariate systems.

3. The information structure we have specified in equation (2.5) is a very special one. We can relax
this assumption to allow any finite number of signals that follows any finite ARMA process.
The structure we adopt here should not be taken in a narrow way. For example, we allow some
of the signals to be shared by all agents (Section 4.2), and allow some of the signals to contain
endogenous information (Section 5).

2.2 Higher order beliefs

The best response of agent i is given by equation (2.1), and the same rule applies to agent j,

yjt = Ejt[ξt] + αEjt[yit]. (2.8)
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We can repeatedly substitute equation (2.8) into equation (2.1), and vice versa, which leads to

yit = Eit[ξt] + αEit[yjt]

= Eit[ξt] + αEit [Ejt[ξt] + αEjt[yit]]

= Eit[ξt] + αEitEjt[ξt] + α2EitEjt[yit]

= Eit[ξt] + αEitEjt[ξt] + α2EitEjtEit[ξt] + α3EitEjtEit[yjt]
...

=
∞∑
k=0

αk Ek+1
it [ξt], (2.9)

where Ekit[ξt] stands for k-th order belief. These higher order beliefs are defined recursively as follows

E1
it[ξt] = Eit[ξt]

E2
it[ξt] = EitEjt[ξt]

Ekit[ξt] = EitEjtEk−2
it [ξt], for k = 3, 5, 7, . . .

Ekit[ξt] = EitEjtEk−2
it [ξt], for k = 4, 6, 8, . . .

Crucially, agents have heterogeneous information sets, and the law of iterated expectations does not
apply. Hence, the optimal action yit depends on all the higher order beliefs. Mathematically, the
means of all these higher order beliefs can be calculated by the standard Kalman filter, but there
are an infinite number of such objects to be calculated. One may think that if a certain pattern of
these higher order beliefs is found, these beliefs may be summarized in a compact way. However,
this approach does not work in general, due to a growing complexity with the order of beliefs.

Similarly, if we consider model (2.7), successive substitution leads to

yit =

∞∑
k=0

αk EitE
k
t [ξt]. (2.10)

Here, as opposed to inferring agent j’s beliefs, the higher order beliefs Ekt [ξt] are about the economy
average expectations of ξt, defined recursively by

E0
t [ξt] = ξt

E1
t [ξt] =

∫
Ejt[ξt]

Ekt [ξt] =

∫
EjtE

k−1
t [ξt].
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In both cases, it is apparent that agents’ optimal response is related to infinite higher order beliefs.
Forecasting all of these higher order beliefs requires an infinite number of priors of these beliefs, and
these priors are functions of the entire history of agents’ signals. As a result, it is generally believed
that the policy rule has to include the entire history of signals as state variables.

2.3 Equilibrium

Recall that the information set of agent i is Ωit = xti. The linear policy rule of agent i belongs to the
space spanned by square-summable linear combinations of current and past realizations of xit. We
use Hxt to denote this space. We assume that the policy rule takes the following form

yit =

∞∑
k=0

h1kx
1
it−k +

∞∑
k=0

h2kx
2
it−k, (2.11)

and it is obvious that yit ∈ Hxt . In standard models without higher order beliefs, the policy rule still
depends on the entire history of signals, but a finite number of state variables can be easily found
to effectively summarize the past information. In contrast, due to the infinite higher order beliefs,
there is no way to figure out whether there exists a finite number of state variables in the first place
(even though later on we prove that this is indeed the case), and we have to assume it is necessary
to keep track of the entire history of signals.

More compactly, we use lag polynomials to denote the infinite sum

yit = h1(L)x1
it + h2(L)x2

it, (2.12)

with h1(L) =
∑∞

k=0 h1kL
k and h2(L) =

∑∞
k=0 h2kL

k.

To make sure that yit is co-variance stationary, the infinite sequences {h1τ}∞τ=0 and {h2τ}∞τ=0 have to
be in the square-summable space `2.7 From now on, if an infinite sequence φ = {φk}∞k=0 ∈ `2, then
we denote φ(L) =

∑∞
k=0 φkL

k as its corresponding lag polynomial. The definition of the equilibrium
is straightforward.

Definition 2.1 (Signal form). Given the signal process (2.5), the equilibrium of model (2.1) is a
policy rule h = {h1, h2} ∈ `2 × `2, such that

yit = Eit[ξt] + α Eit[yjt],
7Hansen and Sargent (1980), Kasa (2000) assume that the policy rule φ belong to β-summable space, i.e.,∑∞
k=0 β

kφ2
k < ∞. This is a less strict requirement than original `2 assumption, which arises naturally in linear-

quadratic type models. However, it is less obvious whether this relaxation is valid or not in our model setting, and we
will work with the original `2 space in this paper.
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where

yit = h1(L)x1
it + h2(L)x2

it,

yjt = h1(L)x1
jt + h2(L)x2

jt.

Since the signals {xit} are ultimately generated by the underlying shocks {sit}, yit also lies in the
space spanned by the square-summable linear combinations of current and past shocks, denoted by
Hst . It should be clear that Hxt ⊂ Hst . We say that the equilibrium is of signal form if the equilibrium
policy is written in terms of signals, and the equilibrium is of innovation form if it is written in terms
of the underlying shocks. The equilibrium in innovation form is defined as follows

Definition 2.2 (Innovation form). Given the signal process (2.5), the equilibrium of model (2.1) is
a policy rule φ = {φ1, φ2, φ3} ∈ `2 × `2 × `2, such that

yit = Eit[ξt] + αEit[yjt],

where

yit = φ1(L)εit + φ2(L)uit + φ3(L)ηt,

yjt = φ1(L)εjt + φ2(L)ujt + φ3(L)ηt.

In the literature, when solving the infinite regress problem in the frequency domain, the innovation
form is exclusively used. The advantage of working with innovation form is that all the objects are
expressed in terms of the underlying shocks and it is convenient to discuss its statistical properties.
However, from an economic perspective, it is more natural to think of the policy rule in terms of
signals, because agents do not observe those shocks directly.8 In Theorem 4, we show that there is
a one-to-one mapping between the equilibrium in signal form and in innovation form.

In terms of the existence and uniqueness of the equilibrium, we have the following result.

Proposition 2.1. Assume that the signals follow a co-variance stationary process. If α ∈ (0, 1),
then there exists a unique equilibrium of model (2.1).

Proof. See Appendix A.1 for proof.

The core of the proof is to show that the equilibrium is a fixed point of a contraction mapping. On
one hand, to prove this proposition, we only require that the signals follow a co-variance stationary

8Kasa (2000) claims that the limited-information equilibrium does not exist in the space spanned by signals but
only exists in the space spanned by the innovations. We find this conclusion questionable.
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process, but not necessarily a finite ARMA process. On the other hand, this proposition does not
imply whether the policy rule in equilibrium permits a finite-state representation or not. In principle,
it could be that agents do need to keep track of the entire history of observables. Next theorem,
however, shows that the equilibrium indeed has a finite-state representation when the signals follow
a finite ARMA process.

2.4 Finite-state representation

Theorem 1. Assume that (1) the exogenous variable ξt follows

ξt =
Πq
k=1(1 + θkL)

Πp
k=1(1− ρkL)

ηt.

(2) The signals follow the following co-variance stationary process (2.5)

xit =

[
x1
it

x2
it

]
=


1 0

Πqk=1(1+θkL)

Πpk=1(1−ρkL)

0 1
Πqk=1(1+θkL)

Πpk=1(1−ρkL)


εituit
ηt

 .
(3) The structural parameter α ∈ (0, 1).

Then there exists a unique solution yit = h1(L)x1
it + h2(L)x2

it satisfies model (2.1)

yit = Eit[ξt] + αEit[yjt].

The equilibrium policy rule h1(L) and h2(L) have the following properties

1. Both h1(L) and h2(L) have a finite ARMA representation

yit =
[
h1(L) h2(L)

] [x1
it

x2
it

]
=
[
τ1

Πnk=1(1+ζ1kL)

Πmk=1(1−ϑkL) τ2
Πnk=1(1+ζ2kL)

Πmk=1(1−ϑkL)

] [x1
it

x2
it

]
(2.13)

where the order of the ARMA process m and n, the coefficients τ1, τ2, {ϑk}mk=1, {ζ1
k}nk=1, and

{ζ2
k}nk=1 are all functions of the structural parameter α and the parameters that determine the

signal process.

2. Let r = max {m,n}. Given a particular signal realization {xit}−1
t=−∞, there exists r state

variables zit = [z1
it, z

2
it, . . . , z

r
it]
′, such that the policy rule in (2.13) has the following finite-state

representation
yit = Γx xit + Γz zit, (2.14)
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with the law of motion of zit
zit+1 = Υxxit + Υzzit (2.15)

The initial state zi0 is given by

zi0 = (Ir −ΥzL)−1 Υxxi−1 (2.16)

The constant matrices Γx,Γz,Υx, and Υz are all functions of τ1, τ2, {ϑk}mk=1, and {ζ1
k}nk=1 in

equation (2.13).

Proof. The proof of this theorem is a subset of the proof of Theorem 2, and the exact form of equation
(2.13) can be derived by Theorem 3 in the next section.

The first part of this theorem establishes that the equilibrium policy rule follows a finite ARMA
process in terms of the signals. The second part of this theorem states that the policy rule has a
finite-state representation, which is a natural result of the first part. Therefore, there indeed exists
a small set of state variables that are sufficient for agents’ inference problem. This theorem also
implies that the infinite sum of higher order beliefs in equation (2.9) follows a finite ARMA process,
even though Ekit[ξt] follows an infinite ARMA process as k approaches to infinity.

To solve for the equilibrium policy rules h1(L) and h2(L), the difficulty lies in how to solve the
inference problem

Eit[yjt] = Eit[h1(L)x1
jt + h2(L)x2

jt],

in which the variable to be predicted is with infinite states. The Kalman filter requires the predicted
variable to have finite states, and therefore it is inapplicable for this type of the problem. In contrast,
the Wiener filter can solve the inference problem that is conditional on infinite observables, and it
allows the predicted variable to have infinite states (the details of these two filters are discussed in
the next section). A key step to employ the Wiener is to find the Wold representation of the signal
process, which is not provided by the Wiener filter itself but can be obtained by the Kalman filter.
Therefore, a joint use of the Kalman filter and the Wiener filter solves this inference problem. The
lack of an efficient way to find the Wold representation is exactly what prevents others from solving
models with higher order beliefs, and we show that the Kalman filter can achieve this goal with ease.
After solving Eit[yjt], it turns out that h1(L) and h2(L) are of finite ARMA type, and it allows a
finite-state representation.

The model we considered in this section is a very special one in the following sense: (1) there is only
one choice variable yit; (2) there is no endogenous state variables, such as capital; (3) there is no
need to forecast variables in the future; (4) the signal process is very special. These limitations make
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model (2.1) only theoretically interesting, and far from empirically relevant. In the following section,
we eliminate these restrictions, and extend Theorem 1 to a much more general statement.

3 Methodology: General Linear Rational Expectations Models

In this section, we develop the method that solves the general rational expectations models with
higher order beliefs. We first lay out the structure of the model and the signal process, and state the
main theorem that the equilibrium policies admit finite-state representation. We then show how to
prove this theorem in steps. The key part is to use the Wold representation and the Wiener filter to
solve the general signal extraction problem.

3.1 General rational expectations models

Now we move to the general form of the linear system. The input of the model includes two parts:
the first part is the signal process; the second part is the linear system which corresponds to the
equilibrium conditions that various kinds of variables need to satisfy. There are three kinds of
variables involved here: choice variables, choice variables chosen by others, and exogenous variables.

Signal process Assume that the signals observed by agents follow a finite ARMA process,

xt =


x1
t
...
xnt

 =


a11(L)
b11(L) . . . a1m(L)

b1m(L)
...

. . .
...

an1(L)
bn1(L) . . . anm(L)

bnm(L)



s1t

...
smt

 = M(L)st, (3.1)

where the signal xt is a stochastic n×1 vector and the shock st is a stochastic m×1 vector. We allow
m to be different from n. We normalize the co-variance matrix of st to be an identity matrix. In each
element of M(L), aij(L) and bij(L) are finite order polynomials in the lag operator L. Particularly,

aij(L) =

qij∑
k=0

αijkL
k,

bij(L) =

pij∑
k=0

βijkL
k,

and we normalize βij0 = 1. The information set is Ωt = xt = {xt, xt−1, xt−2, . . .}.
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Choice variable We assume there are d choice variables, which are functions of the signals:

yt =


y1t

...
ydt

 = h(L)xt =


h11(L) . . . h1n(L)

... . . .
...

hd1(L) . . . hdn(L)



x1t

...
xnt

 = h(L)M(L)st. (3.2)

h(L) is the equilibrium policy rule we want to solve. We assume that each element in h(L) has an
infinite MA representation. We do not impose that h(L) admits a finite ARMA representation in
the first place (even though we prove this is indeed the case later). Because these choice variables
only depend on signals up to t, hij(L) cannot contain any negative powers in L. To write it more
compactly for future derivation, define

φ(L) ≡
[
h11(L) . . . h1n(L) . . . hd1(L) . . . hdn(L)

]
. (3.3)

φ(L) effectively collapse all the lag polynomials to be solved into a vector, the dimension of which is
denoted as w ≡ dn. Reversely, the elements of yt can be expressed in terms of φ(L) as

yit = φ(L)Aixt (3.4)

= φ(L)AiM(L)st (3.5)

where Ai is the constant matrix that selects [hi1 . . . hin] from φ(L). Later we will use h(L) and φ(L)

interchangeably.

Endogenous variables related to other agents’ actions Crucially, the optimal policy may
depend on other agents’ actions or depend on some aggregate endogenous variables. These variables
cannot be observed, but matter for agents’ payoff. Assume there are df such endogenous variables,
denoted by ft = [fit, . . . , fdf t]

′ denote these endogenous variables. They are related to the policy
rule φ(L) and the underlying shocks st in the following way

fit = φ(L)f i(L)st = φ(L)


f i11(L) . . . f i1m(L)

... . . .
...

f iw1(L) . . . f iwm(L)



s1t

...
smt

 (3.6)

Here, each f i(L) is a w×m matrix in the lag operator L. We assume that all the elements in f i(L)

are finite rational functions in L and do not contain negative powers of L in expansion (others’ action
cannot be a function of future shocks either).

Note that actions of others may also depend on shocks other than {s1t, . . . , smt}. However, these
shocks are uncorrelated with the shocks {s1t, . . . , smt} that drive {xt}, and the best forecasts of those
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shocks conditional on {xt} are zero. As a result, what is relevant for agents are the parts that are
correlated with {s1t, . . . , smt}.

Exogenous variables Generally, the optimal policy depends on the evolution of some exogenous
variables. We assume there are dg such variables, denoted by gt = [git, . . . , gdgt]

′

gt = g(L)st =


g11(L) . . . g1m(L)

... . . .
...

gdg1(L) . . . gdgm(L)



s1t

...
smt

 (3.7)

Note that these exogenous variables are independent of the equilibrium policy rule φ(L) Similarly,
we assume that all the elements of g(L) are rational functions in L.

General model Assume the policy rule needs to satisfy the following linear system in equilibrium

p∑
j=0

Cy,jLjyt +

p∑
j=0

E
[
Cf,jLjft + Cg,jLjgt

∣∣∣∣xt]

+

q∑
j=1

E
[
Cy,−jL−jyt + Cf,−jL−jft + Cg,−jL−jgt

∣∣∣∣xt] = 0 (3.8)

For j ∈ {−q, . . . , p}, Cy,j is a constant d × d matrix, Cf,j is a constant d × df matrix, and Cg,j

is a constant d × dg matrix. These matrices are structural parameters that result from optimality
conditions and resource constraints. This system of equations incorporates the possibilities that the
choice variables yt depend on the past, the current and the future values of the endogenous variables
of others and the exogenous variables, and also yt’s own and future values. This specification includes
the majority of applications that one may encounter.

Special cases The structure we have specified includes two special cases which are common in the
literature.

1. Perfect information.

p∑
j=0

Cy,jLjyt +

p∑
j=0

E
[
Cf,jLjft + Cg,jLjgt

∣∣∣∣st]

+

q∑
j=1

E
[
Cy,−jL−jyt + Cf,−jL−jft + Cg,−jL−jgt

∣∣∣∣st] = 0

In standard real business cycle models and New Keynesian models without information fric-
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tions, the underlying shocks {st} are observed directly by agents. That is, the space spanned
by shocks is the same as the space spanned by signals, Hst = Hx

t . Also, because all the shocks
are observed directly, the actions of other agents are also known perfectly. As a result, the
expectations in model (3.8) can be calculated in a trivial way.

2. Imperfect information, but no roles of higher order beliefs 9

p∑
j=0

Cy,jLjyt +

p∑
j=0

E
[
Cg,jLjgt

∣∣∣∣xt]+

q∑
j=1

E
[
Cy,−jL−jyt + Cg,−jL−jgt

∣∣∣∣xt] = 0

This is the case in which information frictions exist, i.e., Hxt ⊂ Hs
t , but there is no need to infer

others’ choices. Agents only need to infer the exogenous variables gt, and standard Kalman
filter will be sufficient in solving the problem.

The solution to model (3.8) defined as follows

Definition 3.1. Given the signal process (3.1), a solution to model (3.8) (or an equilibrium) is a
matrix of lag polynomials h(L) or equivalently φ(L), such that

1. For all (i, j), hij(L) has an infinite MA representation

hij(L) =

∞∑
k=0

hijkL
k,

with
∑∞

k=0 hijk <∞.

2. For all possible realizations of {xt},
yt = h(L)xt

satisfies equation (3.8).

Given the model, we are interested in the following questions:

1. Under what conditions does a unique solution to this problem exist?

2. Suppose there indeed exists a h(L) that solves the problem, what its formula?

3. Does the solution admit a finite-state representation which allows agents to summarize the past
information using a small set of statistics?

9This case is also discussed in Baxter, Graham, and Wright (2011).
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Theorem 3, which involves more technical details, answers the first two questions. The following
theorem answers the third question.

Theorem 2 (Finite-state representation). Suppose the signal process follows (3.1) and the model
(3.8) has a solution yt = h(L)xt. Then yt = h(L)xt has a finite ARMA representation

yt = h(L)xt =


c11(L)
d11(L) . . . c1n(L)

d1n(L)
...

. . .
...

cd1(L)
dd1(L) . . . cdn(L)

ddn(L)



x1t

...
xnt

 , (3.9)

where cij(L) and dij(L) are finite degree polynomials in the lag operator L.

Given a particular signal realization {xt}−1
t=−∞, there exists a finite set of state variables zt, such that

yt = Γx xt + Γz zt, (3.10)

with the law of motion of zt
zt+1 = Υxxt + Υzzt. (3.11)

The initial state z0 is given by
z0 = (I −ΥzL)−1 Υxx−1 (3.12)

Proof. See Appendix A.10 for proof.

This theorem implies that higher order beliefs do not create infinite state variables. It is always
possible to use a small set of variables to summarize the necessary information in the past, given
that the signal process is of ARMA type. We present the proof of this theorem and the proof of
Theorem 3 in steps in the following subsections.

3.2 Preview of the main steps

The proof of these theorems is quite lengthy and it involves a number of building blocks. The initial
input includes the signal process (3.1) and the model (3.8). Here, we first sketch the main steps that
lead to Theorem 3 and Theorem 2, which is also shown in Figure 1 .

Step 1: Given the signal process (3.1), find its state-space representation.

Step 2: With the state-space of the signal process, use the innovation representation and factor-
ization identity matrix to find the Wold representation of the signal process.
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Figure 1: Main Steps of Solving Rational Expectations Models with Higher Order Beliefs

Input: Signal process Signal process
State-space representation

Signal process
Wold representation

Wiener filter
Solving inference problems

Input: Model System of
Analytic functions

Output: Policy with
ARMA representation

Output: Policy with
Finite-state representation

Lemma 3.1

Factorization identity

Proposition 3.1

Proposition 3.2

Theorem 3

Theorem 2

Step 3: With the Wold representation of the signal process, use Wiener filter to solve the inference
problem in model (3.8).

Step 4: Applying the Riesz-Fisher Theorem, transform the infinite-dimension problem of solving
the sequences of coefficients in the lag polynomials into the finite-dimension problem of solving a
system of analytic functions.

Step 5: Use Cramer’s rule to solve the system of analytic functions, which leads to the solution
h(L) with ARMA representation.

Step 6: Given the solution with ARMA representation, find its finite-state representation.

3.3 Mathematical background: z transformation

By the Riesz-Fisher Theorem, there is a one-to-one mapping between the space of square-summable
sequences and the space of complex-valued functions. Given a two-sided lag polynomials

ψ(L) =

∞∑
k=−∞

ψkL
k,
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with
∑∞

k=−∞ |ψk|2 <∞, we will use the complex-valued function ψ(z) to denote its corresponding z
transformation

ψ(z) =
∞∑
k=0

ψkz
k,

where ψ(z) is defined on the unit circle.

If ψ(L) is a one-sided polynomial with
∑∞

k=0 |ψk|2 < ∞, then its z transformation is an analytic
function on the open unit disk.

Particularly, assume there are two univariate co-variance stationary processes

xt = M(L)st,

yt = ψ(L)st.

The auto-covariance generating function for xt is

ρxx(z) = M(z)M ′(z−1),

and the cross-covariance generating function between yt and xt is

ρyx(z) = ψ(z)M ′(z−1).

Most of the time, working with a complex function is much more convenient than working with a
square-summable sequence.

3.4 State-space representation, Factorization Identity, and Wold representation

We need the Wold representation of the signal process for the following reason. All the prediction is
conditional on the observed signals, but ultimately, the linear projection is on the space spanned by
shocks. The original underlying shocks st contain more information than the signals, and the pre-
diction conditional on st is different from the prediction conditional on xt. The Wold representation
provides a new sequence of shocks wt. Different from the underlying shocks st, the space spanned
by the signals xt is equivalent to the space spanned by wt, and we can conduct the linear projection
on wt. Given a finite ARMA signal process, in this subsection we present how to find its state-space
representation and Wold representation using the factorization identity.
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Lemma 3.1. Assume that xt follows a finite ARMA process and is co-variance stationary,

xt =


x1
t
...
xnt

 =


a11(L)
b11(L) . . . a1m(L)

b1m(L)
...

. . .
...

an1(L)
bn1(L) . . . anm(L)

bnm(L)



s1t

...
smt

 = M(L)st, (3.13)

where xt is a n× 1 vector and st is a m× 1 vector. The co-variance matrix of st is normalized to be
an identity matrix. In each element of M(L), aij(L) and bij(L) are finite degree polynomials in the
lag operator L. Particularly,

aij(L) =

qij∑
k=0

αijkL
k

bij(L) =

pij∑
k=0

βijkL
k

and we normalize βij0 = 1. The signal process admits at least one state-space representation.

The state equation is

Zt = FZt−1 +Qst,

and the observation equation is

xt = HZt,

where F,Q and H are functions of
{
pij , qij , {αijk}

qij
k=1, {βijk}

pij
k=1

}
.

In addition, the eigenvalues of F all lie inside the unit circle.

Proof. See Appendix A.3 for proof.

This lemma states that any finite ARMA process has a state-space representation. Note that there
are many different state-state representations for the same ARMA process. Generally, we can write
the state equation as

Zt = FZt−1 +Qst,
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and the observation equation as

xt = HZt +Rvt,

where the covariance matrix of vt is also an identity matrices. Lemma 3.1 only provides one of the
state-space representation with the feature that there is no shock in the observation equation.

Finding the state-space representation is a necessary step to find the Wold representation of the
signal process. Suppose that we have B(L) and {wt} such that

xt = M(L)st = B(L)wt, (3.14)

B(L) is invertible,10 and wt is serially uncorrelated shocks with co-variance matrix V , then we say
xt = B(L)wt is a Wold representation of xt. Since B(L) is invertible, xt contains the same information
as wt, i.e., Hxt = Hwt . Further, equation (3.14) implies that

ρxx(z) = M(z)M ′(z−1) = B(z)V B′(z−1). (3.15)

B(z) and V is called a canonical factorization of ρxx(z). Therefore, find the Wold representation
is equivalent to find the canonical factorization. The following theorem provides the canonical fac-
torization for the state-space representation of the signal process xt, which uses the factorization
identity.

Theorem (Canonical Factorization). Let F denote an (r×r) matrix whose eigenvalues are all inside
the unit circle; let Q′Q or R′R be positive definite matrix of dimension (r × r) or (n × n); let H
denote an arbitrary (n× r) matrix. Let P satisfy

P = F [P − PH ′(HPH ′ +R′R)−1HP ]F ′ +Q′Q

and K be defined as
K = PH ′(HPH ′ +R′R)−1

Then

1. The eigenvalues of (F − FKH) are all inside the unit circle.
10This is equivalent to that the determinant of B(z) does not contain any roots (zeros) within the unit circle.
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2. The canonical factorization is

ρxx(z) = H[Ir − Fz]−1Q′Q[Ir − Fz−1]−1H ′ +R′R

= [In +H(Ir − Fz)−1FKz][HPH ′ +R′R][In +K ′F ′(Ir − F ′z−1)−1H ′z−1]

= B(z)V B′(z−1).

3. B(z) is
B(z) = In +H[Ir − Fz]−1FKz,

the inverse of B(z) is

B(z)−1 = In −H[Ir − (F − FKH)z]−1FKz,

and the co-variance matrix V is
V = HPH ′ +R′R

Proof. The proof is in Hamilton (1994).

To prove this theorem, one essentially uses the Kalman filter. The requirement that all the eigenvalues
of F lie inside the unit circle guarantees (Ir − Fz) is invertible. The eigenvalues of (F − FKH) are
very important in understanding the prediction problem, which essentially determines the persistence
of the forecasts.

3.5 Wiener-Hopf prediction formula

Now we turn to the inference problems incorporated in equation (3.8). The following theorem states
the Wiener-Hopf prediction formula. Note that this prediction formula does not hinge on whether
the signal follows a finite ARMA process or not.

Theorem (Wiener-Hopf). Suppose the multivariate co-variance stationary signal process follows

xt = M(L)st,

and yt is a univariate co-variance stationary process

yt = ψ(L)st.

Assume all the elements of M(L) and ψ(L) have an infinite MA representation. The canonical
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factorization of ρxx(z) is given by

ρxx(z) = M(z)M ′(z−1) = B(z)V B′(z−1).

Then the optimal linear prediction of yt conditional on {xt} is

E[yt|xt] =

[
ρyx(L)B′(L−1)−1

]
+

V −1B(L)−1. (3.16)

Proof. See Appendix A.4 for proof.

If we further assume that the signal follows a finite ARMA process, we can obtain a sharper and
more specific prediction formula.

Lemma 3.2. Assume the signal process follows equation (3.1). Then

M ′(z−1)B′(z−1)−1 =
1

Πu
k=1(z − λk)

G(z) (3.17)

where B(z) is given by the Canonical Factorization Theorem , G(z) is a polynomial matrix in z, and
{λk}uk=1 are non-zero eigenvalues of F − FKH which all lie inside the unit circle.

Proof. See Appendix A.5 for proof

Proposition 3.1. Given the signal process in equation (3.1), suppose there is a univariate random
variable yt follows

yt = ψ(L)st,

where the elements of φ(L) has an infinite MA representation.

Assume {λk}uk=1 in Lemma 3.2 are distinct, the prediction formula for current and past yt is

E
[
Ljyt | xt

]
= ψ(L)LjM ′(L−1)ρxx(L)−1xt −

u∑
k=1

ψ(λk)λ
kG(λk)V

−1B(L)−1

(L− λk)Πτ 6=k(λk − λτ )
xt (3.18)

where j = {0, 1, 2 . . .}.
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The prediction formula for j-step ahead prediction is

E
[
L−jyt | xt

]
= ψ(L)L−jM ′(L−1)ρxx(L)−1xt −

u∑
k=1

ψ(λk)G(λk)L
−jV −1B(L)−1

(L− λk)Πτ 6=k(λk − λτ )
xt (3.19)

−
j−1∑
`=0

`!L`−j

[
ψ(L)G(L)

Πu
k=1(L− λk)

−
u∑
k=1

ψ(λk)G(λk)

(L− λk)Πτ 6=k(λk − λτ )

](`)

0

V −1B(L)−1xt

where [·](`)0 denote the `-th order derivative evaluated at 0.

Proof. See Appendix A.6 for proof.

The key in applying the Wiener-Hopf prediction formula is to find the Wold representation for xt
or the canonical factorization for M(z). When the number of signals equals the number of shocks,
M(L) is a square matrix. Suppose M(L) is invertible, then M(L) itself is a Wold representation and
the Wiener-Hopf prediction formula can be applied directly. This corresponds to the case when there
is no information friction or the signals fully reveal the state of the economy. If M(L) is a square
but not an invertible matrix, then there exists at least one inside root of the determinant of M(L).
In this case, the Wold representation can be found by multiplying the Blaschke matrices Bj(z) to
flip the inside roots outside the unit circle

B(z) = M(z)Πj(WjBj(z)).

The details of the Blaschke matrix can be found in Rozanov (1967). Kasa (2000), Rondina and
Walker (2013), Kasa, Walker, and Whiteman (2014) and Acharya (2013) all use this method to find
the Wold representation.

If the number of shocks is larger than the number signals, M(L) is a non-square matrix and is not
invertible. To find the canonical factorization of M(L) is more involved, but we just show this can
be achieved by using the Canonical Factorization Theorem.

As criticized by Nimark (2011), in most signal extraction problems, the number of shocks is larger
than the number of signals. Existing literature restricts the number of signals to being the same as
the number of shocks so that the Blaschke matrix is applicable in finding the Wold representation.
However, this restriction often leaves some informative variables to be observed without noise. As
a result, the true state of the economy is revealed too quickly. For example, Kasa (2000), Sargent
(1991) and Pearlman and Sargent (2005) all show that in Townsend (1983), agents share the same
belief about the common demand shock and there is no forecast the forecasts of others problem. Also,
the forecast error only exists for one period, and agents figure out the demand shock fairly quickly.
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The one period delay is due to the fact that output is predetermined. Similarly, in Acharya (2013),
agents observe the last period’s aggregate output perfectly, and effects of aggregate noise only last for
one period because agents can infer the underlying shock accurately by observing aggregate output.
Rondina and Walker (2013) and Kasa, Walker, and Whiteman (2014) both have square observation
matrix, and to prevent the price from fully revealing the information, they have to abandon the
standard AR(1) process but assume that the underlying shock follows a confounding process.

More importantly, a lot of interesting models naturally require that there are more shocks than
signals, such as Singleton (1987), Woodford (2003), Lorenzoni (2009), Angeletos and La’O (2010),
Angeletos and La’O (2013) and so on. In this paper, we show that by using the factorization identity,
the Wold representation is readily available for any finite ARMA process. Joint with the Wiener
filter, we can easily solve the signal extraction problem.

3.6 System of analytic functions

After we apply the Wiener filter, solving for h(L) or φ(L) in model (3.8) still requires solving sequences
of infinite coefficients in the lag polynomials, which is an infinite dimension problem. By the Riesz-
Fisher Theorem, instead of solving the sequences of infinite coefficients, we can solve for a finite
number of analytic functions instead, as shown in the following proposition.

Proposition 3.2. Given the signal process (3.1), there exists a solution φ(L) to model (3.8) if and
only if there exists a vector analytic function φ(z) that solves

T (z)φ(z) = D

[
z, {φ(λk)}uk=1, {φ(j)(0)}qj=0

]
(3.20)

where T (z) is a w × w matrix given by

T (z) ≡


∑p

j=−q z
j
[∑r

i=1C
y,j
1,i Ai +

∑v
i=1C

f,j
1,i fi(z)M

′(z−1)ρxx(z)−1
]′

...∑p
j=−q z

j
[∑r

i=1C
y,j
r,i Ai +

∑v
i=1C

f,j
r,i fi(z)M

′(z−1)ρxx(z)−1
]′
 (3.21)
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and D
[
z, {φ(λk)}uk=1, {φ(j)(0)}qj=0

]
is a w × 1 vector given by

D

[
z, {φ(λk)}uk=1, {φ(j)(0)}qj=0

]
= (3.22)



{
−
∑p

j=−q C
g,j
1 g(z)zjM ′(z−1)ρxx(z)−1

+
∑u

k=1

∑p
j=−q λ

j
k

[∑df
i=1 C

f,j
1,i φ(λk)fi(λk)+

∑dg
i=1 C

g,j
1 g(λk)

]
G(λk)V −1B(z)−1

(z−λk)Πτ 6=k(λk−λτ )

+
∑q

j=1

∑j−1
`=0 `! z

`−j
([∑d

i=1 φ(z)Cy,−j1,i AiM(z)G(z)

Πuk=1(z−λk) −
∑u

k=1

∑d
i=1 φ(λk)Cy,−j1,i AiM(λk)G(λk)

(z−λk)Πτ 6=k(λk−λτ )

](`)

0

+

[∑df
i=1 φ(z)Cf,−j1,i fi(z)G(z)

Πuk=1(z−λk) −
∑u

k=1

∑df
i=1 φ(λk)Cf,−j1,i fi(λk)G(λk)

(z−λk)Πτ 6=k(λk−λτ )

](`)

0

+
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)
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Proof. See Appendix A.7 for proof.

To solve for φ(z), one can use the Cramer’s rule. However, one also needs to determine the following
constants, {φ(λk)}uk=1, {φ(j)(0)}qj=0, which are generated when applying the Wiener-Hopf prediction
formula,. As discussed in Whiteman (1983), these constants can be set to remove the poles of φ(z)

that are inside the unit circle. This makes sure that φ(z) is analytic. The following lemma shows
that the number of free constants that can be used in eliminating the inside poles is not the same as
the total number of {φ(λk)}uk=1 and {φ(j)(0)}qj=0, because of some of them may be linearly dependent
on each other.

Lemma 3.3. There exists a w × N1 matrix D1(z), a w × 1 vector D2(z), and a N1 × 1 constant
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vector ψ, such that

D

[
z, {φ(λk)}uk=1, {φ(j)(0)}qj=0

]
= D̂1(z)

[
φ(λ1) . . . φ(λu) φ0(0) . . . φq(0)

]′
+D2(z)

= D1(z)ψ +D2(z) (3.23)

where N1 is the column rank of D̂1(z) and ψ is a linear combination of the constant vector

[φ(λ1) . . . φ(λu) φ0(0) . . . φq(0)]′.

Proof. See Appendix A.8 for proof.

Here, N1 is the actual number of free constants that can used to remove the inside poles of φ(z).
Theorem 3 shows that possible inside poles of φ(z) are from the inside roots of the determinant of
T (z). It follows that whether there exists a solution to model (3.8) or not hinges on whether there
are enough free constants to eliminate all the inside roots of det[T (z)]. Furthermore, there exists a
unique solution if there are exactly N1 conditions to determine the N1 free constants.

Theorem 3 (General solution formula). Assume the signal process follows (3.1) and the model is
given by equation (3.8). Let N2 denote the number of roots of det[T (z)] that are inside the unit circle
and let {ϑ1, . . . , ϑN2} denote these inside roots. Assume these roots are distinct. Define

U1ψ+U2 ≡


det

[
D1(ϑ1)ψ +D2(ϑ1) T1(ϑ1) . . . T`1−1(ϑ1) T`1+1(ϑ1) . . . Tw(ϑ1)

]
...

... . . .
...

... . . .
...

det

[
D1(ϑN2)ψ +D2(ϑN2) T1(ϑNN2

) . . . T`N2
−1(ϑN2) T`N2

+1(ϑN2) . . . Tw(ϑN2)

]


where T`i(ϑi) is a linear combination of
{
T1(ϑi), . . . , T`i−1(ϑi), T`i+1(ϑi), . . . , Tw(ϑi)

}
.

1. If N1 < N2, there is no solution.

2. If N1 = N2 = rank (U1), there exists a unique solution φ(z). For i ∈ {1, . . . , w}

φi(z) =

det

[
T1(z) . . . Ti−1(z) D1(z)ψ +D2(z) Ti+1(z) . . . . . . Tw(z)

]
det

[
T (z)

] (3.24)

and

ψ = −U−1
1 U2 (3.25)
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3. If N1 > N2 or N1 = N2 > rank (U1), there exists an infinite number of solutions.

Proof. See Appendix A.9 for proof.

With this theorem, we can prove our finite-state-representation theorem (Theorem 2), which is the
last step of our method.

3.7 Innovation form and signal form

The solution we discussed in Section 3.6 is in terms of signals

yt = h(L)xt. (3.26)

This is the most natural way to represent the policy rule because agents’ actions depends on what
they observe. However, sometimes it is more convenient to work with the policy function in terms
of the underlying shocks.

yt = d(L)st. (3.27)

We label the solution in terms of signals as signal form and the solution in terms of underlying
shocks as innovation form. Similar to the procedure to solve for h(L), which effectively solves a
system of equations in terms of signals, one can also write down the system of equations in terms of
the underlying shocks {st}. A detailed description of the problem in innovation form can be found
in Appendix A.11.

From a practical point of view, the signal form is typically easier to solve, because the dimension of
the problem in signal form is smaller than the dimension of the problem in innovation form. However,
the innovation form often provides a sharper characterization of the equilibrium, for the reason that
the statistical properties are easier to derive in terms of the underlying shocks. Therefore, it is useful
to obtain the solution in both forms. One may be concerned about whether the solution in innovation
form is the same as the solution in signal form, and the following theorem shows that one can indeed
work with either of them.

Theorem 4. Assume the signal process follows (3.1) and the model is given by equation (3.8). There
exists a solution in signal form,

yt = h(L)xt, (3.28)

if and only if there exists a solution in innovation form

yt = d(L)st, (3.29)
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where h(L) and d(L) satisfy

d(L) = h(L)M(L)

h(L) = d(L)M ′(L−1)ρxx(L)−1 −
u∑
k=1

d(λk)λ
kG(λk)V

−1B(L)−1

(L− λk)Πτ 6=k(λk − λτ )

Proof. See Appendix A.12 for proof.

If M(L) is not invertible, the space spanned by signals is a subset of the space spanned by shocks.
It should be clear that whether we use the innovation form or the signal form, {yt} always lies in the
space spanned by current and past signals because agents can only condition their choice on their
observables, that is, , {yt} ⊂ Hxt ⊂ Hs

t .

4 Application I: Two-Player Model

In this section, we use the method developed in Section 3 to solve two particular two-player games.
There are only private signals in the first case, but we allow agents to share a common public signal
in the second case.

4.1 Private Signal: Woodford (2003)

The model we use is akin to model (2.7) introduced in Section 3.

yit = Eit[ξt] + αEit[yt]. (4.1)

There is a continuum of agents, and each individual agent i’s optimal choice satisfies equation (4.1).
The aggregate action yt is given by

yt =

∫
yit (4.2)

We assume the economic fundamental ξt follows an AR(1) process

ξt = ρξt−1 + ηt, (4.3)

where ηt ∼ N(0, 1) and we have normalized to the variance of ηt to be 1.

We assume that an agent i receives two private signals about ξt

x1
it = ξt + εit, (4.4)

x2
it = ξt + uit, (4.5)

30



where εit ∼ N(0, σ2
ε ) and uit ∼ N(0, σ2

u).

The equilibrium is defined as follows

Definition 4.1. Given the signal process (4.3) to (4.5), the equilibrium of model (4.1) is a policy
rule h = {h1, h2} ∈ `2 × `2, such that

yit = Eit[ξt] + α Eit[yt],

where

yit = h1(L)x1
it + h2(L)x2

it,

yt =

∫
yit.

The structure of this model is similar to Woodford (2003). In Woodford (2003), yit is the price chosen
by an individual firm, yt is the aggregate price level, and ξt can be interpreted as some aggregate
demand shock. The focus of Woodford (2003) is that higher order beliefs generate inertia of the
aggregate price level in response to the demand shock ξt (hump-shaped response), which is shown
numerically. The following proposition gives the analytic solution to model (4.1), and the underlying
reason for the inertia becomes transparent.

Proposition 4.1. Assume that α ∈ (0, 1). Given the signal process (4.3) to (4.5), the equilibrium
policy rule in model (4.1) is given by

h1(L) =
ϑ

ρσ2
ε (1− ρϑ)

1

1− ϑL
, (4.6)

h2(L) =
ϑ

ρσ2
u(1− ρϑ)

1

1− ϑL
, (4.7)

where

ϑ =
1

2

(1

ρ
+ ρ+

(1− α)(σ2
ε + σ2

u)

ρσ2
εσ

2
u

)
−

√(
1

ρ
+ ρ+

(1− α)(σ2
ε + σ2

u)

ρσ2
εσ

2
u

)2

− 4

 (4.8)

The finite-state representation is given by

yit =
ϑ

ρσ2
ε (1− ρϑ)

x1
it +

ϑ

ρσ2
u(1− ρϑ)

x2
it + zit, (4.9)
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where

zit+1 = ϑzit +
ϑ

ρσ2
ε (1− ρϑ)

x1
it +

ϑ

ρσ2
u(1− ρϑ)

x2
it. (4.10)

The aggregate yt is given by

yt =
ϑ

ρ(1− ρϑ)

σ2
ε + σ2

u

σ2
εσ

2
u

1

(1− ϑL)(1− ρL)
ηt (4.11)

Proof. See Appendix A.13 for proof.

The individual policy rule follows an AR(1) process, and the aggregate yt follows an AR(2) process.
The two signals only differ by the variance of their idiosyncratic noises. As expected, h1(L) and
h2(L) are symmetric, but the weight on each signal is adjusted according to their informativeness.

Crucially, the persistences of h1(L), h2(L), and the persistence of aggregate yt are governed by ϑ.
Given ρ, as ϑ increases, the peak of the impulse response of yt to ηt shifts to the right, which
makes it possible to have a hump-shaped response. If ϑ is small enough, then there may not be any
hump-shaped response. The following proposition provides a sharp characterization of ϑ.

Proposition 4.2. Assume that α1 ∈ (0, 1), ρ ∈ (0, 1), σε > 0, and σu > 0. Then ϑ satisfies

1. 0 < λ < ϑ < ρ, where λ is given by

λ =
1

2

(1

ρ
+ ρ+

σ2
ε + σ2

u

ρσ2
εσ

2
u

)
−

√(
1

ρ
+ ρ+

σ2
ε + σ2

u

ρσ2
εσ

2
u

)2

− 4

 (4.12)

2. ϑ is increasing in α and
lim
α1→1

ϑ = ρ

lim
α1→0

ϑ = λ

3. ϑ is increasing in σε, σu, and ρ.

Here, ϑ is bounded from above by the persistence of ξt, and it is also bounded from below by λ, where
1− λ is the Kalman gain when using the Kalman filter to predict ξt. Note that ϑ is increasing in α,
and with a large α, it is more likely for yt to have a hump-shaped response . This is because with
information frictions, higher order beliefs respond slowly to the shock. When the degree of strategic
complementarity increases, higher order beliefs become more important in shaping the behavior of
yt, as shown in equation (2.10).
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Example We use a numerical example to further illustrate the properties of the model economy.
We set the degree of strategic complementarity α = 0.5 and the persistence of ξ to be 0.95. As
the variances of idiosyncratic shocks increase, the degree of information frictions also increases. As

Figure 2: Impulse Response to η Shock in the Private-Signal Model
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shown in Figure 2, the hump-shaped response of yt to ηt is more pronounced when there are larger
information frictions. This is because ϑ is increasing in σε and σu. When there is little information
friction, ϑ is small and there is no hump-shaped response any more.

The higher order beliefs have the following feature: as the order increases, the higher order belief
becomes less responsive, and the peak of its response shifts to the right. To predict ξt, agent i
discounts his signals by the Kalman gain 1 − λ, which leads to that Eit[ξt] is less volatility than ξt.
When agent i infers others’ forecasts of ξt, he realizes others also discount their signals by 1 − λ.
Agent i’ best forecast of others signal is Eit[ξt], and his forecast of E[ξt] in turn discounts the original
ξt twice. This logic applies to all the higher order beliefs. Consider k-th order belief. As k increases,
the forecasts of k-th order beliefs puts less weight on current signals, and more weight on the priors
of beliefs with order lower than k, which makes the inertia increase in the order of beliefs.

4.2 Public Signal: Angeletos and La’O (2010)

Now we introduce the following variation to the model discussed in the last section. The economic
fundamental ξt still follows an AR(1) process

ξt = ρξt−1 + ηt, (4.13)
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but we assume the first signal about the economic fundamental ξt is the same across all the agents

x1
it = ξt + εt, (4.14)

x2
it = ξt + uit, (4.15)

where εt ∼ N(0, σ2
ε ) and uit ∼ N(0, σ2

u). Note that now the noise in the first signal is not indexed
by i. Effectively, the first signal now becomes a public signal. The model is the same as before

yit = Eit[ξt] + αEit[yt]. (4.16)

The structure of this model is similar to Angeletos and La’O (2010).11 In Angeletos and La’O (2010),
yit is the output chosen by an individual firm i, yt is the aggregate out, ξt is the aggregate TFP
shock. The focus of their paper is to understand the effects of the common noise εt, which can be
interpreted as animal spirits or sentiments. The question is whether this common noise can introduce
aggregate output fluctuations. Angeletos and La’O (2010) use a guess-and-verify method and obtain
a numerical solution. Here, we obtain an analytic solution.

Proposition 4.3. Assume that α ∈ (0, 1). Given the signal process (4.13) to (4.15), the equilibrium
policy rule in model (4.16) is given by

yit = h1(L)x1
it + h2(L)x2

it,

where

h1(L) =
1

1− α
ϑ

ρσ2
ε (1− ρϑ)

1

1− ϑL
, (4.17)

h2(L) =
ϑ

ρσ2
u(1− ρϑ)

1

1− ϑL
, (4.18)

and

ϑ =
1

2

(1

ρ
+ ρ+

(1− α)σ2
ε + σ2

u

ρσ2
εσ

2
u

)
−

√(
1

ρ
+ ρ+

(1− α)σ2
ε + σ2

u

ρσ2
εσ

2
u

)2

− 4

 (4.19)

The finite-state representation is given by

yit =
1

1− α
ϑ

ρσ2
ε (1− ρϑ)

x1
it +

ϑ

ρσ2
u(1− ρϑ)

x2
it + zit (4.20)

11The original model in Angeletos and La’O (2010) is yit = ξt + uit + αEit[yt], where uit is firm specific technology
shock. Here, we modify their original model to better contrast with our private-signal model, but the main dynamics
remain the same.
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Figure 3: Impulse Response of yt in the Public-Signal Model
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where

zit+1 = ϑzit +
1

1− α
ϑ

ρσ2
ε (1− ρϑ)

x1
it +

ϑ

ρσ2
u(1− ρϑ)

x2
it (4.21)

The aggregate yt is given by

yt =
ϑ

ρ(1− ρϑ)

(1− α)σ2
ε + σ2

u

(1− α)σ2
εσ

2
u

1

(1− ϑL)(1− ρL)
ηt +

1

1− α
ϑ

ρσ2
ε (1− ρϑ)

1

1− ϑL
εt (4.22)

Proof. See Appendix A.14 for proof.

We can see that the public-model is clearly different from the private-signal model. Because the
common noise εt in the first signal now affects all agents in the economy, each individual agent will
respond more strongly to the first signal, due to the strategic complementarity. As the strength
of the strategic complementarity increases (α increases), the instantaneous response to the first
signal, 1

1−α
ϑ

ρσ2
ε (1−ρϑ)

, also becomes larger. In addition, σε and σu are not symmetric in shaping the
information frictions, reflected in how they affect the persistence ϑ in equation (4.19).

In terms of the aggregate yt, it is now a function of both η shock and ε shock. However, the response
to an η shock follows an AR(2) process, the same as the private-signal model, but the response to
an ε shock follows an AR(2) process. Figure 3 plots the responses to these two shocks.12

12We set the degree of strategic complementarity α to be 0.5 and the persistence of ξ to be 0.95. We also set the
variance of the noise to be σε = σu = 4. The implied persistence ϑ = 0.77.
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5 Application II: Endogenous Information

So far we have only discussed the cases where the signal process is exogenously determined and
independent of agents’ actions. This section we consider the case where an observed signal contains
endogenous information.

An important theme of the literature on dispersed information is the role of the endogenous signal
in coordinating beliefs and revealing information. Kasa (2000) and Pearlman and Sargent (2005)
show that by observing prices in other industries, agents share the same beliefs. Walker (2007) and
Rondina and Walker (2013) show that whether the price in the asset market reveals the state of the
economy depends on whether the underlying shock follows a confounding process or not. However,
most of the studies restrict their attention to the special case in which the number of signals equals
the number of shocks and agents observe the endogenous variable without noise. In this section, we
will analyse the role of endogenous information when there are more shocks than signals, and the
endogenous variable cannot be observed perfectly.

5.1 Infinite state variables

The model we use is similar to the private-signal model in Section 4.1, but we assume a different
information structure. Agents still receive two signals. The first signal is the same as before, but the
second one is the aggregate yt with an idiosyncratic noise

x2
it = yt + uit =

∫
yjt + uit (5.1)

The aggregate yt is endogenously determined by all the individual choices, while at the same time,
it is served as a signal for agents to infer the state of the economy. In this case, we find it is more
convenient to define the equilibrium with innovation form.

Definition 5.1. The equilibrium is an endogenous stochastic process Ωit, a policy rule for an indi-
vidual agent φ = {φ1, φ2, φ3} ∈ `2 × `2 × `2, and the law of motion for aggregate yt, Φ ∈ `2, such
that

1. Agent i’s information set Ωit =

{
x1
it, x

2
it, x

1
it−1, x

2
it−1, x

1
it−2, x

2
it−2, . . .

}
is determined by

x1
it = ξt + εit, (5.2)

x2
it = yt + uit, (5.3)
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where

ξt =
Πn
k=1(1 + κkL)

Πm
k=1(1− ζkL)

ηt, (5.4)

yt = Φ(L)ηt. (5.5)

2. Individual rationality
yit = Eit[ξt] + α Eit[yt], (5.6)

where

yit = φ1(L)εit + φ2(L)uit + φ3(L)ηt. (5.7)

3. Aggregate consistency: yt =
∫
yit

Φ(L) = φ3(L) (5.8)

To show the generality of our claim, we allow ξt to follow any finite ARMA process. The equilibrium
with endogenous information involves two fixed points. The first fixed point is individual rationality.
Given the policy rule of others and the signal process, agent i optimally chooses the same policy
rule as others. The second fixed point is absent in the equilibrium with exogenous information. It
requires that agents perceived law of motion of the aggregate yt is the same as the actual law of
motion of the aggregate yt. This can be viewed as the cross-equation restriction in the sense that
agents perception is in line with the reality generated by their own action.

Similar to Proposition 2.1, the following proposition guarantees that there exists a unique equilibrium
with endogenous information.

Proposition 5.1. If α ∈ (0, 1), then there exists a unique equilibrium of the model in Definition 5.1.

Proof. See Appendix A.15 for proof.

This proposition only proves the existence and uniqueness of the equilibrium, but it is silent on
whether the agents need to keep track of infinite number of state variables or not. With exogenous
information, we have shown that the equilibrium always permits a finite-state representation provided
that the signals follow a finite ARMA process. In contrast, the following theorem shows that with
endogenous information, even though there exists a unique equilibrium, the aggregate yt does not
follow a finite ARMA process. As a result, the equilibrium cannot have a finite-state representation.

Theorem 5. If α ∈ (0, 1), the equilibrium of the model in Definition 5.1 does not have a finite-state
representation.
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Proof. See Appendix A.16 for proof.

The proof of this theorem shows that if assuming the perceived aggregate yt follows a finite ARMA
process, the implied actual aggregate yt cannot be the same as the perceived aggregate yt. With
exogenous information, Proposition 4.1 shows that if ξt follows an AR(1) process, the implied aggre-
gate yt follows an AR(2) process. With endogenous information, if we assume ξt follows an AR(1)
process and the perceived yt follows an AR(2) process, the implied actual yt follows an ARMA (4, 2)

process. If we assume perceived yt follows ARMA (4, 2), the actual yt will follow an ARMA (6, 4)

process. Iterating this process, the aggregate yt follows an infinite ARMA process in the limit.

This is a somewhat surprising result. Kasa (2000) and Pearlman and Sargent (2005) show that
in the Townsend (1983) model, there is actually no infinite regress problem and the equilibrium
permits a finite-state representation. Similarly, in Rondina and Walker (2013) and Acharya (2013),
the equilibrium policy rule has a finite-state representation as well. Pearlman and Sargent (2005)
suspects that to resuscitate the infinite regress problem, there should be more shocks than signals.
Theorem 5 proves that in our model with endogenous information, agents need to keep track of
infinite state variables in equilibrium. Chari (1979) proved a similar impossibility theorem for a
particular univariate case, and we prove this theorem in a multivariate system with an arbitrary
ARMA process.

The reason for the infinite state variables, however, is not the infinite regress problem. When the
signals follow an exogenous ARMA process, the infinite regress problem does exist but the equilibrium
rule always has a finite-state representation. With endogenous information, each individual still treats
the signal process as exogenous. If the perceived law of motion for yt is a finite ARMA process, we
return to the case covered by Theorem 2: each individual needs to solve the infinite regress problem,
but the number of state variables is finite. With endogenous information, what complicates the
issue is that the signal process itself cannot be represented as a finite ARMA process, but this is
independent of the infinite regress problem faced by each individual.

Compared with the literature, the equilibrium policy rule in Kasa (2000), Rondina and Walker
(2013) and Acharya (2013) all follows an ARMA process, even though the signals contain endogenous
information. The key difference is that they assume the number of signals equals the number shocks,
i.e., the signals xt = M(L)st withM(L) being a square matrix. In this case, one can use the Blaschke
matrix to obtain the Wold representation without knowing the exact signal process. The cost of this
assumption is that the signal process is not complicated enough to create interesting dynamics. In
Acharya (2013) or Kasa (2000), the endogenous variable that has an information role is observed
without noise, and the forecast error is transitory. In our model, because there are more shocks than
signals, agents can never infer the shocks perfectly, and the forecast error is persistent.
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5.2 Computation

The infinite-state result is theoretically interesting, but it excludes the possibility of obtaining the
exact solution. Here we provide a tractable algorithm that can approximate the true solution ar-
bitrarily well. The idea is to use a low order ARMA process to approximate aggregate yt, which
enables the Winer-Hopf prediction formula.

1. Assume that the perceived aggregate yt follows an ARMA (p, q) process

ypt = Φ(L)ηt = σy
Πq
k=1(1 + θkL)

Πp
k=1(1− ρkL)

.

2. Given the law of motion of the aggregate yt, the signal process follows a finite ARMA process.
Use the method in Section 3 to solve for the individual policy rule φ = {φ1(L), φ2(L), φ3(L)}.
The actual aggregate yt follows

yat = φ3(L)ηt.

3. To update Φ(L), expand φ3(L) to obtain the infinite moving average representation. Choose
the new σy, {ρk}pk=1 and {θk}qk=1 to equate {Φ0,Φ1, . . . ,Φp+q} with {φ30, φ31, . . . , φ3p+q}

4. Iterate 1 to 3 until the difference between {Φ0,Φ1, . . . ,Φp+q} and {φ30, φ31, . . . , φ3p+q} is smaller
than the tolerance level.

5. Compute ‖Φ− φ‖ (one can simply use the norm of `2). If ‖Φ− φ‖ is larger than the tolerance
level, increase (p, q) and repeat 1 to 4.

Based on the proof of Proposition A.15, this algorithm is a contraction mapping that converges to
the true solution as the order of the ARMA approximation increases. Sargent (1991) also uses an
ARMA process to approximate the signal process, but our method differs from his in an important
way. In Sargent (1991), only the forecasts of future signals are pay-off relevant. Once the law of
motion of the signal is specified, agents do not need to solve the signal extraction problem and there
is no need to forecast the forecasts of others. In our model, although the signal process is given,
agents still face the infinite regress problem. Step 2 in the algorithm makes sure that each individual
always performs their optimal prediction.

Compared with Nimark (2011), our method has the following advantage. The first advantage is
that our method requires fewer state variables. Nirmark’s method needs to keep track of a large
number of higher order beliefs to accurately approximate the policy rule. In principle, Nirmark’s
method is to use MA(∞) process to approximate the policy rule while our method uses an ARMA
process for approximation, which is more efficient. In our numerical example, it requires to keep
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track of the higher order beliefs up to order 30 to achieve the same accuracy as our ARMA (4,2)
approximation. The second advantage is that our method is easier to implement and is applicable in
more general environments. Nirmark’s method relies on the correct conjecture of the law of motion
of the higher order beliefs. When the signal process is more complicated than an AR(1) process, it
is not obvious what the correct conjecture should be. In addition, Nirmark’s method also relies on
that the equilibrium policy rule is a relatively simple function of higher order beliefs, but this may
not be true in many empirical applications where the system is complicated (see the quantitative
model in Huo and Takayama (2014) for example). Instead, our method instead does not hinge on
these assumptions.

Example To check whether our approximation method is accurate enough, we need to compare
the perceived aggregate yt with the implied aggregate yt. We set α = 0.5. We assume ξt follows an
AR(1) process with persistence ρ = 0.95. We also set σa = σu = 4. As shown in Figure 4, if we
use an AR(2) process to approximate the aggregate yt, the difference between perceived and implied
aggregate yt is quite noticeable. If we use an ARMA (4,2) process to approximate yt, the perceived
and implied yt are almost identical to each other. Given the existence of the equilibrium, this method
can easily extend to other more complicated environments when there does not exist a finite-state
representation.

Figure 4: Comparing Approximation Accuracy for α = 0.8
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6 Application III: Random-Matching Model, Angeletos and La’O (2013)

In this section we discuss another type of model, in which an agent meets a different player every
period. Angeletos and La’O (2013) consider an interesting model environment with this feature,
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but they assume there is no persistent shock in their baseline model. This assumption does not
affect their qualitative prediction, and it helps to avoid the infinite regress problem. However, this
assumption prevents the model from exploring more relevant learning problems, and it makes the
model unsuitable for empirical work. We extend Angeletos and La’O (2013) to allow persistent
shocks and the infinite regress problem in the model.

Assume that there is a continuum of agents in the economy. An individual agent i is endowed with
a productivity ai, which is drawn from a normal distribution N(0, σ2

a). Note that both individual’s
productivity and the distribution is fixed over time, and there is no aggregate uncertainty with
respect to the economic fundamentals. At the beginning of each period, an agent i is randomly
matched with another agent m(i, t) and trades goods with m(i, t), where m(i, t) is the index of agent
i’s trading partner in period t. Note that the production has to take place before trading, and
agents have to infer others’ output based on their signals. Due to strategic complementarity, agent
i’s optimal output choice yit needs to satisfy

yit = ai + α Eit[ym(i,t)t], (6.1)

where α ∈ (0, 1) controls the degree of strategic complementarity, and ym(i,t)t is the output choice
of i’s trading partner m(i, t) at period t. Equation (6.1) says that agent i’ output is increasing in
his own productivity and the output of his trading partner, while the detailed micro-foundation that
leads to this equation is not important for us to understand the infinite regress problem.

Agent i receives two signals

x1
it = am(i,t) + εit, (6.2)

x2
it = x1

m(i,t)t + ξt + uit, (6.3)

where εit ∼ N(0, σ2
ε ) and uit ∼ N(0, σ2

u), both of which are idiosyncratic noise. The productivity of
i’s trading partner is am(i,t), and from i’s perspective, it is also an i.i.d shock that follows N(0, σ2

a).
x1
m(i,t)t is the first signal received by agent i’s trading partner m(i, t). ξt is common for all agents,

which follows an AR(1) process
ξt = ρξt−1 + ηt, (6.4)

where ηt ∼ N(0, 1). In Angeletos and La’O (2013), ξt is an i.i.d shock, but we assume ρ ∈ (0, 1) here
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to introduce the infinite regress problem. The information set of agent i is13

Ωit =

{
ai, x

1
it, x

2
it, x

1
it−1, x

2
it−1, x

1
it−2, x

2
it−2, . . .

}
. (6.5)

Note that ai needs to be included in the information set because agent i’s action directly depends
on ai, and it also helps to predict i’s trading partner’s signal. The equilibrium is defined as

Definition 6.1. Given the signal process (6.2) to (6.4), the equilibrium of model (6.1) is a policy
rule h = {ha, h1, h2} ∈ R× `2 × `2, such that

yit = ai + α Eit[ym(i,t)t],

where

yit = haai + h1(L)x1
it + h2(L)x2

it.

As emphasized by Angeletos and La’O (2013), agent i’s estimate of his trading partners’ productivity
am(i,t) is pinned downed by the i’s first signal alone, and not affected by the second signal. However,
agent i’s estimate of x1

m(i,t)t is affected by the common noise ξt. With a positive realization of ξt, agent
i attributes part of ξt to x1

m(i,t)t, and believes that agent m(i, t) will overestimate i’s productivity ai
and produce more output. Therefore, agent i’s also optimally produces more output due to strategic
complementarity. In aggregate, ξt leads to fluctuations in total output by affecting all agents’ higher
order beliefs.

Different from the applications discussed in Section 4, agent i has to form higher order beliefs about a
random playerm(i, t) every period. This change may prevent the use of the guess-and-verify method,
but our method developed in Section 3 can still be applied to solve the model.

Proposition 6.1. Assume that α ∈ (0, 1). Given the signal process (6.2) to (6.4), the equilibrium
policy rule in model (6.1) is given by

ha = 1 + αϕ− αϑϕ(1− ρ)

ρ(1− ϑ)

σ2
ε

σ2
ε + σ2

u

(6.6)

h1(L) = ϕ (6.7)

h2(L) =
αϑϕ

ρ

σ2
ε

σ2
ε + σ2

u

1− ρL
1− ϑL

(6.8)

13There is an implicit assumption that agents do not observe their trading partner’s output or productivity level
after production. This assumption is only to implement the notion of imperfect communication between producers and
transactors, but is not important for our purpose.
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where

ϑ =
1

2

1

ρ
+ ρ+

1− α
ρ(σ2

ε + σ2
u)
−

√(
1

ρ
+ ρ+

1− α
ρ(σ2

ε + σ2
u)

)2

− 4

 , (6.9)

ϕ =
α

1− α2 + σ2
ε
σ2
a

(
1− α2 ϑ

ρ
σ2
ε

σ2
ε+σ2

u

) . (6.10)

The finite-state representation is given by

yit = haai + ϕx1
it +

αϑϕ

ρ

σ2
ε

σ2
ε + σ2

u

x2
it + zit (6.11)

where

zit+1 = ϑzit +
(1− ρ)αϑϕ

ρ

σ2
ε

σ2
ε + σ2

u

x2
it (6.12)

The aggregate yt is given by

yt =
αϑϕ

ρ

σ2
ε

σ2
ε + σ2

u

1

1− ϑL
ηt (6.13)

Proof. See Appendix A.17 for proof.

Note that h1(L) is a constant, which implies that the policy rule does not depend on {x1
iτ}

t−1
τ=−∞. The

reason is that the first signal is only useful in predicting the productivity of current trading partner,
but it is independent of the persistent shock ξt. It turns out that h2(L) follows an ARMA(1,1)
process, and the aggregate output yt follows an AR(1) process.

Comparing with heterogeneous prior In the literature, a convenient device to avoid the in-
finite regress problem is to assume that agents have heterogeneous prior. The heterogeneous prior
assumption works as follows. Assume that agent i observes both ξt and am(i,t)t perfectly. However,
agent i believes his trading partner m(i, t) observes ai with bias ξt. If agent i’s policy rule is

yit = f1ai + f2am(i,t) + f3ξt,

then agent i believes that the output of his trading partner is

ym(i,t)t = f1am(i,t) + f2(ai + ξt) + f3ξt.
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In equilibrium,
yit = α0ai + α1Eit[ym(i,t)t],

which leads to

yit =
1

1− α2
ai +

α

1− α2
am(i,t) +

α2
1

(1− α2
1)(1− α)

ξt (6.14)

yt =
α2

(1− α2)(1− α)
ξt (6.15)

Quantitatively, by assuming heterogeneous prior, yt is perfectly correlated with ξt, while in our
model with common prior, the persistence of aggregate output is endogenously determined by the
structural parameter α and the information related parameters, and it is always different from the
the persistence of ξt. A numerical example is shown in Figure 5.

Figure 5: Impulse Response of yt to η Shock in Random-Player Model
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Note that the both the persistence and instantaneous response of yt under heterogeneous prior
is very different from the solution under rational expectation. The solution under heterogeneous
prior assumption is independent of the degree of information frictions, that is, the distribution of
idiosyncratic productivity and the size of the idiosyncratic noise do not affect the behaviour of output.
By assuming heterogeneous prior, one effectively assumes away the information frictions, which is the
reason that higher order beliefs arise in the first place. The method we provide to solve the infinite
regress problem retains the notion of rationality, and we can pin down the degree of information
frictions by comparing the model results with data.
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7 Application IV: a Quantitative Business Cycle Model

Application I to Application III can be thought of as various extensions of the basic model presented
in Section 2. These applications are theoretically interesting, but have not fully taken advantage
of our method. In the general model structure we outline in equation (3.8), we allow the model to
include the past, the present, and the future values of the choice variables, the choices of others, and
the exogenous variables.

In a companion paper (Huo and Takayama, 2014), we apply our method and solve a full-blown
quantitative model in which the confidence shock alone is sufficient to account for the main aggregates
in business cycles. The idea is related to Angeletos and La’O (2013), but our model differs from theirs
in several crucial ways. We maintain the strong notion of rationality and solve the infinite regress
problem directly. Agents need to choose both labor and investment, and need to infer the output
and capital of both their current and future trading partners. There are multiple persistent shocks in
the signal process to match various micro and macro moments. Therefore, higher order beliefs affect
agents’ decisions in a fairly complex way. With our preferred calibration of information frictions,
we find that the model with confidence shocks generate much of the volatility and co-movement of
aggregate variables, but it has difficulty in matching the persistence of the aggregate variables.

8 Conclusion

In this paper, we have shown how to solve general rational expectations models with higher order
beliefs. When the signal follows an ARMA process, we prove that the policy rule always admits a
finite-state representation. It turns out the infinite regress problem does not require infinite state
variables, because the total effects of the higher order beliefs can be summarized by a small set of
variables. We provide a procedure that gives an explicit solution formula. The key of our method is
to apply the Kalman filter to obtain the Wold representation of the signal process, and then use the
Wiener filter to solve the inference problems. We also prove that when the signal process contains
endogenous information, the equilibrium policy rule may not have a finite-state representation, which
is in some sense the ‘true’ infinite regress problem. This is due to the fact that cross-equation restric-
tion imposes an additional equilibrium condition that the perceive law of motion of an endogenous
variable has to be the same as the law of motion that is generated by agents’ actions. We provide a
tractable algorithm that can approximate the true solution accurately with a small number of state
variables. Various applications are easily solved by our method. We expect that the method we
develop in this paper can be applied in a much broader class of models, especially in the areas of
macroeconomics and financial economics with dispersed information. Preliminary findings in Huo
and Takayama (2014) show that this is a promising direction to pursue.
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Appendix

A Proof of Theorems and Propositions

A.1 Proof of Proposition 2.1

Proof. We consider the equilibrium in the innovation form. Let φ = {φ1, φ2, φ3} ∈ `2 × `2 × `2. The norm of φ can de
defined as

‖φ‖ =

√√√√σ2
ε

∞∑
k=0

φ2
1k + σ2

u

∞∑
k=0

φ2
2k + σ2

η

∞∑
k=0

φ2
3k.

Given φ, let
yit = φ1(L)εit + φ2(L)uit + φ3(L)ηt,

and let
Eit[φ1(L)εjt + φ2(L)ujt + φ3(L)ηt] ≡ φ̂1(L)εit + φ̂2(L)uit + φ̂3(L)ηt

The inference of ξt is independent of φ and is given by

Eit[ξt] ≡ g1(L)εit + g2(L)uit + g3(L)ηt.

If yit = g1(L)εit + g2(L)uit + g3(L)ηt + α

(
φ̂1(L)εit + φ̂2(L)uit + φ̂3(L)ηt

)
, then φ is an equilibrium.

Define the operator T : `2 × `2 × `2 → `2 × `2 × `2 as

T (φ) = T ({φ1, φ2, φ3}) = {g1 + αφ̂1, g2 + αφ̂2, g3 + αφ̂3}

The equilibrium is a fixed point of the operator T . If we can show that T is a contraction mapping, it is sufficient to prove
the theorem.

Let φ ∈ `2 × `2 × `2 and ψ ∈ `2 × `2 × `2. The distance between φ and ψ is

‖φ− ψ‖ =

√√√√σ2
ε

∞∑
k=0

(φ1k − ψ1k)2 + σ2
u

∞∑
k=0

(φ2k − ψ2k)2 + σ2
η

∞∑
k=0

(φ3k − ψ3k)2.

The distance between T (φ) and T (ψ) is

‖T (φ)− T (ψ)‖ = |α|

√√√√σ2
ε

∞∑
i=0

(φ̂1i − ψ̂1i)2 + σ2
u

∞∑
i=0

(φ̂2i − ψ̂2i)2 + σ2
η

∞∑
i=0

(φ̂3i − ψ̂3i)2

Note that the variance of a variable is always larger than the variance of its predictor

Var
[
[φ1(L)− ψ1(L)]εjt + [φ2(L)− ψ2(L)]ujt + [φ3(L)− ψ3(L)]ηt

]
≥Var

[
Eit
[
[φ1(L)− ψ1(L)]εjt + [φ2(L)− ψ2(L)]ujt + [φ3(L)− ψ3(L)]ηt

]]
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We have

Var
[
[φ1(L)− ψ1(L)]εjt + [φ2(L)− ψ2(L)]ujt + [φ3(L)− ψ3(L)]ηt

]
=σ2

ε

∞∑
k=0

(φ1k − ψ1k)2 + σ2
u

∞∑
k=0

(φ2k − ψ2k)2 + σ2
η

∞∑
k=0

(φ3k − ψ3k)2

=‖φ− ψ‖2,

and

Var
[
Eit
[
[φ1(L)− ψ1(L)]εjt + [φ2(L)− ψ2(L)]ujt + [φ3(L)− ψ3(L)]ηt

]]
=Var

[
[φ̂1(L)− ψ̂1(L)]εit + [φ̂2(L)− ψ̂2(L)]uit + [φ̂3(L)− ψ̂3(L)]ηt

]
=σ2

ε

∞∑
i=0

(φ̂1i − ψ̂1i)
2 + σ2

u

∞∑
i=0

(φ̂2i − ψ̂2i)
2 + σ2

η

∞∑
i=0

(φ̂3i − ψ̂3i)
2

=‖T (φ)− T (ψ)‖2
(

1

α

)2

.

Therefore, ‖T (φ) − T (ψ)‖ ≤ α‖φ − ψ‖. When α ∈ (0, 1), the operator T is a contraction mapping, and there exists a
unique fixed point.

A.2 Riesz-Fisher Theorem

Theorem (Riesz-Fisher). Let {cτ} be a square-summable sequence of complex numbers for which
∑∞
τ=−∞ |cτ |2 <∞. Then

there exists a complex-valued function g(z), defined at least on the unit circle in the complex plane such that

g(z) =

∞∑
τ=−∞

cτz
τ ,

where the infinite series converges in the mean square sense that

lim
n→∞

∮ ∣∣∣∣∣
n∑

τ=−n
cτz

τ − g(z)

∣∣∣∣∣
2
dz

z
= 0

where the integral is a contour integral on the unit circle. The function g(z) is square-integrable∣∣∣∣ 1

2πi

∮
|g(z)|2 dz

z

∣∣∣∣ <∞
The function g(z) is called the z transform of the sequence {cτ}.

Conversely, given a square-integrable g(z), there exists a square- summable sequence {cτ} where

cτ =
1

2πi

∮
g(z)z−τ−1dz.
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Furthermore, suppose {cτ} be a one-side square-summable sequence for which
∑∞
τ=0 |cτ |2 < ∞. Then there exists an

analytic function g(z) on the open unit disk such that

g(z) =

∞∑
τ=0

cτz
τ .

Conversely, given an analytic function on the unit disk, there exists a one-side square-summable sequence {cτ} where

cτ =
1

2πi

∮
g(z)z−τ−1dz.

Proof. The proof of this theorem is referred to Sargent (1987) and Kasa (2000).

A.3 Proof of Lemma 3.1

Proof. There can be many different state-space representations and we only give one of them here, which is sufficient to
prove the claim. Hamilton (1994) shows how to represent a univariate ARMA process in state space, and what we construct
below is a natural extension to the multivariate case.

Let rij = max{pij , qij + 1}, and let αijk = 0 if k > qij and βijk = 0 if k > qij . Let r =
∑n
i=1

∑m
j=1 rij . F is a r × r matrix

with the following form

F =



F11 0 0 . . . . . . . . . 0

0 F12 0 . . . . . . . . . 0
...

...
. . . . . . . . . . . .

...
0 . . . . . . F1m . . . . . . 0
...

...
...

...
. . .

...
...

0 0 0 . . . . . . Fnm−1 0

0 0 0 . . . . . . 0 Fnm


. (A.1)

The element Fij in F is a rij × rij matrix

Fij =



αij1 αij2 . . . αijrij−1 αijrij
1 0 . . . 0 0

0 1 . . . 0 0
...

... . . . 0 0

0 0 . . . 1 0


.

50



Q is a r ×m matrix with the following form

Q =



Q11

Q12

...
Q1m

...
Qnm−1

Qnm


. (A.2)

The element Dij in D is a rij ×m matrix

Qij =


0 . . . αij0 . . . 0

0 . . . 0 . . . 0
... . . .

... . . .
...

0 . . . 0 . . . 0

 , (A.3)

where αij0 is at the jth column.

H is a n× r matrix with the following form

H =


H11 . . . H1m 0 . . . 0 . . . 0 . . . 0

0 . . . 0 H21 . . . H1m . . . 0 . . . 0
... . . .

...
... . . .

...
. . . 0 . . . 0

0 . . . 0 0 . . . 0 . . . Hn1 . . . Hnm

 (A.4)

The element Hij in H is a 1× rij matrix

Hij =
[
1 βij1 βij2 . . . βijrij

]
.

Let Zt follows
Zt = FZt−1 +Qst.

We have
xt = M(L)st = HZt

To show that the eigenvalues of F lie inside the unit circle, we can iterate the Zt to obtain

Zt =

∞∑
j=0

F jLjQst = (I − FL)−1Qst

If the eigenvalues of F lies outside the unit circle, it follows that Zt is not co-variance stationary, which contradicts the
assumption that xt is co-variance stationary.
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A.4 Proof of Theorem 3.5

Proof. A formal proof can be found in Whittle (1983). Here we provide a sketch of the proof.

Suppose the prediction is based on all the realization of the signals x∞ instead of xt. The optimal linear prediction of yt is

E[yt|x∞] = ρyx(L)ρxx(L)−1xt.

This formula resembles the familiar formula in OLS regression. ρyx measures the correlation between y and x, adjusted by
ρxx. Given the fundamental representation

xt = B(L)wt,

the prediction is equivalent to the prediction conditional on w∞ and the prediction formula can be written as

E[yt|x∞] =E[yt|w∞]

=ρyx(L)ρxx(L)−1xt,

=ρyx(L)B′(L−1)−1V −1B(L)−1B(L)wt,

=ρyx(L)B′(L−1)−1V −1wt.

Now imagine the prediction is conditional on only current and past signals xt, which is equivalent to conditional on wt.
Since wt is serially uncorrelated, the best forecast of wi for i > t is zero. Note that ρyx(L)B′(L−1)−1 contains negative
powers of L and the best forecast of wi for i > t is zero, the optimal prediction for yt is simply

E[yt|xt] =E[yt|wt]

=[ρyx(L)B′(L−1)−1]+V
−1wt,

=[ρyx(L)B′(L−1)−1]+V
−1B(L)−1xt,

=[ρyx(L)B′(L−1)−1]+V
−1B(L)−1M(L)st.

Recall that B(L) is invertible, so B(L)−1 contains only positive powers of L.

A.5 Proof of Lemma 3.2

Proof. By the Canonical Factorization Theorem, it follows that the inverse of B(z) is given by

B(z)−1 =In −H[Ir − (F − FKH)z]−1FKz

=
In det[Ir − (F − FKH)z]−HAdj[Ir − (F − FKH)z]FKz

det[Ir − (F − FKH)z]

=
B̂(z)

Πu
k=1(1− λkz)

(A.5)

where B̂(z) is a matrix and the elements are all polynomials in z with finite degree, u is the degree of det[Ir−(F −FKH)z],
and {λk}uk=1 are non-zero eigenvalues of F −FKH. To see why this is true, note that if λk is the eigenvalue of F −FKH,
it satisfies

det[λkIr − (F − FKH)] = 0
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which implies

det

[
Ir − (F − FKH)

1

λk

]
= 0

That is, 1
λi

is the root of the determinant of Ir − (F − FKH)z. Reversely, the roots of Ir − (F − FKH)z must be
the reciprocals of the non-zero eigenvalues of F − FKH. In addition, Theorem 3.4 guarantees all of these eigenvalues of
F − FKH lie inside the unit circle.

Meanwhile, we have
B(z) = In +H[Ir − Fz]−1FKz,

and

B(z)−1 =

[
In +H[Ir − Fz]−1FKz

]−1

=

[
In det[Ir − Fz]−HAdj[Ir − Fz]FKz

det[Ir − Fz]

]−1

= det[Ir − Fz]
[
In det[Ir − Fz]−HAdj[Ir − Fz]FKz

]−1

Note that equation (A.5) has to be satisfied at the same time. As a result, there exists a matrix Ĉ(z) such that the elements
of it are all finite polynomials in z, and

B(z)−1 = det[Ir − Fz]
Ĉ(z)

Πu
k=1(1− λkz)

. (A.6)

The roots of det[Ir−Fz], which are the inverse of the eigenvalues of F , are different from {λk}uk=1, which are the inverse of
the eigenvalues of F − FKH. By construction, the degree of Πu

k=1(1− λkz) is larger than the degree of det[Ir − Fz]Ĉ(z).

By Lemma 3.1,
xt = M(L)st = HZt = H(Ir − FL)−1st (A.7)

Combining equation (A.6) and (A.7) leads to

B(z)−1M(z) = det[Ir − Fz]
Ĉ(z)

Πu
k=1(1− λkz)

H(Ir − Fz)−1

= det[Ir − Fz]
Ĉ(z)

Πu
k=1(1− λkz)

H
Adj[Ir − Fz]
det[Ir − Fz]

=
Ĉ(z)HAdj[Ir − Fz]

Πu
k=1(1− λkz)

.

Here, the numerator of B(z)−1M(z) is a finite polynomial in z, and the degree of det[Ir − Fz] is larger than the degree of
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Adj[Ir − Fz]. Therefore,

M ′(z−1)B′(z−1)−1 =

(
Ĉ(z−1)HAdj[Ir − Fz−1]

)
Πu
k=1(1− λkz−1)

′

=

(
zuĈ(z−1)HAdj[Ir − Fz−1]

)
Πu
k=1(z − λk)

′

=
G(z)

Πu
k=1(z − λkz)

,

where G(z) is a polynomial in z because the degree of Ĉ(z)HAdj[Ir − Fz] is less than u.

A.6 Proof of Proposition 3.1

Proof. By the Wiener-Hopf Theorem, the prediction formula is

E
[
yt | xt

]
=

[
ψ(L)M ′(L−1)B′(L−1)−1

]
+

V −1B(L)−1xt

We need to obtain the formula for

[
ψ(L)M ′(L−1)B′(L−1)−1

]
+

=

m∑
i=1


1

Πuk=1(L−λk)ψi(L)Gi1(L)

...
1

Πuk=1(L−λk)ψi(L)Gin(L)


′

+

(A.8)

Suppose g(z) is a rational function of z that does not contains negative powers of z in expansion, then[
g(z)

(z − λ1) · · · (z − λu)

]
+

=
g(z)

(z − λ1) · · · (z − λu)
−

u∑
k=1

g(λk)

(z − λk)Πτ 6=k(λk − λτ )

It follows that

[
ψ(L)M ′(L−1)B′(L−1)−1

]
+

=

m∑
i=1


1

Πuk=1(L−λk)ψi(L)Gi1(L)−
∑u
k=1

ψi(λk)Gi1(λk)
(L−λk)Πτ 6=k(λk−λτ )

...
1

Πuk=1(L−λk)ψi(L)Gin(L)−
∑u
k=1

ψi(λk)Gin(λk)
(L−λk)Πτ 6=k(λk−λτ )


′

= ψ(L)M ′(L−1)B′(L−1)−1 −
m∑
i=1


∑u
k=1

ψi(λk)Gi1(λk)
(L−λk)Πτ 6=k(λk−λτ )

...∑u
k=1

ψi(λk)Gin(λk)
(L−λk)Πτ 6=k(λk−λτ )


′
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Also note that if g(z) = [f(z)]+, then for j = {1, 2, . . .}

[z−jf(z)]
+

=

[
z−j [g(z) + f(z)− g(z)]

]
+

=[z−jg(z)]
+

+

[
z−j [f(z)− g(z)]

]
+

=z−j

(
g(z)−

j−1∑
p=0

p! zp[g(z)]
(p)
0

)

where [g(z)]
(p)
0 denotes p-th order derivative evaluated at 0. Applying this formula, we have,

[L−jψ(L)G(L)]+

=

m∑
i=1



(
ψi(L)Gi1(L)
Πuk=1(L−λk) −

∑u
k=1

ψi(λk)Gi1(λk)
(L−λk)Πτ 6=k(λk−λτ ) −

∑j−1
p=0 p!L

p
[
ψi(L)Gi1(L)
Πuk=1(L−λk) −

∑u
k=1

ψi(λk)Gi1(λk)
(L−λk)Πτ 6=k(λk−λτ )

](p)
0

)
L−j

...(
ψi(L)Gin(L)
Πuk=1(L−λk) −

∑u
k=1

ψi(λk)Gin(λk)
(L−λk)Πτ 6=k(λk−λτ ) −

∑j−1
p=0 p!L

p
[
ψi(L)Gin(L)
Πuk=1(L−λk) −

∑u
k=1

ψi(λk)Gin(λk)
(L−λk)Πτ 6=k(λk−λτ )

](p)
0

)
L−j


′

= ψ(L)L−jM ′(L−1)B′(L−1)−1

−



(∑u
k=1

ψi(λk)Gi1(λk)
(L−λk)Πτ 6=k(λk−λτ ) +

∑j−1
p=0 p!L

p
[
ψi(L)Gi1(L)
Πuk=1(L−λk) −

∑u
k=1

ψi(λk)Gi1(λk)
(L−λk)Πτ 6=k(λk−λτ )

](p)
0

)
L−j

...(∑u
k=1

ψi(λk)Gin(λk)
(L−λk)Πτ 6=k(λk−λτ ) +

∑j−1
p=0 p!L

p
[
ψi(L)Gin(L)
Πuk=1(L−λk) −

∑u
k=1

ψi(λk)Gin(λk)
(L−λk)Πτ 6=k(λk−λτ )

](p)
0

)
L−j


′
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A.7 Proof of Proposition 3.2

Proof. By Proposition 3.1, the system (3.8) can be written as
φ(L)

(∑p
j=−q

∑r
i=1 C

y,j
1,i AiL

j
)
xt

...

φ(L)
(∑p

j=−q
∑r
i=1 C

y,j
r,i AiL

j
)
xt

+


φ(L)

(∑p
j=−q

∑v
i=1 C

f,j
1,i fi(L)LjM ′(L−1)ρxx(L)−1

)
xt

...

φ(L)
(∑p

j=−q
∑v
i=1 C

f,j
r,i fi(L)LjM ′(L−1)ρxx(L)−1

)
xt



+


∑p
j=−q C

g,j
1 g(L)LjM ′(L−1)ρxx(L)−1xt

...∑p
j=−q C

g,j
r g(L)LjM ′(L−1)ρxx(L)−1xt



=


∑u
k=1

φ(λk)(
∑p
j=−q

∑v
i=1 λ

j
kC

f,j
1,i fi(λk)G(λk)V −1B(L)−1)

(L−λk)Πτ 6=k(λk−λτ ) xt
...∑u

k=1

φ(λk)(
∑p
j=−q

∑v
i=1 λ

j
kC

f,j
r,i fi(λk)G(λk)V −1B(L)−1)

(L−λk)Πτ 6=k(λk−λτ ) xt

+


∑u
k=1

∑p
j=−q λ

j
kC

g,j
1 g(λk)G(λk)V −1B(L)−1

(L−λk)Πτ 6=k(λk−λτ ) xt
...∑u

k=1

∑p
j=−q λ

j
kC

g,j
r g(λk)G(λk)V −1B(L)−1

(L−λk)Πτ 6=k(λk−λτ ) xt



+


∑q
j=1

∑j−1
`=0 `!L

`−j
[∑r

i=1 φ(L)Cy,−j1,i AiM(L)G(L)

Πuk=1(L−λk) −
∑u
k=1

∑r
i=1 φ(λk)Cy,−j1,i AiM(λk)G(λk)

(L−λk)Πτ 6=k(λk−λτ )

](`)

0

V −1B(L)−1xt

...∑q
j=1

∑j−1
`=0 `!L

`−j
[∑r

i=1 φ(L)Cy,−jr,i AiM(L)G(L)

Πuk=1(L−λk) −
∑u
k=1

∑r
i=1 φ(λk)Cy,−jr,i AiM(λk)G(λk)

(L−λk)Πτ 6=k(λk−λτ )

](`)

0

V −1B(L)−1xt



+


∑q
j=1

∑j−1
`=0 `!L

`−j
[∑v

i=1 φ(L)Cf,−j1,i fi(L)G(L)

Πuk=1(L−λk) −
∑u
k=1

∑r
i=1 φ(λk)Cy,−j1,i fi(λk)G(λk)

(L−λk)Πτ 6=k(λk−λτ )

](`)

0

V −1B(L)−1xt

...∑q
j=1

∑j−1
`=0 `!L

`−j
[∑v

i=1 φ(L)Cf,−jr,i fi(L)G(L)

Πuk=1(L−λk) −
∑u
k=1

∑r
i=1 φ(λk)Cf,−jr,i fi(λk)G(λk)

(L−λk)Πτ 6=k(λk−λτ )

](`)

0

V −1B(L)−1xt



+


∑q
j=1

∑j−1
`=0 `!L

`−j
[
Cg,−j1,i g(L)G(L)

Πuk=1(L−λk) −
∑u
k=1

Cg,−j1,i g(λk)G(λk)

(L−λk)Πτ 6=k(λk−λτ )

](`)

0

V −1B(L)−1xt

...∑q
j=1

∑j−1
`=0 `!L

`−j
[
Cg,−jr,i g(L)G(L)

Πuk=1(L−λk) −
∑u
k=1

Cg,−jr,i g(λk)G(λk)

(L−λk)Πτ 6=k(λk−λτ )

](`)

0

V −1B(L)−1xt



56



Rearranging the system of equations above to isolate φ(L) leads to the following more compact way
φ(L)

∑p
j=−q L

j
[∑r

i=1 C
y,j
1,i Ai +

∑v
i=1 C

f,j
1,i fi(L)M ′(L−1)ρxx(L)−1

]
xt

...

φ(L)
∑p
j=−q L

j
[∑r

i=1 C
y,j
r,i Ai +

∑v
i=1 C

f,j
r,i fi(L)M ′(L−1)ρxx(L)−1

]
xt



= −


∑p
j=−q C

g,j
1 g(L)LjM ′(L−1)ρxx(L)−1xt

...∑p
j=−q C

g,j
r g(L)LjM ′(L−1)ρxx(L)−1xt



+


∑u
k=1

∑p
j=−q λ

j
k[

∑v
i=1 C

f,j
1,i φ(λk)fi(λk)+

∑v2
i=1 C

g,j
1 g(λk)]G(λk)V −1B(L)−1

(L−λk)Πτ 6=k(λk−λτ ) xt
...∑u

k=1

∑p
j=−q λ

j
k[

∑v
i=1 C

f,j
r,i φ(λk)fi(λk)+

∑v2
i=1 C

g,j
r g(λk)]G(λk)V −1B(L)−1

(L−λk)Πτ 6=k(λk−λτ ) xt



+



∑q
j=1

∑j−1
`=0 `!L

`−j
([∑r

i=1 φ(L)Cy,−j1,i AiM(L)G(L)

Πuk=1(L−λk) −
∑u
k=1

∑r
i=1 φ(λk)Cy,−j1,i AiM(λk)G(λk)

(L−λk)Πτ 6=k(λk−λτ )

](`)

0

+

[∑v
i=1 φ(L)Cf,−j1,i fi(L)G(L)

Πuk=1(L−λk) −
∑u
k=1

∑r
i=1 φ(λk)Cy,−j1,i fi(λk)G(λk)

(L−λk)Πτ 6=k(λk−λτ )

](`)

0

+

[
Cg,−j1,i g(L)G(L)

Πuk=1(L−λk) −
∑u
k=1

Cg,−j1,i g(λk)G(λk)

(L−λk)Πτ 6=k(λk−λτ )

](`)

0

)
V −1B(L)−1xt

...∑q
j=1

∑j−1
`=0 `!L

`−j
([∑r

i=1 φ(L)Cy,−jr,i AiM(L)G(L)

Πuk=1(L−λk) −
∑u
k=1

∑r
i=1 φ(λk)Cy,−jr,i AiM(λk)G(λk)

(L−λk)Πτ 6=k(λk−λτ )

](`)

0

+

[∑v
i=1 φ(L)Cf,−jr,i fi(L)G(L)

Πuk=1(L−λk) −
∑u
k=1

∑r
i=1 φ(λk)Cy,−jr,i fi(λk)G(λk)

(L−λk)Πτ 6=k(λk−λτ )

](`)

0

+

[
Cg,−jr,i g(L)G(L)

Πuk=1(L−λk) −
∑u
k=1

Cg,−jr,i g(λk)G(λk)

(L−λk)Πτ 6=k(λk−λτ )

](`)

0

)
V −1B(L)−1xt


This has to be true for all the possible realizations of {xt}. By Riesz-Fischer Theorem, it is equivalent to the following
system of functional equations

T (z)φ(z) = D

[
z, {φ(λk)}uk=1, {φ(j)(0)}qj=0

]

where T (z) and D
[
z, {φ(λk)}uk=1, {φ(j)(0)}qj=0

]
are defined in equation (3.21) and (3.22), respectively.

By the Riesz-Fisher Theorem, there exists φ(L) that solves model (3.8) if and only if there exists a vector analytic function
φ(z) that solves equations (3.20).
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A.8 Proof of Lemma 3.3

Proof. First note that D
[
z, {φ(λk)}uk=1, {φ(j)(0)}qj=0

]
is linear in constants {{φ(λk)}uk=1, {φ(j)(0)}qj=0}. As a result, we

can arrange D
[
z, {φ(λk)}uk=1, {φ(j)(0)}qj=0

]
to obtain

D

[
z, {φ(λk)}uk=1, {φ(j)(0)}qj=0

]
= D̂1(z)

[
φ(λ1) . . . φ(λu) φ0(0) . . . φq(0)

]′
+D2(z)

Let Nc = wu + w(q + 1) denote the length of the vector
[
φ(λ1) . . . φ(λu) φ0(0) . . . φq(0)

]′
. Therefore, D̂1(z) is a

w×Nc matrix. Let N1 denote the column rank of D̂1(z). It follows that there exists N1 vectors from D̂1(z) that consists a
basis of D̂1(z). Denote these N1 vectors as D1(z). Therefore, there exists a constant matrix Λ of dimension N1 ×Nc, such
that

D̂1(z) = D1(z)Λ
[
φ(λ1) . . . φ(λu) φ0(0) . . . φq(0)

]′
Let ψ ≡ Λ

[
φ(λ1) . . . φ(λu) φ0(0) . . . φq(0)

]′
completes the proof.

A.9 Proof of Theorem 3

Proof. By Cramer’s rule, the i-th element of φ(z) that solves equation (3.20) is given by

φi(z) =

det

[
T1(z) . . . Ti−1(z) D1(z)ψ +D2(z) Ti+1(z) . . . . . . Tw(z)

]
det

[
T (z)

]
By Proposition 3.2, Proposition 3.1, and the assumption on model (3.8), the functions in T (z), D1(z), and D2(z) are all
rational functions with finite degree. As a result, whether φi(z) is an analytic function or not is equivalent to whether φi(z)
has poles within the unit circle or not.

In principle, the poles of φi(z) are either the roots of det[T (z)], i.e., {ϑi, . . . , ϑN2
}, or the poles of

φ̂i(z) ≡
[
T1(z) . . . Ti−1(z) D1(z)ψ +D2(z) Ti+1(z) . . . . . . Tw(z)

]
. (A.9)

By construction, the only poles of φ̂i(z) are {λk}uk=1 and 0. However, {λk}uk=1 and 0 cannot be poles of φi(z) because these
poles are generated from forming expectations using the Wiener-Hopf prediction formula, and by Proposition 3.1, these

poles are already eliminated by
{
{φ(λk)}uk=1, {φ(j)(0)

}
.

Consider the inside roots of det[T (z)]. For any ϑi, it is always possible to find `i such that T`i(ϑi) is a linear combination

of
{
T1(ϑi), . . . , T`i−1(ϑi), T`i+1(ϑi), . . . , Tw(ϑi)

}
. That is

T`i(ϑi) =
∑
k 6=`i

ϕikTk(ϑi) (A.10)

58



Suppose
det
[
D1(ϑ1)ψ +D2(ϑ1) T1(ϑi) . . . T`i−1(ϑi) T`i+1(ϑi) . . . Tw(ϑi)

]
= 0 (A.11)

Then for any j ∈ {1, . . . , `i − 1, `i + 1, . . . , w}, we have

det

[
T1(ϑi) . . .

j−th column︷ ︸︸ ︷
D1(ϑi)ψ +D2(ϑi) . . .

`i−th column︷ ︸︸ ︷
T`i(ϑi) . . . Tw(ϑi)

]
=

∑
k 6=`i

det

[
T1(ϑi) . . .

j−th column︷ ︸︸ ︷
D1(ϑi)ψ +D2(ϑi) . . .

`i−th column︷ ︸︸ ︷
ϕikTk(ϑi) . . . Tw(ϑi)

]
= 0.

This implies that if equation (A.11) holds, for j ∈ {1, . . . , w}, ϑi is the root of the determinant

det
[
T1(ϑi) . . .

j

D1(ϑ1)ψ +D2(ϑ1) . . . Tw(ϑi)

]
Consequently, ϑi cannot be a pole of φ(z). Now consider the following problem,

U1ψ + U2 ≡


det

[
D1(ϑ1)ψ +D2(ϑ1) T1(ϑ1) . . . T`1−1(ϑ1) T`1+1(ϑ1) . . . Tw(ϑ1)

]
...

... . . .
...

... . . .
...

det

[
D1(ϑN2

)ψ +D2(ϑN2
) T1(ϑNN2

) . . . T`N2
−1(ϑN2

) T`N2
+1(ϑN2

) . . . Tw(ϑN2
)

]
 (A.12)

If there exists ψ such that
U1ψ + U2 = 0 (A.13)

Then {ϑi}N2
i=1 are not poles of φ(z).

1. If N1 < N2, then there are more equations than unknowns. There does not exist ψ such that equation (A.9) holds.
As a result, there is no solution to (3.20).

2. If N1 = N2 = rank(U2), then there exists a unique ψ that solves (A.9). Therefore, {ϑi}N2
i=1 are not poles of φ(z).

3. If N1 > N2 or N1 = N2 > rank(U2), there are infinite solutions to (A.9). As a result, there are infinite number of
analytic functions φ(z) that solves (3.20).

A.10 Proof of Theorem 2

Proof. By Theorem 3, if there exists a solution to (3.8), for i ∈ {1, . . . , w}, φi(z) is a rational function with finite degree.
Therefore, yt = h(L)xt can be written as (3.9). By Lemma 3.1, there exists a state space representation of yt = h(L)xt,
which is given by

zt+1 = Fzt +Qxt (A.14)

yt = HQxt +HFzt (A.15)
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where F,Q and H are given by (A.1), (A.3), and (A.4) respectively. Define

Γx = HQ (A.16)

Γz = HF (A.17)

Υx = Q (A.18)

Υz = F, (A.19)

and we obtain the finite-state representation. Note that the eigenvalues of Γz all lie inside the unit circle. The law of
motion of zt

zt+1 = Υxxt + Υzzt (A.20)

can be written as
zt+1 = (I −ΥzL)−1Υxxt (A.21)

Therefore, given {xt}−1
t=−∞,

z0 = (I −ΥzL)−1Υxx−1 (A.22)

A.11 More on solution in innovation form

We follow the same procedure as the signal form to define the solution in innovation form. Here, we use similar notations
as the signal form to make them comparable to each other, but it should be clear that they may stand for different objects.

Choice variable The policy rule we want to solve is yt = [yit, . . . , yrt]
′, where

yt =


y1t

...
yrt

 =


d11(L) . . . h1m(L)

... . . .
...

hr1(L) . . . hrm(L)



s1t

...
smt

 = d(L)st. (A.23)

We assume that each element in d(L) has an infinite MA representation. More compactly, define

φ(L) ≡
[
d11(L) . . . d1m(L) . . . dr1(L) . . . drm(L)

]
. (A.24)

Endogenous variables related to other agents’ actions Let ft = [fit, . . . , fvt]
′ denote the endogenous variables

chosen by other agents. They are related to the policy rule φ(L) and the driving shocks st in the following way

fit = φ(L)f i(L)st = φ(L)


f i11(L) . . . f i1m(L)

... . . .
...

f iw1(L) . . . f iwm(L)



s1t

...
smt

 (A.25)

Here, each fi(L) is a w × m matrix in the lag operator L. We assume that all the elements in fi(L) are finite rational
functions in L and do not contain negative powers of L in expansion.

Exogenous variables This part is the same as the signal form exposition.
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General model This part is the same as signal form.

Definition A.1. A solution to model (3.8) (or an equilibrium) in innovation form is a vector of lag polynomials φ(L) such
that

1. For each i ∈ {1, . . . , w}, φi(L) has an infinite MA representation

φi(L) =

∞∑
k=0

φikL
k,

with
∑∞
k=0 φik <∞.

2. For all possible realizations of {st},

yt = φ(L)
[
A1 . . . Ar

]′
xt = d(L)st

satisfies equation (3.8).

A.12 Proof of Theorem 4

Proof. Suppose there exists a solution in signal form

yt = h(L)xt

By the definition of the signal process (3.1), it follows that

yt = h(L)M(L)st.

Because yt = h(L)xt satisfies model (3.8), yt = h(L)M(L)st also satisfies model (3.8). Reversely, suppose there exists a
solution in innovation form

yt = d(L)st.

We can rearrange model (3.8) such that

yt = −

 p∑
j=0

Cy,jLj

−1

 p∑
j=0

E
[
Cf,jLjft + Cg,jLjgt

∣∣∣∣xt]+

q∑
j=1

E
[
Cy,−jL−jyt + Cf,−jL−jft + Cg,−jL−jgt

∣∣∣∣xt]
 (A.26)

Note that
(∑p

j=0 C
y,jLj

)
has to be invertible. Otherwise, yt is not co-variance stationary, which contradicts to the

assumption that yt = d(L)st is a solution to the model. Therefore, {yt} ⊂ Hxt and {d(L)st} ⊂ Hxt . By Proposition 3.1, it
follows that

yt = d(L)st = E[d(L)st|xt] =

(
d(L)M ′(L−1)ρxx(L)−1 −

u∑
k=1

d(λk)λkG(λk)V −1B(L)−1

(L− λk)Πτ 6=k(λk − λτ )

)
xt
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Defining

h(L) = d(L)M ′(L−1)ρxx(L)−1 −
u∑
k=1

d(λk)λkG(λk)V −1B(L)−1

(L− λk)Πτ 6=k(λk − λτ )

gives us the signal form solution.

A.13 Proof of Proposition 4.1

Proof. Consider the state-space representation of the signal process. The state equation is

ξt = ρξt−1 + ηt

The observation equation is

xit =

[
x1
it

x2
it

]
=

[
1

1

]
ξt +

[
εit

uit

]
.

By the Canonical Factorization Theorem, the Wold representation is

B(z)−1 =
1

1− λz

[
1− τ2ρ+λτ1

τ1+τ2
z τ1(λ−ρ)

τ1+τ2
z

τ2(λ−ρ)
τ1+τ2

z 1− τ1ρ+λτ2
τ1+τ2

z

]
,

V −1 =
1

ρ(τ1 + τ2)

[
τ1ρ+λτ2

τ1
λ− ρ

λ− ρ τ2ρ+λτ1
τ2

]
,

where τ1 = σ2
ε and τ2 = σ2

u, and

λ =
1

2

τ1 + τ2
ρτ1τ2

+
1

ρ
+ ρ−

√(
τ1 + τ2
ρτ1τ2

+
1

ρ
+ ρ

)2

− 4

 .
Assuming yit = h1(L)x1

it + h2(L)x2
it, it follows that

yt = h1(L)ξt + h2(L)ξt.

By Proposition 3.1, we have

Eit[ξt] =

[
1

1−λL
λ

(1−ρλ)ρτ1
1

1−λL
λ

(1−ρλ)ρτ2

]′ [
x1
it

x2
it

]
,
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and

Eit[yt] =

[
λ
ρτ1

L
(1−λL)(L−λ)h1(L)− λ2

ρτ1
1

1−ρλ
1−ρL

(1−λL)(L−λ)h1(λ)
λ
ρτ2

L
(1−λL)(L−λ)h1(L)− λ2

ρτ2
1

1−ρλ
1−ρL

(1−λL)(L−λ)h1(λ)

]′ [
x1
it

x2
it

]

+

[
λ
ρτ1

L
(1−λL)(L−λ)h2(L)− λ2

ρτ1
1

1−ρλ
1−ρL

(1−λL)(L−λ)h2(λ)
λ
ρτ2

L
(1−λL)(L−λ)h2(L)− λ2

ρτ2
1

1−ρλ
1−ρL

(1−λL)(L−λ)h2(λ)

]′ [
x1
it

x2
it

]
.

The model requires that
yit = Eit[ξt] + αEit[yt],

which leads to

h1(L)x1
it + h2(L)x2

it

=

[
1

1−λL
λ

(1−ρλ)ρτ1
1

1−λL
λ

(1−ρλ)ρτ2

]′ [
x1
it

x2
it

]

+ α

[
λ
ρτ1

L
(1−λL)(L−λ)h1(L)− λ2

ρτ1
1

1−ρλ
1−ρL

(1−λL)(L−λ)h1(λ)
λ
ρτ2

L
(1−λL)(L−λ)h1(L)− λ2

ρτ2
1

1−ρλ
1−ρL

(1−λL)(L−λ)h1(λ)

]′ [
x1
it

x2
it

]

+ α

[
λ
ρτ1

L
(1−λL)(L−λ)h2(L)− λ2

ρτ1
1

1−ρλ
1−ρL

(1−λL)(L−λ)h2(λ)
λ
ρτ2

L
(1−λL)(L−λ)h2(L)− λ2

ρτ2
1

1−ρλ
1−ρL

(1−λL)(L−λ)h2(λ)

]′ [
x1
it

x2
it

]

By the Riesz-Fisher Theorem, we can transform it into the following problem

C(z)

[
h1(z)

h2(z)

]
= d(z, h(λ))

where h(λ) = h1(λ) + h2(λ), and

C(z) =

1− α λ
ρτ1

z
(1−λz)(z−λ) −α λ

ρτ1
z

(1−λz)(z−λ)

−α λ
ρτ2

z
(1−λz)(z−λ) 1− α λ

ρτ2
z

(1−λz)(z−λ)

 ,
d(z, h(λ)) =

[
d1(z, h(λ))

d2(z, h(λ))

]
=

[
1

1−λz
λ

(1−ρλ)ρτ1
− α λ2

ρτ1
1

1−ρλ
1−ρz

(1−λz)(z−λ)h(λ)
1

1−λz
λ

(1−ρλ)ρτ2
− α λ2

ρτ2
1

1−ρλ
1−ρz

(1−λz)(z−λ)h(λ)

]
.

Note that

detC(z) =
−λ
[
z2 −

(
1
λ + λ− α(τ1+τ2)

ρτ1τ2

)
z + 1

]
(1− λz)(z − λ)

=
λ
ϑ (z − ϑ)(1− ϑz)
(1− λz)(z − λ)
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The inside root of the determinant of C(z) is

ϑ =

(
1
ρ + ρ+ (1−α)(τ1+τ2)

ρτ1τ2

)
−
√(

1
ρ + ρ+ (1−α)(τ1+τ2)

ρτ1τ2

)2

− 4

2

Using Cramer’s rule,

h1(z) =

det

d1(z) −α λ
ρτ1

z
(1−λz)(z−λ)

d2(z) 1− α λ
ρτ2

z
(1−λz)(z−λ)


detC(z)

.

The numerator is

det

d1(z) −α λ
ρτ1

z
(1−λz)(z−λ)

d2(z) 1− α λ
ρτ2

z
(1−λz)(z−λ)


=

1

(1− λz)(z − λ)

{
λ(z − λ)

(1− ρλ)ρτ1
− α λ

2

ρτ1

1

1− ρλ
(1− ρz)h(λ)

}
.

To make sure h1(z) does not have poles in the unit circle, we need to choose h(λ) to remove the pole at ϑ, which requires

h(λ) =
ϑ− λ

αλ(1− ρϑ)
.

Therefore,

h1(z) =
ϑ

ρτ1(1− ρϑ)

1

1− ϑz
,

and similarly,

h2(z) =
ϑ

ρτ2(1− ρϑ)

1

1− ϑz

A.14 Proof of Proposition 4.3

Proof. The signal process and the Wold representation is the same as the proof A.13. The difference is when assuming
yit = h1(L)x1

it + h2(L)x2
it, the aggregate yt becomes

yt = (h1(L) + h2(L))ξt + h1(L)εt.

By Proposition 3.1, we have

Eit[ξt] =

[
1

1−λL
λ

(1−ρλ)ρτ1
1

1−λL
λ

(1−ρλ)ρτ2

]′ [
x1
it

x2
it

]
,
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and

Eit[yt] =

[
λ
ρτ1

L
(1−λL)(L−λ)h1(L)− λ2

ρτ1
1

1−ρλ
1−ρL

(1−λL)(L−λ)h1(λ)
λ
ρτ2

L
(1−λL)(L−λ)h1(L)− λ2

ρτ2
1

1−ρλ
1−ρL

(1−λL)(L−λ)h1(λ)

]′ [
x1
it

x2
it

]

+

[
λ
ρτ1

L
(1−λL)(L−λ)h2(L)− λ2

ρτ1
1

1−ρλ
1−ρL

(1−λL)(L−λ)h2(λ)
λ
ρτ2

L
(1−λL)(L−λ)h2(L)− λ2

ρτ2
1

1−ρλ
1−ρL

(1−λL)(L−λ)h2(λ)

]′ [
x1
it

x2
it

]

+

 τ1
τ1+τ2

h1(L) +
τ2
λ
ρ (L−ρ)(1−ρL)

(τ1+τ2)(1−λL)(L−λ)h1(L)− τ2
λ
ρ (λ−ρ)(1−ρL)

(τ1+τ2)(1−λL)(L−λ)h1(λ)

− τ1
τ1+τ2

h1(L) +
τ1
λ
ρ (L−ρ)(1−ρL)

(τ1+τ2)(1−λL)(L−λ)h1(L)− τ1
λ
ρ (λ−ρ)(1−ρL)

(τ1+τ2)(1−λL)(L−λ)h1(λ)

′ [x1
it

x2
it

]

The model requires that
yit = Eit[ξt] + αEit[yt],

which leads to the following system of analytic functions

C(z)

[
h1(z)

h2(z)

]
= d(z, h(λ))

where h(λ) = h2(λ),14 and

C(z) =


1− α λ

ρτ1
z

(1−λz)(z−λ) − α
(

τ1
τ1+τ2

+
τ2
λ
ρ (z−ρ)(1−ρz)

(τ1+τ2)(1−λz)(z−λ)

)
−α λ

ρτ1
z

(1−λz)(z−λ)

−α λ
ρτ2

z
(1−λz)(z−λ) − α

(
− τ1
τ1+τ2

+
τ1
λ
ρ (z−ρ)(1−ρz)

(τ1+τ2)(1−λz)(z−λ)

)
1− α λ

ρτ2
z

(1−λz)(z−λ)

 ,

d(z, h(λ)) =

[
d1(z, h(λ))

d2(z, h(λ))

]
=

[
1

1−λz
λ

(1−ρλ)ρτ1
− α λ2

ρτ1
1

1−ρλ
1−ρz

(1−λz)(z−λ)h(λ)
1

1−λz
λ

(1−ρλ)ρτ2
− α λ2

ρτ2
1

1−ρλ
1−ρz

(1−λz)(z−λ)h(λ)

]
.

Note that

detC(z) =
(1− α)λ(z − ϑ)(1− ϑz)

ϑ(1− λz)(z − λ)

The inside root of the determinant of C(z) is

ϑ =

(
1
ρ + ρ+ (1−α)τ1+τ2

ρτ1τ2

)
−
√(

1
ρ + ρ+ (1−α)τ1+τ2

ρτ1τ2

)2

− 4

2

14It can be verified that h1(λ) does not show up by using the property of λ.
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Using Cramer’s rule,

h1(z) =

det

d1(z) −α λ
ρτ1

z
(1−λz)(z−λ)

d2(z) 1− α λ
ρτ2

z
(1−λz)(z−λ)


detC(z)

.

The numerator is

det

d1(z) −α λ
ρτ1

z
(1−λz)(z−λ)

d2(z) 1− α λ
ρτ2

z
(1−λz)(z−λ)


=

1

(1− λz)(z − λ)

{
λ(z − λ)

(1− ρλ)ρτ1
− α λ

2

ρτ1

1

1− ρλ
(1− ρz)h(λ)

}
.

To make sure h1(z) does not have poles in the unit circle, we need to choose h(λ) to remove the pole at ϑ, which requires

h(λ) =
ϑ− λ

αλ(1− ρϑ)
.

Therefore,

h1(z) =
ϑ

ρτ1(1− α)(1− ρϑ)

1

1− ϑz
,

and similarly,

h2(z) =
ϑ

ρτ1(1− ρϑ)

1

1− ϑz

A.15 Proof of Proposition 5.1

Proof. Let φ = {φ1, φ2, φ3} ∈ `2 × `2 × `2. The norm of φ can de defined as

‖φ‖ =

√√√√σ2
ε

∞∑
k=0

φ2
1k + σ2

u

∞∑
k=0

φ2
2k + σ2

η

∞∑
k=0

φ2
3k.

Given φ, let the signal process be

x1
it = ξt + εit,

x2
it = φ3(L)ηt + uit.

Then the signal process is well defined. let

yit = φ1(L)εit + φ2(L)uit + φ3(L)ηt,
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and the optimal linear forecast is given by

Eit[yt] = φ̂1(L)εit + φ̂2(L)uit + φ̂3(L)ηt

If yit = Eit[ξt] + αEit[yjt], then φ and Φ is an equilibrium.

Define the operator T : `2 × `2 × `2 → `2 × `2 × `2 as

T (φ) = T ({φ1, φ2, φ3}) = {αφ̂1, αφ̂2, αφ̂3}

The equilibrium is a fixed point of the operator T . The proof of the contraction mapping is the same as the proof of
Proposition 2.1. The modification is that the expectation will be conditional on the signal process that depends on φ.

A.16 Proof of Theorem 5

Proof. Suppose the equilibrium policy rule φ = {φa, φ1, φ2, φ3} allows a finite ARMA representation. Assume that

φ3(L) = σy
Πq
k=1(1 + θkL)

Πp
k=1(1− ρkL)

where σy is a constant .

The signal process is then given by

x1
it = ξt + εit

x2
it = yt + uit

where

ξt =
Πn
k=1(1 + κkL)

Πm
k=1(1− ζkL)

ηt

yt = σy
Πq
k=1(1 + θkL)

Πp
k=1(1− ρkL)

ηt

The signal process can be rewritten as

xit =

[
x1
it

x2
it

]
=

σε 0
Πnk=1(1+κkL)
Πmk=1(1−ζkL)

0 σu σy
Πqk=1(1+θkL)

Πpk=1(1−ρkL)


âm(i,t)

ûit

η̂t

 = M̂(L)ŝit

By the 3.4 Theorem, we can find the canonical factorization

ρXX(z) = M̂(z)M̂ ′(z−1) = B(z)V B′(z−1)
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Let u1 = max{n,m}, u2 = max{p, q}, u = u1 + u2, we have

B(z)−1 =


b1Πmk=1(1−ζkz)Π

u2
k=1(1−rkz)

Πuk=1(1−tkz)
b2zΠ

p
k=1(1−ρkz)Πu−1

k=u2+1(1−rkz)
Πuk=1(1−tkz)

b3zΠ
m
k=1(1−ζkz)Π

u+u2−2

k=u (1−rkz)
Πuk=1(1−tkz)

b4Πpk=1(1−ρkz)Π2u−2
k=u+u2−1(1−rkz)

Πuk=1(1−tkz)



B′(z−1)−1 =


b1z

u1−mΠmk=1(z−ζk)Π
u2
k=1(z−rk)

Πuk=1(z−tk)

b3z
u1−mΠmk=1(z−ζk)Π

u+u2−2

k=u (z−rk)

Πuk=1(z−tk)

b2z
u2−pΠpk=1(z−ρk)Πu−1

k=u2+1(z−rk)

Πuk=1(z−tk)

b4z
u2−pΠpk=1(z−ρk)Π2u−2

k=u+u2−1(z−rk)

Πuk=1(z−tk)


and

V −1 =

[
v1 v2

v3 v4

]

Here, {tk}nk=1 are eigenvalues of F − FKH which are within the unit circle. {rk}2n−2
k=1 , {bk}4k=1 and {vk}4k=1 are functions

of the underlying parameters of M̂(z).

Applying the Wiener-Hopf prediction formula, suppose we want to predict a random variable ft, with

ft =
[
ψ1(L) ψ2(L) ψ3(L)

]
ŝit

where ψ1(L), ψ2(L), ψ3(L) do not contain negative powers. The prediction is

E[ft|xti] =
[
ρfx(L)B′(L−1)−1

]
+
V −1B(L)−1M(L)sit (A.27)

It follows that

ρfx(z)B′(z−1)−1

=


σaψ1(z) +

ψ3(z)zm−nΠnk=1(z+κk)
Πmk=1(z−ζk)

σuψ2(z) +
ψ3(z)σπz

p−qΠqk=1(z+θk)

Πpk=1(z−ρk)


′ 

b1z
u1−mΠmk=1(z−ζk)Π

u2
k=1(z−rk)

Πuk=1(z−tk)

b3z
u1−mΠmk=1(z−ζk)Π

u+u2−2

k=u (z−rk)

Πuk=1(z−tk)

b2z
u2−pΠpk=1(z−ρk)Πu−1

k=u2+1(z−rk)

Πuk=1(z−tk)

b4z
u2−pΠpk=1(z−ρk)Π2u−2

k=u+u2−1(z−rk)

Πuk=1(z−tk)



=


σaψ1(z)b1z

u1−mΠmk=1(z−ζk)Π
u2
k=1(z−rk)

Πuk=1(z−tk) +
σuψ2(z)b2z

u2−pΠpk=1(z−ρk)Πu−1
k=u2+1(z−rk)

Πuk=1(z−tk) + ψ3(z)e1(z)
Πuk=1(z−tk)

σaψ1(z)b3z
u1−mΠmk=1(z−ζk)Π

u+u2−2

k=u (z−rk)

Πuk=1(z−tk) +
σuψ2(z)b4z

u2−pΠpk=1(z−ρk)Π2u−2
k=u+u2−1(z−rk)

Πuk=1(z−tk) + ψ3(z)e2(z)
Πuk=1(z−tk)


′

where
e1(z) = b1z

u1−nΠn
k=1(z + κk)Πu2

k=1(z − rk) + b2σyz
u2−qΠq

k=1(z + θk)Πu−1
k=u2+1(z − rk)

e2(z) = b3z
u1−nΠn

k=1(z + κk)Πu+u2−2
k=u (z − rk) + b4σπz

u2−qΠq
k=1(z + θk)Π2u−2

k=u+u2−1(z − rk)
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Also,

V −1B(z)−1 =
1

Πu
k=1(1− tkz)

[
Πm
k=1(1− ζkz)D11(z) Πp

k=1(1− ρkz)D12(z)

Πm
k=1(1− ζkz)D21(z) Πp

k=1(1− ρkz)D22(z)

]

where

D(z) =

[
v1b1Πu2

k=1(1− rkz) + v2b3zΠ
u+u2−2
k=u (1− rkz) v1b2Πu−1

k=u2+1(1− rkz) + v2b4Π2u−2
k=u+u2−1(1− rkz)

v3b1Πu2

k=1(1− rkz) + v4b3zΠ
u+u2−2
k=u (1− rkz) v3b2Πu−1

k=u2+1(1− rkz) + v4b4Π2u−2
k=u+u2−1(1− rkz)

]

[
g(z)

(z − λ1) · · · (z − λu)

]
+

=
g(z)

(z − λ1) · · · (z − λu)
−

u∑
k=1

g(λk)

(z − λk)Πτ 6=k(λk − λτ )

To predict of yt, using equation A.27, the components are

Eit[ξt] =
1

Πu
k=1(1− tkL)


Πn`=1(1+κ`L)e1(L)

Πm`=1(1−ζ`L)Πuk=1(L−tk) −
∑u
k=1

Πn`=1(1+κ`tk)e1(tk)
Πm`=1(1−rho`tk)(L−tk)Πτ 6=k(tk−tτ )

Πn`=1(1+κ`L)e2(L)
Πm`=1(1−ζ`L)Πuk=1(L−tk) −

∑u
k=1

Πn`=1(1+κ`tk)e2(tk)
Πm`=1(1−rho`tk)(L−tk)Πτ 6=k(tk−tτ )


′

V −1B(L)−1M(L)sit,

=
1

Πu
k=1(1− tkL)

[
g1(L) g2(L) g3(L)

]
sit

where g1(L), g2(L), and g3(L) do not contain negative powers and are independent of the equilibrium policy rule φ.

Eit[φ3(L)ηt] =

Πm
k=1(1− ζkL)

{
e1(L)D1(L)+e2(L)D3(L)

Πuk=1(1−tkL)(L−tk) φ3(L)−
∑u
τ=1

e1(tτ )D1(L)+e2(tτ )D3(L)
(L−tτ )Πuk=1(1−tkL)Πk 6=τ (tτ−tk)φ3(tτ )

}

Πp
k=1(1− ρkL)

{
e1(L)D2(L)+e2(L)D4(L)

Πuk=1(1−tkL)(L−tk) φ3(L)−
∑u
τ=1

e1(tτ )D2(L)+e2(tτ )D4(L)
(L−tτ )Πuk=1(1−tkL)Πk 6=τ (tτ−tk)φ3(tτ )

}
e1(L)[Πnk=1(1+κkL)D1(L)+σyΠqk=1(1+θkL)D2(L)]+e2(L)[Πnk=1(1+κkL)D3(L)+σyΠqk=1(1+θkL)D4(L)]

Πuk=1(1−tkL)(L−tk) φ3(L)

−
∑n
τ=1

e1(tτ )[Πnk=1(1+κkL)D1(L)+σyΠqk=1(1+θkL)D2(L)]+e2(tτ )[Πnk=1(1+κkL)D3(L)+σyΠqk=1(1+θkL)D4(L)]

(L−tτ )Πuk=1(1−tkL)Πk 6=τ (tτ−tk) φ3(tτ )



′

am(i,t)

uit

ηt

 .

The equilibrium condition is

φ1(L)εm(i,t) + φ2(L)uit + φ3(L)ηt = Eit[ξt] + α Eit[φ3(L)ηt]

By the Riesz-Fisher Theorem, we can solve the corresponding analytical functions. Particularly, if we can solve for φ3(z),
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then φ1(z) and φ2(z) can be solved easily. φ3(z) needs to satisfy the following condition

φ3(z) =
g3(z)

Πn
k=1(1− tkz)

+ α
e1(z)[Πn

k=1(1 + κkz)D1(z) + σyΠq
k=1(1 + θkz)D2(z)] + e2(z)[Πn

k=1(1 + κkz)D3(z) + σπΠq
k=1(1 + θkz)D4(z)]

Πu
k=1(1− tkz)(z − tk)

φ3(z)

− α
u∑
τ=1

e1(tτ )[Πn
k=1(1 + κkz)D1(z) + σyΠq

k=1(1 + θkz)D2(z)] + e2(tτ )[Πn
k=1(1 + κkz)D3(z) + σyΠq

k=1(1 + θkz)D4(z)]

(z − tτ )Πu
k=1(1− tkz)Πk 6=τ (tτ − tk)

φ3(tτ )

Multiplying Πu
k=1(1− tkz)(z − tk) to both sides leads to{

Πu
k=1(1− tkz)(z − tk)

− α
(
e1(z)[Πn

k=1(1 + κkz)D1(z) + σyΠq
k=1(1 + θkL)D2(z)] + e2(z)[Πn

k=1(1 + κkz)D3(z) + σyΠq
k=1(1 + θkz)D4(z)]

)}
φ3(z)

= Πu
k=1(z − tk)g3(z)

− α
u∑
τ=1

Πk 6=τ (z − tk){e1(tτ )[Πn
k=1(1 + κkz)D1(z) + σyΠq

k=1(1 + θkz)D2(z)] + e2(tτ )[Πn
k=1(1 + κkz)D3(z) + σyΠq

k=1(1 + θkz)D4(z)]}
Πk 6=τ (tτ − tk)

φ3(tτ )

The denominator of φ3(z) (before eliminating inside roots) is

Πu
k=1(1−tkz)(z−tk)−α

(
e1(z)[Πn

k=1(1+κkz)D1(z)+σyΠq
k=1(1+θkL)D2(z)]+e2(z)[Πn

k=1(1+κkz)D3(z)+σyΠq
k=1(1+θkz)D4(z)]

)
(A.28)

If we can show that the roots of the denominator of φ3(z) are always different from {ρk}pk=1, then the proof is done. Here
we show that {ρk}pk=1 can be the roots of the denominator of φ3(z) only if α = 1.

Consider the non-casual prediction formula for random variable ft, i.e., the prediction based on x∞i .

E[ft|x∞i ] = ρfx(L)ρxx(L)−1M(L)sit (A.29)

= ρfx(L)[M̂(L)M̂ ′(L−1)]−1M(L)sit (A.30)

= ρfx(L)[B(L)V B′(L−1)]−1M(L)sit (A.31)

We focus on the third component of the prediction of ηt = [0, 0, 1]sit. Using formula (A.31)

ρηx(z)[B(z)V B′(z−1)]−1M(z)

0

0

1


=

e1(z)[Πn
k=1(1 + κkz)D1(z) + σyΠq

k=1(1 + θkz)D2(z)] + e2(z)[Πn
k=1(1 + κkz)D3(z) + σyΠq

k=1(1 + θkz)D4(z)]

Πu
k=1(1− tkz)(z − tk)

The equation above is the third row of the prediction formula (innovation form) for ηt when the prediction is based on x∞i ,
i.e., the non-casual prediction. This equation has an intimate link with equation (A.28).
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Using formula (A.30), define τ1 = σ2
a, τ2 = σ2

u and τ3 = σ2
y. Also define ∆(z) as

∆(z) = τ2z
m−nΠn

k=1(z + κk)(1 + κkz)Π
p
k=1(z − ρk)(1− ρkz) + τ1τ3z

p−qΠm
k=1(z − ζk)(1− ζkz)Πq

k=1(z + θk)(1 + θkz)

+τ1τ2Πm
k=1(z − ζk)(1− ζkz)Πp

k=1(z − ρk)(1− ρkz)

We have

ρηx(z)[M̂(z)M̂ ′(z−1)]−1M(z)

0

0

1


=

∆(z)− τ1τ2Πm
k=1(z − ζk)(1− ζkz)Πp

k=1(z − ρk)(1− ρkz)
∆(z)

.

Because formula (A.31) equals formula (A.30), we have

Πu
k=1(1− tkz)(z − tk)−

(
e1(z)[D1(z) + σyΠq

k=1(1 + θkL)D2(z)] + e2(z)[D3(z) + σyΠq
k=1(1 + θkz)D4(z)]

)
∝ τ1τ2Πm

k=1(z − ζk)(1− ζkz)Πp
k=1(z − ρk)(1− ρkz),

where

τ1τ2Πm
k=1(z − ζk)(1− ζkz)Πp

k=1(z − ρk)(1− ρkz) = ∆(z)− [∆(z)− τ1τ2Πm
k=1(z − ζk)(1− ζkz)Πp

k=1(z − ρk)(1− ρkz)].

Therefore, the denominator of φ3(z) has roots {ρk}pk=1 only when α = 1. If α ∈ (0, 1), the roots of the denominator cannot
include {ρk}pk=1.

A.17 Proof of Proposition 6.1

Proof. Note that x1
m(i,t)t = ai + εm(i,t)t, the signal process can be rewritten as

x1
it = am(i,t) + εit

x̂2
it = x2

m(i,t)t − ai = ξt + εm(i,t)t + uit,

ξt = ρξt−1 + ηt.

The two signals are independent of each other, and we can find the Wold representation for each of them separately. The
canonical representation for x̂2

it is

B(z) =
1− λz
1− ρz

,

V −1 = v =
λ

ρ(σ2
ε + σ2

u)
,
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where

λ =
1

2

1

ρ
+ ρ+

1

ρ(σ2
ε + σ2

u)
−

√(
1

ρ
+ ρ+

1

ρ(σ2
ε + σ2

u)

)2

− 4

 .
The prediction of ym(i,t)t is

Eit[ym(i,t)t] = Eit[haam(i,t) + h1(L)(am(m(i,t),t) + εm(i,t)t) + h2(L)(u(m(i,t)t) + εm(m(i,t),t) + ξt)],

where

Eit[am(i,t)] =
σ2
a

σ2
a + σ2

ε

x1
it

Eit[am(m(i,τ),τ)] = ai if τ = t, otherwise 0

Eit[εm(i,τ)τ ] =
σ2
ε v(1− ρL)

1− λL
x̂2
it if τ = t, otherwise 0

Eit[um(i,t)t] = 0

Eit[εm(m(i,τ),τ)] =
σ2
ε

σ2
a + σ2

ε

x1
it if τ = t, otherwise 0

Eit[h2(L)ξt] =

(
vLh2(L)

(L− λ)(1− λL)
− vλ(1− ρL)h2(λ))

(1− ρλ)(L− λ)(1− λL)

)
x̂2
it.

The system is

haai + h1(L)x1
it + h2(L)x̂2

it

=ai + α

[
ha

σ2
a

σ2
a + σ2

ε

x1
it + h1(0)ai + h1(0)

σ2
ε v(1− ρL)

1− λL
x̂2
it

+

(
vLh2(L)

(L− λ)(1− λL)
− vλ(1− ρL)h2(λ))

(1− ρλ)(L− λ)(1− λL)

)
x̂2
it + h2(0)

σ2
ε

σ2
a + σ2

ε

x1
it

]
,

which leads to

ha = 1 + αh1(0)

h1(0) = αha
σ2
a

σ2
a + σ2

ε

+ α1h2(0)
σ2

1

σ2
a + σ2

1

h2(z) = αh1(0)
σ2
ε v(1− ρz)

1− λz
+ α

(
vzh2(z)

(z − λ)(1− λz)
− vλ(1− ρz)h2(λ)

(1− ρλ)(z − λ)(1− λz)

)
.

The third equation can be written as

−λ(z − ϑ)

(
z − 1

ϑ

)
h2(z) = α1h1σ

2
1v(1− ρz)(z − λ)− α

σ2
ηvλ(1− ρz)h2(λ)

(1− ρλ)

where

ϑ =
1

2

1

ρ
+ ρ+

1− α
ρ(σ2

ε + σ2
u)
−

√(
1

ρ
+ ρ+

1− α
ρ(σ2

ε + σ2
u)

)2

− 4

 . (A.32)
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Use h2(λ) to removes the inside root ϑ, we have

h1(z) = h1(0) =
α

1− α2 +
σ2
ε

σ2
a

(
1− α2 ϑ

ρ
σ2
ε

σ2
ε+σ2

u

)
ha = 1 + αh1(0)

h2(z) =
αϑh1(0)σ2

ε

ρ(σ2
ε + σ2

u)

1− ρz
1− ϑz
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