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Abstract

NAMD is a fully featured, production molecular dynamics program for high performance
simulation of large biomolecular systems. We have previously, at SC2000, presented scaling
results for simulations with cutoff electrostatics on up to 2048 processors of the ASCI Red
machine, achieved with an object-based hybrid force and spatial decomposition scheme and an
aggressive measurement-based predictive load balancing framework. We extend this work by
demonstrating similar scaling on the much faster processors of the PSC Lemieux Alpha cluster,
and for simulations employing efficient (order N log N) particle mesh Ewald full electrostatics.
This unprecedented scalability in a biomolecular simulation code has been attained through
latency tolerance, adaptation to multiprocessor nodes, and the direct use of the Quadrics Elan
library in place of MPI by the Charm++/Converse parallel runtime system.

1 Introduction

NAMD is a parallel, object-oriented molecular dynamics program designed for high performance
simulation of large biomolecular systems [6]. NAMD employs the prioritized message-driven exe-
cution capabilities of the Charm++/Converse parallel runtime system,1 allowing excellent parallel
scaling on both massively parallel supercomputers and commodity workstation clusters. NAMD is
distributed free of charge via the web2 to over 4000 registered users as both source code and conve-
nient precompiled binaries. NAMD development and support is a service of the National Institutes
of Health Resource for Macromolecular Modeling and Bioinformatics, located at the University of
Illinois at Urbana-Champaign.3

In a molecular dynamics (MD) simulation, full atomic coordinates of the proteins, nucleic acids,
and/or lipids of interest, as well as explicit water and ions, are obtained from known crystallographic
or other structures. An empirical energy function, which consists of approximations of covalent in-
teractions in addition to long-range Lennard-Jones and electrostatic terms, is applied. The resulting
Newtonian equations of motion are typically integrated by symplectic and reversible methods using
a timestep of 1 fs. Modifications are made to the equations of motion to control temperature and
pressure during the simulation.

With continuing increases in high performance computing technology, the domain of biomolecu-
lar simulation has rapidly expanded from isolated proteins in solvent to include complex aggregates,
often in a lipid environment. Such simulations can easily exceed 100,000 atoms (see Fig. 1). Sim-
ilarly, studying the function of even the simplest of biomolecular machines requires simulations
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Figure 1: Simulations have increased exponentially in size, from BPTI (upper left, about 3K
atoms), through the estrogen receptor (lower left, 36K atoms, 1996), to F1-ATPase (right, 327K
atoms, 2001). (Atom counts include solvent.)

of 10 ns or longer, even when techniques for accelerating processes of interest are employed. The
goal of interactive simulation of smaller molecules places even greater demands on the performance
of MD software, as the sensitivity of the haptic interface increases quadratically with simulation
speed [11].

Despite the seemingly unending progress in microprocessor performance indicated by Moore’s
law, the urgent nature and computational needs of biomedical research demand that we pursue
the additional factors of tens, hundreds, or thousands in total performance which may be had by
harnessing a multitude of processors for a single calculation. While the MD algorithm is blessed
with a large ratio of calculation to data, its parallelization to large numbers of processors is not
straightforward [4].

2 NAMD Parallelization Strategy

We have approached the scalability challenge by adopting message-driven approaches and reducing
the complexity associated with these methods by combining multi-threading and an object-oriented
implementation in C++.

The dynamic components of NAMD are implemented in the Charm++[8] parallel language.
Charm++ implements an object-based message-driven execution model. In Charm++ applications,
there are collections of C++ objects, which communicate by remotely invoking methods on other
objects by messages.

Compared with conventional programming models such as message passing, shared memory or
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data parallel programming, Charm++ has several advantages in improving locality, parallelism and
load balance [3, 7]. The flexibility provided by Charm++ is a key to the high performance achieved
by NAMD on thousands of processors.

In Charm++ applications, users decompose the problem into objects, and since they decide
the granularity of the objects, it is easier for them to control the degree of parallelism. As de-
scribed below, NAMD uses a novel way of decomposition that easily generates the large amount of
parallelism needed to occupy thousands of processors.

Charm++’s object-based decomposition also help users to improve data locality. Objects en-
capsulate states, Charm++ objects are only allowed to directly access their own local memory.
Access to other data is only possible via asynchronous method invocation to other objects.

Charm++’s parallel objects and data-driven execution adaptively overlaps communication and
computation and hide communication latency: when an object is waiting for some incoming data,
entry functions of other objects with all data ready are free to execute.

In Charm++, objects may even migrate from processor to processor at runtime. Object mi-
gration is controlled by Charm++ load balancer. Charm++ implements a measurement based
load balancing framework which automatically instruments all Charm++ objects, collects compu-
tation load and communication pattern during execution and stores them into a “load balancing
database”. Charm++ then provides a collection of load balancing strategies whose job is to decide
on a new mapping of objects to processors based on information from the database. Load balanc-
ing strategies are implemented in Charm++ as libraries. Programmers can easily experiment with
different existing strategies by linking different strategy modules and specify which strategy to use
at runtime via command line options. This involves very little efforts from programmers while
achieving significant improvements in performance in adaptive applications. Application specific
load balancing strategies can also be developed by users and plugged in easily. In the following
paragraphs, we will describe the load balancing strategies optimized for NAMD in detail.

NAMD 1 is parallelized via a form of spatial decomposition using cubes whose dimensions are
slightly larger than the cutoff radius. Thus, atoms in one cube need to interact only with their 26
neighboring cubes. However, one problem with this spatial decomposition is that the number of
cubes is limited by the simulation space. Even on a relatively large molecular system, such as the
92K atom ApoA1 benchmark, we only have 144 (6×6×4) cubes. Further, as density of the system
varies across space, one may encounter strong load imbalances.

NAMD 2 addresses this problem with a novel combination of force [10] and spatial decomposi-
tion. For each pair of neighboring cubes, we assign a non-bonded force computation object, which
can be independently mapped to any processor. The number of such objects is therefore 14 times
(26/2 + 1 self-interaction) the number of cubes. To further increase the number and reduce the
granularity of these compute objects, they are split into subsets of interactions, each of roughly
equal work.

The cubes described above are represented in NAMD 2 by objects called home patches. Each
home patch is responsible for distributing coordinate data, retrieving forces, and integrating the
equations of motion for all of the atoms in the cube of space owned by the patch. The forces used
by the patches are computed by a variety of compute objects. There are several varieties of compute
objects, responsible for computing the different types of forces (bond, electrostatic, constraint, etc.).
Some compute objects require data from one patch, and only calculate interactions between atoms
within that single patch. Other compute objects are responsible for interactions between atoms
distributed among neighboring patches. Relationships among objects are illustrated in Fig. 2.

When running in parallel, some compute objects require data from patches not on the compute
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Figure 2: NAMD 2 hybrid force/spatial decomposition. Atoms are spatially decomposed into
patches, which are represented on other nodes by proxies. Interactions between atoms are calculated
by several classes of compute objects.

object’s processor. In this case, a proxy patch takes the place of the home patch on the compute
object’s processor. During each time step, the home patch requests new forces from local compute
objects, and sends its atom positions to all its proxy patches. Each proxy patch informs the
compute objects on the proxy patch’s processor that new forces must be calculated. When the
compute objects provide the forces to the proxy, the proxy returns the data to the home patch,
which combines all incoming forces before integrating. Thus, all computation and communication
is scheduled based on priority and the availability of required data.

Some compute objects are permanently placed on processors at the start of the simulation, but
others are moved during periodic load balancing phases. Ideally, all compute objects would be able
to be moved around at any time. However, where calculations must be performed for atoms in
several patches, it is more efficient to assume that some compute objects will not move during the
course of the simulation. In general, the bulk of the computational load is represented by the non-
bonded (electrostatic and van der Waals) interactions, and certain types of bonds. These objects
are designed to be able to migrate during the simulation to optimize parallel efficiency. The non-
migratable objects, including computations for bonds spanning multiple patches, represent only a
small fraction of the work, so good load balance can be achieved without making them migratable.

NAMD uses a measurement-based load balancer, employing the Charm++ load balancing
framework. When a simulation begins, patches are distributed according to a recursive coordi-
nate bisection scheme [1], so that each processor receives a number of neighboring patches. All
compute objects are then distributed to a processor owning at least one home patch, insuring that
each patch has at most seven proxies. The dynamic load balancer uses the load measurement
capabilities of Converse to refine the initial distribution. The framework measures the execution
time of each compute object (the object loads), and records other (non-migratable) patch work as
“background load.” After the simulation runs for several time-steps (typically several seconds to
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several minutes), the program suspends the simulation to trigger the initial load balancing. NAMD
retrieves the object times and background load from the framework, computes an improved load
distribution, and redistributes the migratable compute objects.

The initial load balancer is aggressive, starting from the set of required proxies and assigning
compute objects in order from larger to smaller, avoiding creating new proxies unless necessary.
To assist this algorithm when the number of processors is larger than the number of patches,
unoccupied processors are seeded with a proxy from a home patch on a close processor. In addition,
when placing compute objects which only require a single patch (calculating interactions within
that patch) the load balancer will prefer a processor with a proxy over the one with the actual
home patch; reserving the home patch nodes for objects which need them more. After this initial
balancing, only small refinements are made, attempting to transfer single compute objects off of
overloaded processors without increasing communication. Two additional cycles of load balancing
follow immediately in order to account for increased communication load, after which load balancing
occurs periodically to maintain load balance.

3 Particle Mesh Ewald in NAMD

Particle mesh Ewald (PME) [5] full electrostatics calculations in NAMD have been parallelized in
several stages, and this one feature has greatly affected the performance and scalability observed
by users. As seen in Fig. 3, significant progress has been made. We initially incorporated the
external DPME4 package into NAMD 2.0, providing a stable base functionality. The PME recip-
rocal sum was serialized in this version because the target workstation clusters for which DPME
was developed obtained sufficient scaling by only distributing the direct interactions. In NAMD,
the direct interactions were incorporated into the existing parallel cutoff non-bonded calculation.
The reciprocal sum was reimplemented more efficiently in NAMD 2.1, providing a base for later
parallelization.

An effective parallel implementation of the PME reciprocal sum was finally achieved in NAMD 2.2.
The final design, while elegant, was far from obvious, as numerous false starts were attempted along
the way. In particular, the parallel implementation of FFTW5 was found to be inappropriate for
our purposes, due to an inefficient transpose operation designed to conserve memory. Instead,
the serial components of the FFTW 3D FFT (2D and 1D FFTs) were used in combination with
Charm++ messages to implement the data transpose. The reciprocal sum is currently parallelized
only to the size of the PME grid, which is typically between 50 and 200. However, this is sufficient
to allow NAMD simulations to scale efficiently, as the bottleneck has been significantly reduced.

The PME calculation involves five phases of calculation and four of communication, which the
message-driven design of NAMD interleaves with other work, giving good performance even on
high latency networks. The basic parallel structure is illustrated in Fig. 4. This overlap allows the
FFT components of the PME operations and real-space direct force computations to execute on
the same processor, in an interleaved fashion. When the number of processors is comparable to the
number of PME processors (e.g. on 512 processors) this is a substantial advantage.

In the first and most expensive calculation, atomic charges are interpolated smoothly onto
(typically) 4× 4× 4 subsections of a three dimensional mesh; this is done on each processor for the
atoms in the patches it possesses, as the process is strictly additive. Next, the grid is composited and
decomposed along its first dimension to as many processors as possible. The spatial decomposition

4Distributed Particle–Mesh Ewald, http://www.ee.duke.edu/Research/SciComp/SciComp.html
5Fastest Fourier Transform in the West, http://www.fftw.org/

5



32

64

128

8 16 32 64 128 256 512

Pr
oc

es
so

rs
 x

 T
im

e 
pe

r S
te

p 
(s

ec
on

ds
)

Ru
nt

im
e 

fo
r 1

 n
s 

Si
m

ul
at

io
n

Number of Processors

NAMD ApoA1 (PME) Benchmark on PSC Cray T3E

1 month 2 weeks 1 week 4 days 2 days

NAMD 2.1
NAMD 2.2
NAMD 2.3
NAMD 2.4

Figure 3: Total resources consumed per step for 92K atom benchmark with PME every four steps
by NAMD versions 2.1–2.4 on varying numbers of processors of the PSC T3E. Perfect linear scaling
is a horizontal line. Diagonal scale shows runtime per ns.

of the patches is used to avoid unnecessary messages or empty parts of the grid being transmitted.
A local 2D FFT is performed by each processor on the second and third dimension of the grid,
and the grid is then redistributed along its second dimension for a final 1D FFT on the first
dimension. The transformed grid is then multiplied by the appropriate Ewald electrostatic kernel,
and a backward FFT performed on the first dimension. The grid is redistributed back along its
first dimension, and a backward 2D FFT performed, producing real-space potentials. The initial
communication pattern is then reversed, sending the exact data required to extract atomic forces
back to the processors with patches.

Improvements to the PME direct sum in NAMD 2.3 were obtained by eliminating expensive calls
to erfc().6 This was accomplished by incorporating the entire short-range non-bonded potential
into an interpolation table. By interpolating based on the square of the interaction distance, the
calculation of 1/

√
r2 was eliminated as well. The interpolation table is carefully constructed to avoid

cancellation errors and is iteratively refined during program startup to eliminate discontinuities in
the calculated forces. Simulations performed with the new code are up to 50% faster than before
and are of equivalent accuracy.

Much of the improvement observed in NAMD 2.4 is due to the elimination of unnecessary
messages and data, which could be excluded based on the overlap of patches and the PME grid.
Distributing PME calculations to at most one processor per node for large machines in NAMD 2.4
has reduced contention for available interconnect bandwidth and other switch or network interface
resources. Patches were similarly distributed, avoiding processors participating in PME when
possible. This has increased the scalability of NAMD on the existing machines at NCSA, PSC,

6The erfc(x) function computes the complement of the error function of x.
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Figure 4: Parallel structure of PME in NAMD. When PME is required, typically every four steps,
PME interleaves with other calculation.

and SDSC with 2, 4, and 8 processors per node. A more aggressive optimization would employ
different sets of processors for each phase of the PME calculation on a sufficiently large machine.
Figure 5 illustrates the portable scalability of NAMD 2.4 on a variety of recent platforms employed
for production simulations by researchers at the Resource.

Continuing development for NAMD 2.5 as reported here has resulted in a more efficient inter-
polation table implementation and the elimination of unnecessary calculations from non-multiple-
timestepping simulations, resulting in substantial improvements to serial performance. To improve
locality of communication, patches and the PME grid planes with which they communicate have
been aligned on the processors. In order to improve performance on Lemieux, various manipulations
of the load balancer have been attempted, including removing all work from processors involved in
the PME reciprocal sum, with limited success.

4 Optimization for PSC Lemieux

The Pittsburgh Supercomputing Center’s Lemieux is a high performance Alpha cluster with 3000
processors and a peak performance of about 6 TFLOPS. Lemieux uses the Quadrics intercon-
nection network, which surpasses other communication networks in speed and programmability
[9]. Lemieux provides a default MPI library to access its interconnect. Our NAMD/Charm++
implementation on top of MPI uses MPI Iprobe to get the size of the received message and then
allocates a buffer for it. MPI Iprobe turned out to be a very expensive call and affected the speedup
of NAMD.

The network interface in Quadrics can also be accessed through the Elan communication library
[12]. The Elan message passing library has a low latency of 5µs for small messages and a peak
bandwidth of over 300 MB/s. The flexibility and programmability of Elan library motivated us to
create a NAMD/Charm++ implementation directly on top of the Elan library. Our implementation
has two types of messages, small and large, distinguished by different tags. Small messages are sent
asynchronously along with the message envelope and are received in preallocated buffers. The
maximum size of small messages and the number of preallocated buffers are a parameter to the

7



8

16

32

64

1 2 4 8 16 32 64 128 256 512

Pr
oc

es
so

rs
 x

 T
im

e 
pe

r S
te

p 
(s

ec
on

ds
)

Ru
nt

im
e 

fo
r 1

 n
s 

Si
m

ul
at

io
n

Number of Processors

NAMD 2.4 ApoA1 (PME) Benchmark

1 month 2 weeks 1 week

4 days 2 days 1 day 12 hours

NCSA Platinum 2xP3/1000 Myri
SDSC IBM SP 8xPWR3/375

Resource Linux K7/1333 100bT
NCSA Titan 2xIA64/800 Myri

PSC LeMieux 4xev6/1000

Figure 5: Total resources consumed per step for 92K atom ApoA1 PME MTS benchmark by
NAMD 2.4 on varying numbers of processors for recent parallel platforms. Perfect linear scaling is
a horizontal line. Diagonal scale shows runtime per ns.

program (we set the size of the buffers to about 5KB and number of buffers to the number of
processors in the system). For large messages the sender first sends the message envelope and on
receiving the message envelope the receiver allocates a buffer for the message and a DMA copy is
performed from the sender’s memory into the allocated buffer. The above framework is very easy to
implement in Elan. A comparison of NAMD’s performance on the MPI and Elan implementations
is shown in Table 1.

The Elan network interface also allows user threads to be run on its processor. These threads
could process the messages as soon as they are received and not disturb the main processors which
are busy with computation. Thus multicast and reduction messages can be immediately sent to
their destinations and other messages can be copied into local memory to be handled by the main
processors when they become idle. This would greatly improve the efficiency of high level message
passing systems like Charm++. This approach is currently being investigated.

We also implemented a message combining library that reduces the number of messages sent
during the PME transposes from 192 or 144 for ATPase to 28. The library imposes a virtual
mesh topology on the processors and each processor first combines and sends data to its column
neighbors and then to its row neighbors. Thus each processor sends 2√p messages instead of p
messages without the library. This helps in reducing the per message cost and is very useful for
small messages. However notice that each byte is sent two times on the communication network.
For ApoA1 the message size is around 600B and the library effectively reduces the step time. For
ATPase the message size is around 900B which limits the gains of the library. For ATPase the
library reduces the step time by about around 1ms for runs of over 2000 processors.
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Processors Time/step Speedup GFLOPS
Total Per Node MPI Elan MPI Elan MPI Elan

1 1 28.08 s 28.08 s 1 1 0.480 0.480
128 4 248.3 ms 234.6ms 113 119 54 57
256 4 135.2 ms 121.9ms 207 230 99 110
512 4 65.8ms 63.8ms 426 440 204 211
510 3 65.7ms 63.0ms 427 445 205 213
1024 4 41.9ms 36.1 ms 670 778 322 373
1023 3 35.1ms 33.9 ms 799 829 383 397
1536 4 35.4ms 32.9 ms 792 854 380 410
1536 3 26.7ms 24.7 ms 1050 1137 504 545
2048 4 31.8ms 25.9 ms 883 1083 423 520
1800 3 25.8ms 22.3 ms 1087 1261 521 605
2250 3 19.7ms 18.4 ms 1425 1527 684 733
2400 4 32.4ms 27.2 ms 866 1032 416 495
2800 4 32.3ms 32.1 ms 869 873 417 419
3000 4 32.5ms 28.8ms 862 973 414 467

Table 1: NAMD performance on 327K atom ATPase benchmark system with and multiple timestep-
ping with PME every four steps for Charm++ based on MPI and Elan.

5 Performance Analysis and Breakdown

One of the lessons from our previous parallel scaling effort was that we must keep the computation
time of each individual object substantially lower than the per-step time we expect to achieve on the
largest configuration. Since the heaviest computation happens in the pairwise force computation
objects, we analyzed their grainsize, as shown in Fig. 6. This data was taken from 32 timesteps
of a cutoff-only run on 2100 processors (although it will roughly be the same independent of the
number of processors: the same set of objects are mapped to the available processors by Charm++
load balancing schemes). It shows that most objects’ execution time is less than 800 microseconds,
and the maximum is limited by 2.0 msecs or so. (The figure shows 905,312 execution instances of
pairwise computation objects in all, over 32 steps. So, there are 28,291 pairwise compute objects
per step. These objects account for about 845.53 seconds of execution time, or about 26.42 seconds
per timestep. The average grainsize — the amount of computation per object — is about 934
microseconds).

Fig. 7 shows where the processors spent their time. As expected, the amount of time spent
on communication, and related activities increases with number of processors. But the percentage
increase is moderate, once the communication time has risen to a significant percentage at 128
processors. The idle time is due almost entirely due to load imbalances (since there are no blocking
receives in Charm++), which are handled relatively efficiently by the measurement-based load
balancing of Charm++.
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Figure 6: Grainsize of pairwise nonbonded computations on a 1536 processor ATPase cutoff run
over 32 timesteps. Uniform grainsize aids load balancing and the interleaving of higher priority
tasks. Figure generated by the projections utility of Charm++.

Figure 7: Time spent in various activities, during 8 timesteps of an ATPase PME MTS run as a
function of processor count.
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System Atoms GOP per step GFLOP per step
Cut PME MTS Cut PME MTS

ApoA1 92K 9.68 10.64 10.75 3.52 3.65 3.84
ATPase 327K 32.07 35.66 36.05 12.29 12.80 13.48

Table 2: Measured operation counts for NAMD on benchmark systems and simulation modes cutoff
(Cut), PME every step (PME), and multiple timestepping with PME every four steps (MTS).

6 Benchmark Methodology

NAMD is a production simulation engine, and has been benchmarked against the standard com-
munity codes AMBER [13] and CHARMM [2]. The serial performance of NAMD is comparable to
these established packages, while its scalability is much better. NAMD is an optimized and efficient
implementation of the MD algorithm as applied to biomolecular systems.

In order to demonstrate the scalability of NAMD for the real problems of biomedical researchers,
we have drawn benchmarks directly from simulations being conducted by our NIH-funded collab-
orators. The smaller ApoA1 benchmark comprises 92K atoms of lipid, protein, and water, and
models a high density lipoprotein particle found in the bloodstream. The larger ATPase bench-
mark is taken from simulations still in progress, consists of 327K atoms of protein and water, and
models the F1 subunit of ATP synthase, a component of the energy cycle in all life. Both systems
comprise a solvated biomolecular aggregate and explicit water in a periodic cell. While we have fa-
vored larger simulations to demonstrate scalability, the simulations themselves are not gratuitously
large, but were created by users of NAMD to be as small as possible but still scientifically valid. We
have not scaled the benchmark simulations in any way, or created an artificially large simulation
in order to demonstrate scalability.

The number of short-range interactions to be evaluated in a simulation, and hence its serial
runtime, is proportional to the cube of the cutoff distance. The realistic selection of this value is
vital to the validity of the benchmark, as excessive values inflate the ratio of computation to data.
For all benchmarks here, short-range nonbonded interactions were cut off at 12 Å as specified by
the CHARMM force field. The spatial decomposition employed in NAMD bases domain size on
the cutoff distance and, therefore, NAMD will sometimes scale better with smaller cutoffs. Our
12 Å cutoff results in 6× 6× 4 = 144 patches (domains) for ApoA1 and 11× 8× 8 = 704 patches
for ATPase; scaling is harder when more processors than patches are used.

The serial performance implications of the selection of the PME full electrostatics parameters
are minor. Provided the dimensions of the charge grid have sufficient factors to allow O(NlogN)
scaling of the 3D FFT, the bulk of the work is proportional to the number of atoms and the number
of points each charge is interpolated to. The default 4 × 4 × 4 interpolation as used and the grid
was set at a spacing of approximately 1 Å, 108 × 108 × 80 for ApoA1 and 192 × 144 × 144 for
ATPase. In typical usage, full electrostatics interactions are calculated every four timesteps using
a multiple timestepping integrator; such a simulation is of equivalent accuracy to one in which
PME is evaluated every step. To observe the effect of PME on performance and scalability, we
benchmark three variations: no PME or cutoff (Cut), PME every step (PME), and PME every
four steps (MTS).

Operation counts for both benchmarks were measured using the perfex utility for monitoring
the hardware performance counters on the SGI Origin 2000 at NCSA. Total and floating point
operations were measured for all combinations of benchmark systems (ApoA1, ATPase) and sim-
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ulation modes (Cut, PME, MTS) for runs of 20 and 40 steps running on a single processor (to
eliminate any parallel overhead). The results of the 40 and 20 step simulations were subtracted
to eliminate startup calculations and yield an estimate of the marginal operations per step for a
continuing simulation. The results of this calculation are presented in Table 2 and used as the basis
for operation counts in parallel runs.

Based on serial runtimes, NAMD executes around 0.5 floating point operations and 1.3 total
operations per clock cycle on the 1GHz processors of Lemieux. The ratio of integer to floating point
operations observed reflects the efficiency of NAMD in using efficient algorithms to avoid unneces-
sary floating point operations whenever possible. For example, a recent optimization manipulates
an IEEE float as an integer in order to index into the short-range electrostatics interpolation table.

Measured by operation count, PME is only slightly more expensive than cutoff calculations.
This is due to the O(N log N) complexity of the long-range calculation and the efficient incorpo-
ration of the short-range correction into the electrostatic interaction. Operation counts are nearly
proportional to the number of atoms in the simulation, demonstrating the near-linear scaling of
the PME algorithm. The additional operations in MTS (despite fewer PME calculations!) are
due to the need to separate the short-range correction result rather than including it in the short-
range results. Note, however, that the actual runtime of MTS is less than that of PME, since the
short-range correction is calculated very efficiently.

For scaling benchmark runs, execution time is measured over the final 2000 steps of a 2500
step simulation. Initial load balancing occurs during the first 500 steps, broken down as 100 steps
ignored (to eliminate any lingering startup effects), 100 steps of measurement and a complete
reassignment, 100 steps of measurement and a first refinement, another 100 steps of measurement
and a second refinement, and finally another 100 ignored steps. In a continuing simulation, load
balancing would occur every 4000 steps (i.e., at steps 4400, 8400, etc.), preceded immediately by
100 steps of measurement.

In order to demonstrate that the reported scaling and performance is sustainable in a production
simulation, we have run the ApoA1 MTS benchmark for 100,000 steps on 512 processors of Lemieux,
recording the average time per step for each 100 step interval. This number of processors was chosen
to ensure that performance was heavily influenced by the load balancer rather than some other
bottleneck in the calculation. As seen in Figure 8, time spent load balancing is hardly perceptible,
while the benefits of periodic refinement over the course of the run are substantial. The average
performance over all 100,000 steps including initial load balancing is 23.3 ms/step, while the average
for steps 500-2500 as employed in speedup calculations is 26.3ms/step, some 10% slower than the
performance experienced by an actual user. The value reported for the matching 2500 step run in
the speedup table is 23.9 ms/step, which is again higher than the overall average seen here. We
can therefore confidently state that the results reported below are conservative and indicative of
the true performance observed during a production run.

7 Scalability Results

Table 3 shows the performance of NAMD on the smaller ApoA1 benchmark system. While reason-
able efficiency is only obtained to 512 processors, by using larger numbers of processors the time
per step can be reduced to 11.2ms cutoff and 12.6 ms PME (MTS). The ApoA1 data also reveals
superior scaling when only three of the four processors per node available on Lemieux are used.

Table 4 shows the greatest scalability attained by NAMD on the 3000 processor Lemieux cluster
at PSC. NAMD scales particularly well for larger simulations, which are those for which improved
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Processors Time/step Speedup GFLOPS
Total Per Node Cut PME MTS Cut PME MTS Cut PME MTS

1 1 7.08 s 8.24 s 7.86 s 1 1 1 0.497 0.443 0.489
128 4 62.5ms 80.0ms 71.5 ms 113 103 109 56 45 53
256 4 37.4ms 43.7ms 40.3 ms 189 188 194 94 83 95
512 4 21.0ms 26.6ms 23.9 ms 336 309 329 167 137 161
510 3 20.5ms 24.9ms 23.3 ms 344 331 337 171 146 164
1024 4 18.2ms 24.4ms 17.6 ms 389 338 446 193 149 218
1023 3 13.8ms 15.2ms 14.0ms 512 540 559 254 239 273
1536 4 16.6ms 22.6ms 17.1ms 427 364 459 212 161 224
1536 3 11.2ms 15.0ms 12.6ms 629 549 624 312 243 305
2250 3 11.2ms 15.0ms 12.8ms 629 549 613 313 243 299

Table 3: NAMD performance on 92K atom ApoA1 benchmark system with simulation modes cutoff
(Cut), PME every step (PME), and multiple timestepping with PME every four steps (MTS) for
Charm++ based on Elan.

Processors Time/step Speedup GFLOPS
Total Per Node Cut PME MTS Cut PME MTS Cut PME MTS

1 1 24.89 s 29.49 s 28.08 s 1 1 1 0.494 0.434 0.480
128 4 207.4ms 249.3ms 234.6ms 119 118 119 59 51 57
256 4 105.5ms 135.5ms 121.9ms 236 217 230 116 94 110
512 4 55.4ms 72.9ms 63.8ms 448 404 440 221 175 211
510 3 54.8ms 69.5ms 63.0ms 454 424 445 224 184 213
1024 4 33.4ms 45.1ms 36.1ms 745 653 778 368 283 373
1023 3 29.8ms 38.7ms 33.9ms 835 762 829 412 331 397
1536 4 25.7ms 44.7ms 32.9ms 968 660 854 477 286 410
1536 3 21.2ms 28.2ms 24.7ms 1175 1047 1137 580 454 545
2048 4 25.8ms 46.7ms 25.9ms 963 631 1083 475 274 520
1800 3 18.6ms 25.8ms 22.3ms 1340 1141 1261 661 495 605
2250 3 15.6ms 23.5ms 18.4ms 1599 1256 1527 789 545 733
2400 4 22.6ms 44.6ms 27.2ms 1099 661 1032 542 286 495
2800 4 22.1ms 43.6ms 32.1ms 1127 676 873 556 293 419
3000 4 22.6ms 39.6ms 28.8ms 1102 743 973 544 322 467

Table 4: NAMD performance on 327K atom ATPase benchmark system with simulation modes
cutoff (Cut), PME every step (PME), and multiple timestepping with PME every four steps (MTS)
for Charm++ based on Elan. Peak performance is attained on 2250 processors, three per node.
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NAMD 2.5 ApoA1 PME MTS Benchmark LeMieux 512 Processors

Figure 8: Performance variation over a longer simulation of ApoA1 MTS on 512 processors of
Lemieux. Periodic load balancing maintains and improves performance over time. Overall av-
erage performance is 23.3 ms/step, while performance measured for steps 500-2500 of this run is
26.3ms/step and performance reported in speedup tables for a 2500 step run is 23.9ms/step.

performance is most greatly desired by researchers. Maximum performance is achieved employing
2250 processors, three processors per node for all of the 750 nodes of Lemieux. For the cutoff
simulation, a speedup of 1599 at 789 GFLOPS was attained. For the more challenging PME
(MTS) simulation, a speedup of 1527 at 733 GFLOPS was attained. This 68% efficiency for a
full electrostatics biomolecular simulation on over 2000 processors indicates that the scalability
problems imposed by PME have been overcome.

8 Remaining Challenges

As can be seen above, we have achieved quite satisfactory performance levels when running on
up to 2250 processors. The major problem remaining appears to be simply the inability to use
the 4th processor on each node for useful computation effectively. As the speedup data shows, we
consistently get smaller speedups (and slowdowns) when we try to use all 4 processors on a node.

Even more fundamentally, our analysis shows that the problems are due to “stretching” of
various operations (typically inside send or receive operations inside the communication layers). The
message driven nature of NAMD and Charm++ allows us to effectively deal with small variations
of this nature. For example, Fig. 9 shows the “timeline” view using the projections performance
tool, for a run on 1536 processors (using 512 nodes). As can be seen, processors 900 and 933
had “stretched” events, even on this run that used 3 out of 4 processors on each node. However,
other processes reordered the computations they were doing (automatically, as a result of data-
driven execution) so that they were not held up for data, and the delayed processors “caught

14



Figure 9: Projections timeline view illustrating harmful stretching and message-driven adaptation
on 1536 processor cutoff run using three processors per node.
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Figure 10: Projections timeline view illustrating catastrophic stretching on 3000 processor PME
MTS run using four processors per node.
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up” without causing a serious dent in performance. On the other hand, With 4 processors per
node, such stretching events happen more often, making hiding them via data-driven adaptation
impossible. Further, with PME, which imposes a global synchrony across all patches, processors
have less leeway to adjust for the misbehavior. The compound result of these two factors is the
substantial degradation in performance seen in Fig. 10. This is the reason for the better speedups
for cutoff-based runs on 2800 and 3000 processors in Table 4.

We are working with PSC and HP staff to address these problems. We are especially hopeful that
a different implementation of our low level communication primitives will overcome this problem,
and allow our application to utilize the entire set of processors of the machine effectively.

Parallelizing the MD algorithm to thousands of processors reduces individual timesteps to the
range of 5–25 ms. The difficulty of this task is compounded by the speed of modern processors,
e.g., ASCI Red ran the ApoA1 benchmark without PME at 57 s per step on one processor while a
1 GHz Alpha of Lemieux runs with PME at 7.86 s per step. The scalability results reported here
demonstrate the strengths and limitations of both the software, NAMD and Charm++, and the
hardware, Lemieux.
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