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EXACTNESS OF SECOND ORDER ORDINARY DIFFERENTIAL
EQUATIONS AND INTEGRATING FACTORS

R. ALAHMAD (1), M. AL-JARARHA (2) AND H. ALMEFLEH (3)

Abstract. The principle of finding an integrating factor for a none exact differen-

tial equations is extended to equations of second order. If the second order equation

is not exact, under certain conditions, an integrating factor exists that transforms

it to an exact one. In this paper we give explicit forms for integrating factors of

the second order differential equations.

1. Introduction

The concept of exactness for a class of first order nonlinear differential equations

was presented [7] with a well-defined method of solution. The notion of integrating

factor were introduced to convert differential equation that is not exact into an exact

one.

Second order nonlinear differential equations play an important role in Applied

Mathematics, Physics, and Engineering [1, 3, 4, 6, 7, 8, 9, 11, 13, 14]. To find

the general solution of a nonlinear second order differential equation is not an easy

problem in the general case. In fact, a very specific class of nonlinear second order
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differential equations can be solved by using special transformations. Another ap-

proach to study the solution of nonlinear second order differential equations is the

dynamical systems approach. Using this approach a qualitative solutions are given

instead of the particular solution of the second order nonlinear differential equations.

A class of these equations will be solved in this paper by introducing the concept of

an integrating factor for second order nonlinear differential equations [2, 5].

The outline of the paper: we give mathematical formulation for the exactness of

a class of second order nonlinear equations based on transforming them into a first

order differential equations. Moreover, we introduce the idea of integrating factor

to convert some second order nonlinear differential equations into exact differential

equations. Also, we prove some related results.

2. Exactness of second order ordinary differential equations

Consider the n-th order differential equation

(2.1) F (x, y, y′, y′′, ...y(n)) = 0,

where y(n) = dny
dxn . The exactness of (2.1) is introduced in [10] as follows: If there

exist Ψ(x, y, y′, y′′, ..., y(n−1)) satisfies

(2.2) F (x, y, y′, y′′, ...y(n)) =
d

dx
Ψ(x, y, y′, y′′, ..., y(n−1) = 0

Then the n-th order differential equation (2.1) is reduced to (n-1)-st order differential

equation

(2.3) Ψ(x, y, y′, y′′, ..., y(n−1)) = C.

Particularly, the nonlinear second order differential equation

(2.4) a2(x, y, y
′)y′′ + a1(x, y, y

′)y′ + a0(x, y, y
′) = 0,
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is exact if a function Ψ(x, y, y′) exists, with the properties that

(2.5)
∂Ψ(x, y, y′)

∂x
= a0(x, y, y

′),
∂Ψ(x, y, y′)

∂y
= a1(x, y, y

′). and
∂Ψ(x, y, y′)

∂y′
= a2(x, y, y

′),

So, we have
∂Ψ(x, y, y′)

∂y′
y′′ +

∂Ψ(x, y, y′)

∂y
y′ +

∂Ψ(x, y, y′)

∂x
= 0.

Therefore, by using the chain rule, we have

dΨ(x, y, y′)

dx
= 0.

Hence,

Ψ(x, y, y′) = c

is a reduction of Equation (2.4) into a first order differential equation in the implicit

form. Using the properties in Equation (2.5), the function Ψ(x, y, y′) is given by the

following formula:

(2.6) Ψ(x, y, y′) =

∫ x

0

a0(α, y, y
′)dα +

∫ y

2

a1(0, β, y
′)dβ +

∫ y′

0

a2(0, 2, γ)dγ.

Definition 2.1. The nonlinear second order differential equation (2.4) is called exact

equation if there exists a function Ψ(x, y, y′) such that (2.5) holds.

It easy to show that a nonlinear second order differential equation (2.4) is exact if

the conditions

(2.7)
∂a2
∂y

=
∂a1
∂y′

,
∂a2
∂x

=
∂a0
∂y′

, and
∂a1
∂x

=
∂a0
∂y

hold [12].

Example 2.1. Consider the following nonlinear second order differential equation

(2.8) y′′ + a1(x, y)y
′ + a0(x, y) = 0,

where a1(x, y) and a0(x, y) satisfy the condition ∂a1
∂x

= ∂a0
∂y

. Then (2.8) is exact.
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Example 2.2. (The Plane Hydrodynamic Jet) Consider the second order nonlinear

differential equation

3ϵy′′ + yy′ = 0.

It is easy to that this equation is exact. By using the formula (2.6), we have

Ψ(x, y, y′) =

∫ y

0

βdβ + 3ϵ

∫ y′

0

dγ

=
y2

2
+ 3ϵy′.

Hence, the equation is reduced to Ψ(x, y, y′) = c2, which is equivalent to

3ϵy′ +
y2

2
= c2.

Example 2.3. The second order nonlinear initial value problem

(2.9)

 y′′ + 12xy3y′ + (3y4 − 1) = 0

y(0) = 2, y′(0) = 0,

is exact. Therefore, there exists a function Ψ(x, y, y′) which reduces the above equation

into a first order differential equation. Hence, formula (2.6) gives

Ψ(x, y, y′) =

∫ x

x0

a0(α, y, y
′)dα +

∫ y

y0

a1(x0, β, y
′)dβ +

∫ y′

y′0

a2(x0, y0, γ)dγ.

Since x0 = 0, y0 := y(0) = 2, and y′0 := y′0(0) = 0, we have

Ψ(x, y, y′) =

∫ x

0

a0(α, y, y
′)dα +

∫ y

2

a1(0, β, y
′)dβ +

∫ y′

0

a2(0, 2, γ)dγ,

=

∫ x

0

(3y4 − 1)dα +

∫ y′

0

dγ,

= y′ + (3y4 − 1)x.

Therefor, Ψ(x, y, y′) = c reduces Equation (2.9) to

y′ + (3y4 − 1)x = c.
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By applying the initial data, we get c = 0. Hence, Equation (2.9) is reduced to the

following first order differential equation

y′ + 3xy4 − x = 0.

For which an implicit solution can be obtained by separating the variables.

3. Non-exact Second Order Differential Equations and Integrating

Factors

In this section, we introduce the idea of finding integrating factors for the second

order differential equation (2.4) that are not exact. Also, we deduce some conditions

for the existence of such integrating factor. First, we start by the following definition

for the integrating factor:

Definition 3.1. An integrating factor of Equation (2.4) is a non zero function

µ(x, y, y′), such that the equation

(3.1) µ(x, y, y′)a2(x, y, y
′)y′′ + µ(x, y, y′)a1(x, y, y

′)y′ + µ(x, y, y′)a0(x, y, y
′) = 0

is exact. i.e.,

(3.2)
∂A2

∂y
=

∂A1

∂y′
,

∂A2

∂x
=

∂A0

∂y′
, and

∂A1

∂x
=

∂A0

∂y
,

where

A2(x, y, y
′) = µ(x, y, y′)a2(x, y, y

′),

A1(x, y, y
′) = µ(x, y, y′)a1(x, y, y

′),

and

A0(x, y, y
′) = µ(x, y, y′)a0(x, y, y

′).
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Example 3.1. Consider the second order nonlinear equation

(3.3) xy(2x+ y)y′′ + (x2 + xy)y′ + (3xy + y2) = 0.

This equation has an integrating factor µ(x, y) = 1
xy(2x+y)

, which transforms Equation

(3.3) into an exact differential equation. The resulting exact differential equation can

be reduced into the following first order differential equation:

y′ + ln
(
xy

√
y + 2x

)
= c.

The following result gives necessary conditions for the integrating factor to be a

function of x only.

Remark 3.1. Through out this paper, we use the notation ∂ηf :=
∂f

∂η
.

The following Lemma gives the necessary conditions for an integrating factor in x

to exist

Lemma 3.1. Assume that Equation (2.4) is not an exact equation. Then, it has an

integrating factor

µ(x) = exp

{∫ x ∂ya0 − ∂xa1
a1

dx

}
= exp

{∫ x ∂y′a0 − ∂xa2
a2

dx

}
if and only if

∂ya0 − ∂xa1
a1

and
∂y′a0 − ∂xa2

a2
depend only on x,

∂ya0 − ∂xa1
a1

=
∂y′a0 − ∂xa2

a2
,

and

∂ya2 = ∂y′a1.

Acreadk
Text Box
.
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Proof. Assume that Equation (2.4) has an integrating factor µ(x). Therefore, condi-

tions (3.2) hold. Hence, we get the following algebraic equations:

µ
∂a2
∂y

= µ
∂a1
∂y′

,

a2µ
′ + µ

∂a2
∂x

= µ
∂a0
∂y′

,

and

a1µ
′ + µ

∂a1
∂x

= µ
∂a0
∂y

.

Using the first equation, we have a non zero integrating factor, if ∂a2
∂y

= ∂a1
∂y′

. The last

two equations implies that

µ′

µ
=

∂a0
∂y′

− ∂a2
∂x

a2
=

∂a0
∂y

− ∂a1
∂x

a1
.

By integrating the above equation with respect to x, we get

µ(x) = exp

{∫ x ∂ya0 − ∂xa1
a1

dx

}
= exp

{∫ x ∂y′a0 − ∂xa2
a2

dx

}
.

�

Similarly, we can get the following results:

Lemma 3.2. The integrating factor of Equation (2.4) in terms of y is given by

µ(y) = exp

{∫ y ∂y′a1 − ∂ya2
a2

dy

}
= exp

{∫ y ∂xa1 − ∂ya0
a0

dy

}
,

provided that

∂y′a1 − ∂ya2
a2

and
∂xa1 − ∂ya0

a0
depend only on y,

∂y′a1 − ∂ya2
a2

=
∂xa1 − ∂ya0

a0
,

and

∂xa2 = ∂y′a0.
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Lemma 3.3. The integrating factor of Equation (2.4) in terms of y′ is given by

µ(y′) = exp

{∫ y′ ∂ya2 − ∂y′a1
a1

dy′
}

= exp

{∫ y′ ∂xa2 − ∂y′a0
a0

dy′

}
,

provided that

∂ya2 − ∂y′a1
a1

and
∂xa2 − ∂y′a0

a0
depend only on y′,

∂ya2 − ∂y′a1
a1

=
∂xa2 − ∂y′a0

a0
,

and

∂xa1 = ∂ya0.

Example 3.2. Consider the nonlinear second order differential equation

e−xy′′ + (cos(y) + 2e−x cos(y))y′ + (sin(y)− 2ye−x sin(x)) = 0.

This equation is not exact and satisfies the conditions of Lemma 3.1. So, an integrat-

ing factor for this equation, in x, exists. The integrating factor is given by µ(x) = ex.

Hence,

y′′ + (ex cos(y) + 2 cos(y))y′ + (ex sin(y)− 2y sin(x)) = 0

is exact, and therefore, it reduces to the following first order differential equation

y′ + ex sin(y) + 2y cos(y) = 0.

Example 3.3. Consider the nonlinear second order differential equation

(1 + y2)yy′′ + g(y)y′ + (1 + y2)y = 0,

where g(y) is an arbitrary function in y. This equation is not exact. In fact, it has

an integrating factor µ(y) = 1
y(1+y2)

which transforms this equation into the following

exact second order differential equation

y′′ +
g(y)

y(1 + y2)
y′ + 1 = 0.
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Using the above technique, this equation can be reduced to the following first order

differential equation:

y′ +

∫ y g(ξ)

ξ(1 + ξ2)
dξ + x = c

Example 3.4. Consider the nonlinear second order differential equation

(1 + x)(1 + y)y′′ + (1 + x)y′ + (1 + y) = 0.

This equation is not exact and satisfies the conditions of Lemma 3.3, so an integrating

factor in y′ exists. It is easy to obtain, using the conclusion of Lemma 3.3, that

µ(y′) = ey
′
is an integrating factor of this equation. Therefore,

ey
′
(1 + x)(1 + y)y′′ + ey

′
(1 + x)y′ + ey

′
(1 + y) = 0.

is exact. This fact reduces this equation to

ey
′
(1 + x)(1 + y) = c.

we are looking for an integrating factor of the form µ(α(x)β(y)γ(y′)), where α(x), β(y)

and γ(y′) are arbitrary functions in x, y, and y′, respectively. For such an integrating

factor to exist, we have the following theorem:

Theorem 3.1. Assume that Equation (2.4) is not an exact equation. Then, an

integrating factor µ(α(x)β(y)γ(y′)) of Equation (2.4) is given by

µ(ξ) = µ(α(x)β(y)γ(y′)) = exp

{∫ ξ ∂y′a1 − ∂ya2
α(x) [β′(y)γ(y′)a2 − β(y)γ′(y′)a1]

dξ

}
= exp

{∫ ξ ∂ya0 − ∂xa1
γ(y′) [α(x)β′(y)a1 − α′(x)β(y)a0]

dξ

}
= exp

{∫ ξ ∂xa2 − ∂y′a0
β(y) [α(x)γ′(y′)a0 − α′(x)γ(y′)a2]

dξ

}
,
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if and only if

∂y′a1 − ∂ya2
α(x) [β′(y)γ(y′)a2 − β(y)γ′(y′)a1]

=
∂ya0 − ∂xa1

γ(y′) [α(x)β′(y)a1 − α′(x)β(y)a0]

=
∂xa2 − ∂y′a0

β(y) [α(x)γ′(y′)a0 − α′(x)γ(y′)a2]
,

and they depend on ξ(x, y, y′) := α(x)β(y)γ(y′).

Proof. The proof is a direct consequence of conditions (3.2). �

Using the above theorem, and by either assuming γ(y′) = 1, β(y) = 1, or α(x) =

1, we can deduce that the integrating factors are µ(α(x)β(y)), µ(α(x)γ(y′)) and

µ(β(y)γ(y′)), respectively. The results are listed in the following corollaries:

Corollary 3.1. An integrating factor, µ(α(x)β(y)), of Equation (2.4)is given by

µ(α(x)β(y)) = exp

{∫ ξ ∂y′a1 − ∂ya2
α(x)β′(y)a2

dξ

}
= exp

{∫ ξ ∂y′a0 − ∂xa2
α′(x)β(y)a2

dξ

}
= exp

{∫ ξ ∂ya0 − ∂xa1
α(x)β′(y)a1 − α′(x)β(y)a0

dξ

}
,

if and only if

∂y′a1 − ∂ya2
α(x)β′(y)a2

=
∂y′a0 − ∂xa2
α′(x)β(y)a2

=
∂ya0 − ∂xa1

α(x)β′(y)a1 − α′(x)β(y)a0
,

and they depend on ξ(x, y) := α(x)β(y).
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Corollary 3.2. An integrating factor, µ(α(x)γ(y′)), of Equation (2.4) is given by

µ(ξ) = µ(α(x)γ(y′))

= exp

{∫ ξ ∂ya2 − ∂y′a1
α(x)γ′(y′)a0

dξ

}
= exp

{∫ ξ ∂xa1 − ∂ya0
α′(x)γ(y′)a1

dξ

}
= exp

{∫ ξ ∂y′a0 − ∂xa2
α′(x)γ(y′)a2 − α(x)γ′(y′)a0

dξ

}
,

provided that

∂ya2 − ∂y′a1
α(x)γ′(y′)a0

=
∂xa1 − ∂ya0
α′(x)γ(y′)a1

=
∂y′a0 − ∂xa2

α′(x)γ(y′)a2 − α(x)γ′(y′)a0
,

and they depend on ξ(x, y′) := α(x)γ(y′).

Corollary 3.3. An integrating factor, µ(β(y)γ(y′)), of Equation (2.4) is given by

µ(ξ) = µ(β(y)γ(y′))

= exp

{∫ ξ ∂ya0 − ∂xa1
β′(y)γ(y′)a1

dξ

}
= exp

{∫ ξ ∂xa2 − ∂y′a0
β(y)γ′(y′)a0

dξ

}
= exp

{∫ ξ ∂y′a1 − ∂ya2
β′(y)γ(y′)a2 − β(y)γ′(y′)a1

dξ

}
,

provided that

∂ya0 − ∂xa1
α′(y)β(y′)a1

=
∂xa2 − ∂y′a0
α(y)β′(y′)a0

=
∂y′a1 − ∂ya2

α′(y)β(y′)a2 − α(y)β′(y′)a1
,

and they depend on ξ(y, y′) := β(y)γ(y′).

4. Conclusions and Remarks

In this paper, we imposed conditions on the equation

a2(x, y, y
′)y′′ + a1(x, y, y

′)y′ + a0(x, y, y
′) = 0,
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so that it is exact. In addition, we introduced an integrating factor in case where

the equation is not an exact differential equation. Moreover, we presented some

examples showing that this method is powerful in solving a class of second order

nonlinear differential equations. For further studies, it is reasonable to improve this

definition and this technique to a more complicated class of differential equations.

For example, if we consider the general form of the second order nonlinear differential

equation f(x, y, y′, y′′) = 0. Also, it is reasonable to improve this method to work for

higher order nonlinear differential equations.

Acknowledgment

We would like to thank the editor and the referees for their valuable comments on

this paper.

References

[1] W. F. Ames, Nonlinear ordinary differential equations in transport process, Vol. 42, Academic

Press, New York, 1968.

[2] E. S. Cheb-Terrab and A. D. Roche , Integrating Factors for Second-order ODEs, j. Symbolic

Computation, 27 (1999), pp. 501–519.

[3] H. T. Davis, Introduction to nonlinear differential and integral equations, Drover, New York,

1965.

[4] S. Ghandrasekhar, Introduction to a study of stellar structures, Univ. Chicago Press, Illinois,

1939.

[5] K. Gehrs, Integrating Factors of Some Classes of Third Order ODEs, Applied Mathematical

Letters, 21 (2008), pp. 748–753.

[6] J. K. Hale, Nonlinear oscillations, McGraw-Hill, New York, 1963.

[7] D. W. Jordan and P. Smith, Nonlinear ordinary differential equations: An introduction for

scientist and engineers, 4th edition, Oxford University Press, 2007.

[8] J. P. Laselle and S. Lefschetz, Nonlinear differential equations and nonlinear mechanics, Wiley,

New York, 1957.

[9] S. Lefschetz, Differential Equations: Geometric Theory, Academic Press, New York, 1963.



EXACTNESS OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS 167

[10] M. V. Makarets and V. Yu. Reshetnyak, Ordinary differential equations and calculus of varia-

tions, World Scientific Publishing Co. Inc., NJ, 1995.

[11] H. Schlichting, Boundary Layer Theory, McGraw-Hill, New York, 1955.

[12] P. J. Olver, Applications of Lie Group to Differential Equations, Springer, USA, 1993.

[13] R. A. Struble, Nonlinear differential equations, McGraw-Hill, New York, 1962.

[14] T. von Karman, The engineer grapples with nonlinear problems, Bull. Amer. Math. Soc., 46

(1940), pp. 615–683.

(1) Department of Mathematics, Yarmouk University, Irbid, Jordan 21163

E-mail address: rami thenat@yu.edu.jo

(2) Department of Mathematics, Yarmouk University, Irbid, Jordan 21163

E-mail address: mohammad.ja@yu.edu.jo

(3) Department of Mathematics, Yarmouk University, Irbid, Jordan 21163

E-mail address: almefleh@yu.edu.jo




