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The technique of phase diversity has been used in traditional incoherent imaging systems to jointly estimate
an object and optical system aberrations. This paper extends the technique of phase diversity to polarimetric
imaging systems. Specifically, we describe penalized-likelihood methods for jointly estimating Stokes images
and optical system aberrations from measurements that contain phase diversity. Jointly estimating Stokes im-
ages and optical system aberrations involves a large parameter space. A closed-form expression for the esti-
mate of the Stokes images in terms of the aberration parameters is derived and used in a formulation that
reduces the dimensionality of the search space to the number of aberration parameters only. We compare the
performance of the joint estimator under both quadratic and edge-preserving regularization; we also compare
the performance of the reduced parameter search strategy to the full parameter search strategy under qua-
dratic regularization. The joint estimator with edge-preserving regularization yields higher fidelity polariza-
tion estimates than with quadratic regularization. With the reduced parameter search strategy, accurate ab-
erration estimates can be obtained without recourse to regularization “tuning.” © 2010 Optical Society of
America
OCIS codes: 100.3020, 100.3190, 100.3010.
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. INTRODUCTION
olarimetric imaging systems acquire data that can be
sed to infer the polarization state of an optical field [1,2].
he polarization state of an optical field across a scene
ontains information related to surface features such as
hape and roughness [3]. Naturally occurring objects typi-
ally have a larger surface granularity than man-made
bjects, so polarimetry offers the potential for improved
arget detection and identification over other imaging mo-
alities [4].
The polarization state of a transverse optical field can

e specified by the Stokes vector S= �S0 ,S1 ,S2 ,S3� [5,6].
he elements of S are functions of the optical intensity
nd defined in the following way: S0 is the total optical in-
ensity, S1 is the difference between the optical intensity
ransmitted by a linear polarizer with pass axis oriented
t 0° (reference) and one having pass axis oriented at 90°,
2 is the difference between the optical intensity trans-
itted by a linear polarizer with pass axis oriented at 45°

nd one having pass axis oriented at 135°, and S3 is the
ptical intensity transmitted by a right circular polarizer
nd a left circular polarizer. In the majority of remote-
ensing applications the linear polarization state of the
ptical field is of interest and so the S3 component is ig-
ored. We adopt this usual simplification of considering
nly the first three components of the Stokes vector,
hough the method generalizes easily.

Polarimeters, like traditional incoherent imaging sen-
ors, have resolution limits that depend on noise and sys-
em point-spread function. In remote-sensing applica-
ions, degradations in the point-spread function are often
ue to atmospheric turbulence, residual aberrations in
1084-7529/10/051185-9/$15.00 © 2
he optical system, or misalignment among components
n the optical system. We previously developed a method
or estimating Stokes images directly from polarimetric
easurements [7]. That work assumed complete knowl-

dge of the system point-spread function and was thus
imited in its range of application. In this paper, we pro-
ose methods that overcome this limitation by introduc-
ng phase diversity into the polarimetric measurements.
n traditional incoherent imaging the technique of phase
iversity has been used to jointly estimate the object and
ptical aberrations in the presence of atmospheric turbu-
ence [8]. Phase diversity requires the simultaneous col-
ection of two or more images that are related via a deter-

inistic phase perturbation. Typically, two images are
ollected: one is the conventional in-focus image and the
econd image is acquired on a separate focal plane that is
ranslated along the optical axis thereby inducing a
nown defocus to the second image. Figure 1 shows a
ypical phase diversity configuration. A direct extension of
he traditional phase diversity strategy to polarimetry
ould be to acquire two measurements per polarimetric

hannel; a four-channel polarimeter would be extended to
n eight-channel polarimeter. Here we present two algo-
ithms to jointly estimate the Stokes vectors and optical
berrations using a simpler four channel phase diverse
olarimeter. The method could be adapted easily to eight-
hannel polarimeters and other variations, but a four-
hannel polarimeter configuration is particularly attrac-
ive in terms of cost and complexity of hardware.

One acquisition parameter that must be chosen is the
mount of defocus in the diversity channel(s). Choosing
he optimal amount of phase diversity for phase-diverse
010 Optical Society of America

https://core.ac.uk/display/357282391?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


p
t
b
b
c
t

m
s

p
o
m
s
w
S

2
A
T
s
p
e

A
a
n
s

W
E

w
n
i
T
f

w
v
a
u
m
p

B
T
m
c
i
s

w
d
c
i
�
o

w
d
a
[

w
t
n

C
I
w
t
t
f
t

1186 J. Opt. Soc. Am. A/Vol. 27, No. 5 /May 2010 Valenzuela et al.
hase-retrieval in a traditional incoherent imaging sys-
em was investigated in [9] using the Cramér–Rao lower
ound. In this work we also use the Cramér–Rao lower
ound for phase-diverse phase-retrieval as a guide in
hoosing the amount of defocus to introduce into the sys-
em.

For simplicity of presentation, all optical-system ele-
ents are assumed to be ideal and all polarimetric mea-

urements are assumed to be perfectly registered.
The organization of this paper is as follows. Section 2

resents the mathematical framework of joint estimation
f object and aberrations from polarimetric measure-
ents. Section 3 formulates a reduced-parameter search

trategy. Section 4 explores joint estimation numerically
ith both quadratic and edge-preserving regularization.
ections 5 and 6 give results and concluding remarks.

. MATHEMATICAL FRAMEWORK
. Stokes-Vector Imaging
he optical intensity, �, at a single point in an imaging
ystem with a linear polarizer in the optical path having
ass axis oriented at angle � to the reference axis can be
xpressed in terms of the Stokes vector,

���� =
1

2
�S0 + S1 cos�2�� + S2 sin�2���. �1�

n imaging polarimeter has multiple channels, each with
different polarization angle. For J measurements (chan-
els) at polarization angles �1 , . . . ,�J, Eq. (1) becomes a
ystem of J equations. In matrix form the system is

�
���1�

]

���J�
� =

1

2�
1 cos�2�1� sin�2�1�

] ] ]

1 cos�2�J� sin�2�J�
��

S0

S1

S2
� . �2�

hen ���j�, S0, S1, and S2 are images each of size N�M,
q. (2) can be configured lexicographically to become

� = �TJ�3 � Inp
�S, np = NM, �3�

here S= �S0 ,S1 ,S2� is a 3np�1 column vector, Inp
is the

p�np identity matrix, � is the Kronecker product, TJ�3
s the matrix in Eq.(2), and � is a Jnp�1 column vector.
he conventional estimate of the Stokes images, Ŝconv, is

ormed by using the pseudo-inverse of T [5]:

Fig. 1. Traditional pha
J�3
Ŝconv = ���TJ�3� TJ�3�−1T�J�3� � Inp
��, �4�

here “ �” denotes conjugate transpose. The matrix in-
erse in Eq.(4) is guaranteed to exist if J�3 and the �j
re chosen so that TJ�3 has linearly independent col-
mns. In words, in Eq. (4) the J�3 system of equations in
atrix (2) is solved by least-squares at each voxel inde-

endently.

. Forward-Imaging Model
he model (3) ignores measurement blur and noise. A
ore complete discrete–discrete forward model for an in-

oherent imaging system that accounts for space-
nvariant optical blur and additive noise can be repre-
ented by 2D discrete convolution:

yj�n,m� = bj�n,m� � � �j�n,m� + �j�n,m�

n = 1, . . . ,N, m = 1, . . . ,M, �5�

here yj�n ,m� are the data for the jth channel, bj�n ,m�
enotes the incoherent point-spread function (PSF) asso-
iated with the jth channel, �j�n ,m� is the jth channel
deal intensity image, �� denotes 2D convolution, and
j�n ,m� is additive noise. A matrix-vector representation
f (5) is

yj = Bj��TJ�3�j � Inp
�S + �j, j = 1, . . . ,J, �6�

here Bj denotes a np�np Toeplitz matrix whose entries
epend on bj�n ,m�, �TJ�3�j denotes the jth row of TJ�3,
nd �j is an additive noise vector. Stacking J channels
each given by Eq.(6)] yields

y = B�TJ�3 � Inp
�S + �, �7�

here y� �y1 , . . . ,yJ�, B�diag�Bj� is a block diagonal ma-
rix with the single-channel blur matrices on the diago-
al, and �� ��1 , . . . ,�J�.

. Point-Spread-Function Parameterization
deally the matrices Bj (or equivalently the PSFs bj�n ,m�)
ould correspond to diffraction-limited PSFs. In practice

he PSF is often degraded by known or unknown aberra-
ions. In the presence of aberrations the generalized pupil
unction (which is also the coherent transfer function) for
he system can be written

rsity imaging strategy.
se-dive
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H�u,v� = A�u,v�exp�ıW�u,v��, �8�

here A�u ,v� is a binary aperture function, W�u ,v� is a
hase-aberration function, and �u ,v� are frequency do-
ain coordinates [10]. Aberrations in an optical system

an be represented using a suitable basis set ��k�u ,v��,
uch as Zernike polynomials [11]. Representing W�u ,v� in
he basis ��k�u ,v�� parameterizes the generalized pupil
unction:

H�u,v;�� = A�u,v�exp	ı

k=1

K

�k�k�u,v�� ,

where � = ��1, . . . ,�K�. �9�

isible regime polarimeter configurations, such as
ivision-of-focal-plane and division-of-amplitude, simulta-
eously acquire all of the polarimetric channels and so
re exposed to identical optical aberrations, i.e., W�u ,v� is
he same for each channel.

. Phase Diversity
o aid in the estimation of aberrations, we propose to in-
roduce phase diversity, typically by different amounts in
he different polarimetric channels. Figures 2 and 3 show
wo possible polarimetric-phase-diverse imaging strate-
ies. If the phase diversity function in channel j is de-
oted �j�u ,v�, then the generalized pupil function for the
th channel can be written

Hj�u,v;�,�j� = A�u,v�exp�ı	

k=1

K

�k�k�u,v� + �j�u,v�� .

�10�

The corresponding incoherent PSF, hj�x ,y�, and the op-
ical transfer function, Hj�u ,v�, can be written in terms of
he generalized pupil function:

hj�x,y;�,�j� = c�F −1�Hj�u,v;�,�j���2, �11�

Fig. 2. Polarimetric phase-diversity strate
Hj�u,v;�,�j� = cF ��F −1�Hj�u,v;�,�j���2�, �12�

here F� · � is the Fourier transform and c is a constant
hat normalizes the PSF to unit volume [9]. The modeled
ystem PSF, bj�n ,m�, and optical transfer function consist
f samples of hj�x ,y ;� ,�j� and Hj�u ,v ;� ,�j� at the Ny-
uist sampling rate [10], respectively. Consequently, each
lur matrix, Bj, is parameterized by the vector �. For
nalysis and implementation we assume periodic bound-
ry conditions on the object so that the blur matrices,
j���, are circulant and thus diagonalized by a 2D dis-

rete Fourier transform (DFT) matrix:

Bj��� = Q�j���Q�, �13�

here Q is a 2D unitary DFT matrix and �j��� is a diag-
nal matrix whose entries are the DFT coefficients of the
rst column of Bj���.

. ALGORITHMS FOR JOINT ESTIMATION
F STOKES IMAGES AND ABERRATIONS

his section describes novel algorithms for estimating S
nd � jointly under the model (7). Under an additive
aussian noise model �j�N�0 ,	2Inp

� for j=1, . . . ,J, the
og-likelihood function for both the object S and aberra-
ion parameters � is

L�S,�� = −
1

2	2 �y − B����TJ�3 � Inp
�S�2. �14�

onventional maximum-likelihood estimation is ineffec-
ive for this problem because B��� is ill-conditioned.
herefore we focus on penalized-likelihood estimators of

he form

�Ŝ,�̂� = argmin
�S,��

�− L�S,�� + R�S�� � argmin
�S,��


�S,��,

�15�

here R�S� is a regularization term that penalizes an ob-
ect, S, according to how much it departs from our as-

izing the division-of-focal-plane technique.
gy util
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umptions about the image properties [12]. In remote
ensing � is often a nuisance parameter. However, in an
daptive-optics system with aberration correction capa-
ility, � is a parameter of interest. Depending on the task
t hand, either � or S or both can be parameters of inter-
st. The choice of regularization penalty will in general
epend on the task, i.e., which parameters are of interest
nd which are nuisance.

. � as a Nuisance Parameter
hen the Stokes images, S, are of primary interest, then
is a nuisance parameter, and a regularization function

hat reflects a priori knowledge about the object should be
hosen. Stokes images �S1 ,S2� typically have sharp edges
ue to man-made objects having stronger polarimetric
ignatures than naturally occurring objects. To recover as
uch polarization information as possible the regulariza-

ion function, R�S�, should preserve edges. Since qua-
ratic regularization tends to wash out edges and smooth
oise we explore edge-preserving regularization using a
yperbolic potential function ��t ;��=�2��1+ �t /��2−1�.
or fixed � this function is approximately quadratic for
alues of t� and approximately linear for t��. This be-
avior will tend to smooth noise and preserve edges. Spe-
ifically, we choose R�S� to be

R�S� = 

l=0

2



k=1

2np

�l���CSl�k;�l�, �16�

here C is a 2D finite-differencing matrix (horizontal and
ertical differences). The estimator (15) is then

�Ŝ,�̂� = argmin
�S,��

1

2	2 �y − B����TJ�3 � Inp
�S�2

+ 

l=0

2



k=1

2np

�l���CSl�k;�l�. �17�

Fig. 3. (Color online) Polarimetric phase-diversit
. � as a Parameter of Interest: Reduced Parameter
earch Strategy
n [13] it was shown that, for a two channel phase-
iversity system under an additive Gaussian noise model,
he estimate of the object being imaged could be ex-
ressed in terms of the system aberration parameters.
his result was generalized in [8] for phase-diverse imag-

ng with an arbitrary number of channels. A similar pro-
edure can be used to derive a closed-form expression for
he Stokes images in terms of system aberrations for po-
arimetric phase-diverse imaging. Deriving this closed-
orm expression requires the use of a quadratic regular-
zer that can be diagonalized by the DFT as in Eq. (13).

e focus on quadratic regularizers of the form

R�S� =
1

2
����3 � C�S�2, �18�

here ��3�diag���0 ,��1 ,��2�, and �i�0i=0,1,2. Using
his regularization function Eq. (15) becomes

�Ŝ,�̂� = argmin
�S,��

1

2	2 �y − B����TJ�3 � Inp
�S�2

+
1

2
����3 � C�S�2. �19�

or a fixed aberration vector, �, Eq. (19) is convex in S
nd the column gradient of Ŝ satisfies the stationary
oint condition �S��S ;��=0, where � is defined in Eq.
15), which leads to

S��� = ��TJ�3� � Inp
�B����B����TJ�3 � Inp

� + 	2�3 � C�C�−1

� �TJ�3� � Inp
�B����y. �20�

he matrix inverse in Eq. (20) is guaranteed to exist pro-
ided the intersection of the null spaces of the component
atrices is the zero vector. Because C is a first-order fi-
ite differencing matrix, the only nonzero vectors in its
ull space are of the form �1 where ��R and 1 is the

egy utilizing the division-of-amplitude technique.
y strat
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p�1 vector of ones. Therefore, nonzero vectors in the
ull space of ���3 � C� are of the form v= ��11,�21,�31�,
here �1 ,�2 ,�3 are not all simultaneously zero. It re-
ains to show that v is not in the null space of �TJ�3�

� Inp
�B���B����TJ�3 � Inp

�. Now,

here the circulant approximation has been used. Ob-
erve that u is nonzero only in the DC components. Recall
hat the optical transfer function, �j���, for space-
nvariant blur conserves energy and thus does not alter
C components. Thus,

�TJ�3� � Inp
�Q���������u = �TJ�3� � Inp

�v̌ � 0,

ince v̌ is a nonzero constant vector.
Substitution of Eq. (20) into Eq. (19) yields an “aberra-

ion only” objective function,

�̂ = argmin
�

� 1

2	2 �y − B����TJ�3 � Inp
�S����2

+
1

2
����3 � C�S����2 . �21�

he estimate in Eq. (21) is a joint estimate of object and
berrations, that is, minimization over � implicitly mini-
izes over S. Once � has been estimated the object esti-
ate is given by Eq. (20).

. SIMULATION EXPERIMENTS
e performed simulation experiments to evaluate joint

stimation with both edge-preserving regularization (17)
nd quadratic regularization (21). Two situations were
onsidered: (1) the object parameters are of interest and
he aberration parameters are nuisance parameters, and
2) the aberration parameters are of interest and the ob-
ect parameters are nuisance parameters. Because of the
ignificant computational savings afforded by Eq. (21) we
valuated it with distinct regularization tuned for each
bject and aberrations. For comparison we also evaluated
he conventional estimate (4) using the same data with-
ut phase diversity. For ground truth, we used polarimet-
ic images collected using a division-focal-plane polarim-
ter by General Dynamics Advanced Information
ystems, Ypsilanti, Michigan. The linear polarizer pass
xes were oriented at {0°, 45°, 90°, 135°}, and the sub-
ampled polarimetric image size was �256�256� (sub-
ampled from a �512�512� micropolarizer array). The im-
gery was then corrupted by space-invariant optical blur
nd additive zero-mean Gaussian noise. The optical blur
as constructed using an annular pupil with a phase dis-

ortion constructed from Zernike polynomials 4–19 as de-
ned in [11]; the phase distortion had an RMS strength of
.2 waves. The phase of the generalized pupil function is
hown in Fig. 4. We define the SNR of an image to be
0 log10��ȳ� / �ȳ−y��dB, where ȳ and y are the noise-free
nd noisy images, respectively; the experiments were
one at two SNR levels: 45 dB and 25 dB. To emulate a
raditional phase-diversity configuration the defocused
hannels were at angles {0°, 90°}. In this configuration the
45°, 135°} channels sum to form the conventional in-focus
hannel and the {0°, 90°} channels sum to form the de-
ocus channel.

To aid in selecting the amount of defocus to use in the
iversity channels we assumed complete knowledge of the
bject in Figs. 5 and 6 (phase-diverse phase-retrieval) and
omputed the Cramér–Rao bound for the aberration pa-
ameters over a range of defocus values. The Fisher-
nformation matrix is computed from the log-likelihood
unction in Eq. (19):

F =
1

	2 �����������������, �22�

here � denotes the column gradient and �����B���
�T4�3 � Inp

�S. The Fisher-information matrix was com-
uted and inverted for various values of defocus. Since
he Zernike polynomials are orthonormal, the mean of the
iagonal elements corresponds to the minimum achiev-
ble mean-squared error, ŴMIN, of any unbiased estima-
or of the degrading wavefront W���. In Fig. 7 ŴMIN is
lotted against peak-to-valley defocus. The minimum oc-
urs when the amount of defocus is 1.8 waves peak-to-
alley; we used this amount of defocus in the simulations
ut we note that it is not necessarily the optimal choice
or joint estimation of object and aberrations. The blurry
nd noisy data with and without phase diversity are
hown in Figs. 8 and 9.

Numerical evaluation of Eqs. (17) and (21)requires the
election of regularization “tuning” parameters; for Eq.
17) six parameters must be chosen, ��0 ,�1 ,�2 ,�0 ,�1 ,�2�,
nd for Eq. (21) three parameters must be chosen
�0 ,�1 ,�2�.

When there is no phase diversity the estimator PSF,
���, of Eq. (19) for a fixed aberration parameter, �, is
iven by [16]

lk��� = �B����B��� + 	2�kC�C�−1B����B���ek, �23�

here B��� is the common blur across channels, ek is a
ronecker impulse, and k=0,1,2 indicates the Stokes im-
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Fig. 4. (Color online) Phase of the generalized pupil function.
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ge; because the blur is space invariant Eq. (23) is inde-
endent of pixel location. The parameters ��0 ,�1 ,�2� in
q.(17) were chosen so that in the limit that the hyper-
olic potential is approximately quadratic, i.e., Eq.(17) �
q.(19), the channel PSFs had full width at half maxima

FWHM) of �r ,2r ,2r�, where r is the FWHM of the
iffraction-limited PSF in the absence of phase diversity;
0 was calculated using

�̂0 = argmin
�0

�FWHM�l0���� − r�2, �24�

nd ��1 ,�2� were calculated similarly. Setting the PSF
WHM of Ŝ1 and Ŝ2 to twice that of Ŝ0 is reasonable be-
ause of the significantly lower SNR in the S1 and S2 im-
ges. We generated 20 realizations of � each having RMS
hase strengths of 0.2 waves over the pupil. For each ab-
rration realization, Eq. (24) was solved numerically us-
ng a simplex search site [14], and then the final values
or ��0 ,�1 ,�2� were determined by averaging over the en-
emble. Once the � parameters were fixed the nonqua-
ratic regularization parameters, ��0 ,�1 ,�2�, were deter-
ined by a brute-force multidimensional search for the

arameter combination that minimized the normalized
MS error between the Stokes object and the Stokes es-

imate.
For Eq. (21) there were three regularization param-

ters to set for each case. These parameters were deter-
ined by a brute-force multidimensional search for the

arameter combination that minimized the normalized
MS error between (1) the Stokes object and the Stokes
stimate, and (2) the true aberrations and the aberration
stimate. The regularization parameters that were
tuned” for object estimation were 10 orders of magnitude
arger than those for aberration estimation.

ig. 5. (Color online) Image estimation results for SNR=45 dB.
stimate using quadratic regularizer, and the conventional estim

ig. 6. (Color online) Image estimation results for SNR=25 dB.
stimate using quadratic regularizer, and the conventional estim
After the regularization parameters were set, the esti-
ators were evaluated over a 20-realization noise en-

emble for each of two SNR levels. The initial estimate in
ach case was formed using Eq. (4) with the phase-diverse
ata. Since closed form expressions for the minimizers of
qs. (17) and (21) are not tractable they were minimized
umerically. The optimization was done using the limited
emory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)

lgorithm [15]. The minimization of Eq. (17) required pre-
onditioning because of the different scales of the Stokes
mages and the aberration parameters. Samples of the
essian matrix of Eq. (17) were calculated via finite dif-

erences and used in a diagonal preconditioner. The itera-
ive search was stopped when the iteration, k, satisfied
�k+1−�k� /�k10−10; this corresponded to �200 itera-
ions for Eq. (17) and �30 iterations for Eq. (21).

left to right: object, estimate using edge-preserving regularizer,

left to right: object, estimate using edge-preserving regularizer,
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ig. 7. (Color online) Minimum mean squared error as a func-
ion of defocus measured from peak to valley.
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. RESULTS
ables 1 and 2 show normalized RMS estimation errors
or each of Eqs. (17), (21), and (4). The reported errors are
f the quantities S0, the total linear polarization (TPOL)
S1

2+S2
2, and wavefront. There is no wavefront error to be

eported for the conventional estimate, Eq. (4), so a value
f N/A is listed. Also, the estimates of S0 and TPOL are
isted as N/A for Eq. (21) when the regularization was
uned for aberration estimation because the estimated
mages are unrecognizable. The poor object estimates in
his case are due to the small values of the regularization
arameter. Recall that the object estimate is given by Eq.
20), which approaches the inverse filter as �→0 and thus
reatly amplifies noise. The aberration estimation errors
or Eq. (21) when tuned for object estimation were reason-

Fig. 8. Data for SNR=45 dB:

Fig. 9. Data for SNR=25 dB:
bly good and are included for completeness.
Figures 8 and 9 show object estimates for SNR=45 dB
nd SNR=25 dB, respectively. Each estimate is displayed
n red-green-blue (RGB) format with the RGB channels
et as �S0+10�S1

2+S2
2 ,S0 ,S0�; in this display scheme the

olarized elements of the scene are red while the unpolar-
zed elements are in gray scale; the factor of 10 in the red
hannel was chosen for visual appeal. As expected, the es-
imates with data at a higher SNR have lower RMS er-
ors and are more visually appealing. Figures 10 and 11
how cuts through TPOL reconstructions, at a column
aving an edge with large polarization content, for SNR
45 dB and SNR=25 dB, respectively. The benefit of
dge-preserving regularization is apparent in both cases
ut more pronounced at the 25 dB SNR level, as the qua-
ratically regularized estimate shows significantly larger
lurring across the edge.

ft to right: {0°, 45°, 90°, 135°}.

ft to right: {0°, 45°, 90°, 135°}.
Table 1. RMS Error Percentages for SNR=45 dB

Cost Parameter of Interest S0 �S1
2+S2

2 Wavefront

Edge-preserving S 1.8%±0.01% 36%±0.3% 3.3%±0.2%
Quadratic S 1.6%±0.01% 40%±0.2% 3.0%±0.2%
Quadratic � N/A N/A 1.4%±0.2%

onventional estimate S 10%±0.0013% 60%±0.11% N/A
Table 2. RMS Error Percentages for SNR=25 dB

Cost Parameter of Interest S0 �S1
2+S2

2 Wavefront

Edge-preserving S 6.2%±0.2% 59%±1.4% 80%±4.6%
Quadratic S 6.5%±0.02% 61%±1.0% 79%±0.36%
Quadratic � N/A N/A 16%±7%

onventional estimate S 11%±0.011% 490%±1.7% N/A
from le
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Figures 12 and 13 show the residual wavefronts, that
s, the estimated wavefront less the true wavefront. The
stimates in all cases have lower RMS errors with higher
NR data. At 45 dB SNR the wavefront estimation errors
re all comparable. At 25 dB SNR the wavefront error in
sing Eq. (21) (when tuned for aberration estimation) is
arkedly lower than for Eqs. (17) and (21) (when tuned

or object estimation). This significant reduction in esti-

50 100 150 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Row index

TP
O
L
[n
or
m
al
iz
ed

to
ob

je
ct
]

object
edge−preserving
quadratic

ig. 10. (Color online) Cuts through a column of TPOL for the
bject and reconstructions with edge-preserving and quadratic
egularization at SNR=45 dB.
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ig. 11. (Color online) Cuts through a column of TPOL for the
bject and reconstructions with edge-preserving and quadratic
egularization at SNR=25 dB.
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ig. 12. (Color online) Residual wavefront errors for SNR
45 dB. From left to right: edge-preserving regularization, qua-
ratic regularization tuned for object estimation, and quadratic
egularization tuned for aberration estimation.
ation error can be attributed to the regularization being
uned for aberration estimation.

. CONCLUSIONS AND FUTURE WORK
his paper has described two methods, Eqs. (17) and (21),

or joint estimation of Stokes images and aberrations
rom polarimetric images with phase diversity. Estima-
ion accuracy follows a task-based hierarchy, i.e., in a
oint-estimation framework the choice of algorithm is task
ependent. When the task is image restoration (aberra-
ions are nuisance parameters) an algorithm that jointly
stimates object and aberrations while incorporating a
riori knowledge of the object is appropriate. However, if
he aberration parameters are of interest and the object is

nuisance parameter then a reduced-parameter algo-
ithm should be chosen.

Future work includes analyzing the bias and covari-
nce of Eq. (19) and using those expressions to investigate
ow the choice of diversity channels affects estimation of
tokes images and aberrations.
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