
Type Checking and Weak Type Inference
for Polynomial Size Analysis

of First-Order Functions

Olha Shkaravska, Ron van Kesteren, Marko van Eekelen
{O.Shkaravska, R.vanKesteren, M.vanEekelen}@cs.ru.nl

Technical Report ICIS-R07004
Institute for Computing and Information Sciences

Radboud University Nijmegen

Abstract. We present a size-aware type system for first-order shapely
functions. Here, a function is called shapely when the size of the result
is determined exactly by a polynomial in the sizes of the arguments. Ex-
amples of shapely functions are matrix multiplication and the Cartesian
product of two lists.

The type checking problem for the type system is shown to be undecid-
able in general. We define a natural syntactic restriction such that the
type checking becomes decidable, even though size polynomials are not
necessarily linear. Furthermore, an algorithm for weak type inference for
this system is given.1

Keywords: Shapely Programs, Size Analysis, Type Checking, Diophan-
tine equations

1 Introduction

We explore typing support for checking size dependencies for shapely first-order
functions. The shapeliness of these functions lies in the fact that the size of the
result is a polynomial in terms of the arguments’ sizes.

Without loss of generality, we restrict our attention to a language with poly-
morphic lists as the only data-type. For such a language, this paper develops
a size-aware type system for which we define a fully automatic type checking
procedure.

A typical example of a shapely function in this language is the Cartesian
product, which is given below. It uses the auxiliary function pairs that creates
pairs of a single value and the elements of a list. To get a Cartesian product,
cprod does this for all elements from the first list separately and appends the
resulting intermediate lists. Furthermore, the function definition of append is
assumed.
1 This research is sponsored by the Netherlands Organisation for Scientific Research

(NWO), project Amortized Heap Space Usage Analysis (AHA), grantnr. 612.063.511.

pairs(x , y) = match y with | nil ⇒ nil
| cons(hd , tl) ⇒ cons(cons(x , hd , nil), pairs(x , tl))

in cprod(x , y) = match x with | nil ⇒ nil
| cons(hd , tl) ⇒ append(pairs(hd , y), cprod(tl , y))

Given two lists, for instance [1, 2, 3] and [4, 5], it returns the list with all
pairs created by taking one element from the first list and one element from the
second list: [[1, 4], [1, 5], [2, 4], [2, 5], [3, 4], [3, 5]]. Hence, given two lists of
length n and m, it always returns a list of length nm containing pairs. This can
be expressed in a type by Ln(α)× Lm(α) → Ln∗m(L2(α)).

1.1 Related work

Information about input-output size dependencies is applied in time and space
analysis and optimization, because run time and heap-space consumption obvi-
ously depend on the sizes of the data structures involved in the computations.
Knowledge of the exact size of data structures can be used to improve heap space
analysis for programs with destructive pattern matching. Amortized heap space
analysis has been developed for linear bounds by Hofmann and Jost [HJ03]. Pre-
cise knowledge of sizes is required to extend this approach to non-linear bounds
[EJPS05]. Another application of exact size information is load distribution for
parallel computation. For instance, size information helps to distribute a storage
effectively and to safely store vector fragments [CBF91].

The analysis of (exact) input-output size dependencies of functions itself has
been explored in a series of work. Some interesting work on shape analysis has
been done by Jay and Sekanina [JS97]. In this work, a shapely program is trans-
lated into a corresponding abstract program over sizes. Thus, the dependency of
the result size on the argument sizes has the form of a program expression. How-
ever, deriving an arithmetic function from this expression is beyond the scope
of their work.

Functional dependencies of sizes in a recurrent form may be derived via
program analysis and transformation, as in the work of Hermann and Lengauer
[HL01], or through a type inference procedure, as presented by Vasconcelos and
Hammond [VK04]. Both results can be applied to non-shapely programs, higher-
order functions and non-linear size expressions. However, solving the recurrence
equations to obtain a closed-form solution is left as an open problem for external
solvers.

To our knowledge, the only work yielding closed-form solutions for size de-
pendencies is limited to linear dependencies. For instance, in the well-known
work of Pareto [Par98], where non-strict sized types are used to prove termi-
nation. Linearity is a sufficient condition for the type checking procedure to be
decidable.

The approaches summarized in the previous paragraphs either leave the (pos-
sibly undecidable) solving of recurrences as a problem external to their approach,
or are limited to linear dependencies.

2

1.2 Contents of the paper

In this work, we go beyond linearity and consider a type checking procedure
for a first-order functional programming language (section 2) with polynomial
size dependencies (section 3). We show that type checking is reduced to the
entailment checking over Diophantine equations. Type checking is shown to be
undecidable in general, but decidable under a natural syntactic condition (“no-
let-before-match”, section 4). We give a procedure for weak type inference in
section 5. In section 6 we define a heap-aware semantics of types and expressions
and sketch the proof of the soundness statement with respect to this semantics.
Finally, in section 7 we overview the results and discuss further work.

2 Language

The typing system is designed for a first-order functional language over integers
and (polymorphic) lists. The syntax of language expressions is defined by the
following grammar, where Int denote the sets of integer constants, x and y denote
zero-order program variables, and f denotes a function name (the example in
the introduction used a sugared version of this syntax):

c ∈ Int x, y ∈ ExpVar f ∈ FName
Basic b ::= c | nil | cons(x, y) | f(x1, . . . , xn)
Expr e ::= letfun f(x1, . . . , xn) = e1 in e2

| b | let x = b in e | if x then e1 else e2

| match x with p nil ⇒ e1

p cons(xhd, xtl) ⇒ e2

The syntax distinguishes between zero-order let-binding of variables and first-
order letfun-binding of functions. In a function body, the only free program
variables that may occur are its parameters: FV (e1) ⊆ {x1, . . . , xn}. The op-
erational semantics is standard, therefore the definition is postponed until it is
used to prove soundness (section 6.1).

3 Type System

Sized types are derived using a type and effect system in which types are anno-
tated with size expressions. Size expressions are polynomials representing lengths
of finite lists and arithmetic operations over these lengths:

SizeExpr p ::= IN | n | p + p | p − p | p ∗ p n ∈ SizeVar

where n, possibly decorated, denotes a size variable, which stands for any con-
crete size (natural number). For any natural number k, nk denotes the k-fold
product n ∗ . . . ∗ n.

3

Zero-order types are assigned to program values, which are integers and finite
lists. The list type is annotated by a size expression that represents the length
of the list:

Types τ ::= Int | α | Lp(τ) α ∈ TypeVar

where α (or β), possibly decorated with sub- and superscripts, is a type variable.
Note that this structure entails that if the elements of a list are lists themselves,
all these element-lists have to be of the same size. Thus, instead of lists it would
be more precise to talk about matrix-like structures. For instance, the type
L6(L2(Int)) is given to a list which elements are all lists of exactly two integers,
such as [[1, 4], [1, 5], [2, 4], [2, 5], [3, 4], [3, 5]].

Abusing notation, we denote via FV (−) free variables of an expression e and
free type variables in a type (scheme) τ .

Let FVS (−) denote the free size variables in zero-order types:

FVS (Int) = ∅
FVS (α) = ∅
FVS (Lp(τ)) = FVS (p) ∪ FVS (τ)

where, FVS () “overloaded” for size expressions is:

FVS (i) = ∅
FVS (n) = {n}
FVS (p1 + p2) = FVS (p1 − p2) = FVS (p1 ∗ p2) = FVS (p1) ∪ FVS (p2)

For instance, FVS (L(n−3)2(Ln+m(α))) = {n, m}.
Zero-order types without size or type variables are ground types:

GTypes τ• ::= τ such that FVS (τ) = ∅ ∧ FV (τ) = ∅
For instance, L(n−3)2(Ln+m(α)) is not a ground type, whereas L(1−3)2(L1+4(Int)) =
L4(L5(Int)) – yes. The axiomatics of the integer ring holds for size expressions.
It is used in the typing rules as well (see below).

One does not want free size variables on the r.h.s. of first-order types and typ-
ing judgements to appear“out of the blue”, that is not from the typing contexts,
but as wild cards. Size wild cards may appear due to nested empty lists:

free sv = let x = nil in copy nested : Int→ L0(L?m(α))

where copy nested : Ln(Lm(α)) → Ln(Lm(α)),

In other words one can succesfully type-check “everything”:
free sv : Int→ L0(L0(α)),
free sv : Int→ L0(L35(α)),
free sv : Int→ L0(L2007(α)),
...

However, it is easy to see that sets L0(Lm(Int)) are equal and contain the
single element [] for all instantiations of m. The similar holds for L0(Lm(α)). This

4

induces the natural equivalence relation on types. For instance Lq(L0(Lp(α))) ≡
Lq(L0(Lp′(α))). The canonical representative of this class is Lq(L0(L0(α))).

So, the freeness of size variable should be checked w.r.t. canonical forms. This
is taken into account in the definition of first-order types.

First-order types are assigned to shapely functions over values of a zero- Diff. with TLCA
order type. Let τ◦ denote a zero order type of which the annotations are all size
variables. First order types are then defined by:

FTypesτf ::= τ◦1 × . . .× τ◦k → τk+1 such that
FVS (canon(∗(τk+1))) ⊆ FVS (canon(∗(τ◦1))) ∪ · · · ∪ FVS (canon(∗(τ◦k)))
for all substitutions ∗
of the size variables from τ◦1 , . . . τ◦k , τk+1 with size expressions

The following lemma shows that it is possible to validate in finite number of
steps, if a given arrow-type is a well-formed first-order type.

Lemma 1. Inclusion

FVS (canon(∗(τk+1))) ⊆ FVS (canon(∗(τ◦1))) ∪ · · · ∪ FVS (canon(∗(τ◦k)))
for all substitutions ∗
of the size variables from τ◦1 , . . . τ◦k , τk+1 with size expressions

holds if and only if for any substitution ∗′ such that it is the ground zero substitu-
tion on some subset of the size variables and it is the identity on its complement,
we have

FVS (canon(∗′(τk+1))) ⊆ FVS (canon(∗′(τ◦1))) ∪ · · · ∪ FVS (canon(∗′(τ◦k)))

It easy to see, that there are finitely many substitutions ∗′, namely ΣN
i=0C

i
N =

2N , where N is the amount of size variables from τ◦1 , . . . τ◦k , τk+1 and i denotes
the amount of variables substituted to zero.

Proof. Fix an arrow type τ◦1 × . . . × τ◦k → τk+1. Let τ◦i = Lni1(. . . Lnili
(α) . . .)

and τk+1 = Lq1(. . . Lql
(α) . . .).

Let for any substitution ∗′ such that it is the ground zero substitution on
some subset of the size variables and it is the identity on its complement, we
have

FVS (canon(∗′(τk+1))) ⊆ FVS (canon(∗′(τ◦1))) ∪ · · · ∪ FVS (canon(∗′(τ◦k)))

Show that the definition of the well-formed first-order type holds. Fix any sub-
stitution ∗. Without lost of generality think that all free size variables in the
substitution are fresh.

– For the sake of clearness, first consider the trivial case, when ∗ does not sub-
stitute any size variable into 0. Then, say, ∗(τ◦i) = ∗(Lni1(. . . Lnili

(α) . . .)) =
Lpi1(. . . Lpili

(α) . . .), where ∗(nij) = pij , coincides with its canonical form.
Let m ∈ FVS (canon(∗(τk+1))). Then

∗(τk+1) = L∗q1(. . . L∗qj−1(Lqj(...,n:=p,...)(L∗qj+1(. . . L∗ql
(α) . . .))) . . .).

5

for some n ∈ FVS (τk+1) and p(. . . , m, . . .) = ∗(n) 6= 0, with ∗(q′j) 6= 0 for
1 ≤ j′ ≤ j.
From the assumption of the lemma, letting ∗′ be the identity, we have that
FVS (τk+1) ⊆ FVS (τ◦1)∪· · ·∪FVS (τ◦k). From what follows that n ∈ FVS (τ◦i)
for some i, that is n = nii′ for some i′. Then

∗(τ◦i) = Lpi1(. . . Lpi i′−1
(Lp(..., m ,...)(Lpi i′+1

(. . . Lpili
(α) . . .))) . . .),

that is m ∈ FVS (∗(τ◦i)) as well.
– Now, let ∗ be any substitution. Let m ∈ FVS (canon(∗(τk+1))). Then

∗(τk+1) = L∗q1(. . . L∗qj−1(Lqj(...,n:=p,...)(L∗qj+1(. . . L∗ql
(α) . . .))) . . .).

for some n ∈ FVS (τk+1) and p(. . . , m, . . .) = ∗(n) 6= 0, and not equal to
zero size expressions ∗q1, . . . , ∗qj = qj(. . . , n := p(. . . , m . . .), . . .).

Let ∗′ be the identity on the size variables, where ∗ is non-zero, and (∗′)(n′) =
0 once ∗(n′) = 0. Show, that (∗′)(q1), . . . (∗′)(qj) are not zero polynomials.
Suppose the opposite: ∗′qj′ = qj′(n1, . . . , nd, 0, . . . , 0) = 0 for all n1, . . . , nd.
Then ∗qj′ = qj′(p′1, . . . , p′d, 0, . . . , 0) = 0 which contradicts the statement
above.

From that fact that (∗′)(q1), . . . (∗′)(qj)(. . . , n . . .) are not zero polynomi-
als, it follows, that n ∈ FVS (canon(∗′(τk+1))), and from the assumption
FVS (canon(∗′(τk+1))) ⊆ FVS (canon(∗′(τ◦1))) ∪ · · · ∪ FVS (canon(∗′(τ◦k)))
we have n ∈ FVS (canon(∗′(τ◦i))) for some i, that is n = nii′ for some i′, and
∗′(nis) = nis 6= 0, 1 ≤ s ≤ i′.

Therefore, ∗(nis) 6= 0. Thus, ∗(τ◦i) = L∗(ni1)(. . . L∗nii′=p(..., m, ...)(. . .) . . .) and
m ∈ FVS (canon(∗(τ◦i))).

Recalling the Cartesian product from the introduction, one expects append
to be of type Ln(α)× Lm(α) → Ln+m(α), pairs of type α× Lm(α) → Lm(L2(α)),
and cprod of type Ln(α)× Lm(α) → Ln∗m(L2(α)).

The typeof a shapely transpose function, if it exists, must be Ln(Lm(α)) →
Lm(Ln(α)) and is not a well-formed first-order type. Indeed, for any ground
instantiation n = 0, m = i, with i > 0, we have L0(Li(α)) → Li(L0(α)), with
FVS (canon(Li(L0(α)))) = i, FVS (canon(L0(Li(α)))) = ∅. Note, that we were
not able to encode transposition of a matrix without non-exhaustive pattern-
matching. We leave adding non-exhaustive pattern matchings to our language
for the future work.

A context Γ is a mapping from zero-order variables to zero-order types. A
signature Σ is a mapping from function names to first-order types. The definition
of FVS (−) is straightforwardly extended to contexts:

FVS (Γ) =
⋃

x∈dom(Γ) FVS (Γ (x))

6

3.1 Typing rules

A typing judgment is a relation of the form D; Γ `Σ e : τ , where D is a set
of Diophantine equations which is used to keep track of the size information. In
the current language, the only place where size information is available is in the
nil-branch of the match-rule. The signature Σ contains the type assumptions for
the functions that are going to be checked.

In the typing rules, D ` p = p′ means that p = p′ is derivable from D in
equational reasoning in the ring of integers. D ` τ ≡ τ ′ means the following:

– τ = τ ′ = Int, or τ = τ ′ = α for some α, or τ = Lp1(. . . Lpl
(Int) . . .) and τ ′ =

Lp′1(. . . Lp′l(Int) . . .), or τ = Lp1(. . . Lpl
(α) . . .) and τ ′ = Lp′1(. . . Lp′l(α) . . .).

– For the last two cases
• If exists such i, that D ` pi = 0 (or D ` p′i = 0) then take the minimal

such i and accept the typing if and only if D ` pj = p′j for all 1 ≤ j ≤ i.
• If no such i exists then D ` pj = p′j for all 1 ≤ j ≤ l.

D; Γ `Σ c :Int IConst
D ` τ ′ ≡ τ

D; Γ, x : τ `Σ x :τ ′
Var

The sugared version (τ is a canonical type):

D; Γ `Σ c :Int IConst-TLCA
D ` τ ′ = τ

D; Γ, x : τ `Σ x :τ ′
Var-TLCA

In the rule below L0(τ0) has the same underlying type as τ , but with all size
annotations set to 0. We emphasize that τ is of a list type as well.

D ` τ ≡ L0(τ0)
D; Γ `Σ nil :τ Nil

The sugared version
(τ is a canonical type, but in this rule canonization is not necessary):

D ` p = 0
D; Γ `Σ nil :Lp(τ) Nil

D ` τ ′′′ ≡ Lp(τ ′)
D ` τ ≡ Lp+1(τ ′)
D ` τ ′ ≡ τ ′′

D; Γ, hd : τ ′′, tl : τ ′′′ `Σ cons(hd , tl) :τ Cons

The sugared (“canonical”) version
D ` p′ = p + 1

D; Γ, hd : τ, tl : Lp(τ) `Σ cons(hd , tl) :Lp′(τ) Cons-TLCA

7

D ` τ ≡ τ ′

D ` τ ≡ τ ′′

Γ (x) = Int D; Γ `Σ et :τ ′ D; Γ `Σ ef :τ ′′

D; Γ `Σ if x then et else ef :τ If

The sugared version:
Γ (x) = Int D; Γ `Σ et :τ D; Γ `Σ ef :τ

D; Γ `Σ if x then et else ef :τ If-TLCA

D ` τx ≡ τ ′x
D ` τ ≡ τ ′

x /∈ dom(Γ) D; Γ `Σ e1 :τx D; Γ, x : τ ′x `Σ e2 :τ ′

D; Γ `Σ let x = e1 in e2 :τ Let

The sugared version : τx, τ are canonical
x /∈ dom(Γ) D; Γ `Σ e1 :τx D; Γ, x : τx `Σ e2 :τ

D; Γ `Σ let x = e1 in e2 :τ Let-TLCA

p = 0, D; Γ, x : Lp(τ ′) `Σ enil :τnil

D ` τ ≡ τnil (The canonical form w.r.t. not only D,
but w.r.t. p = 0 as well,

will be considered when the rule for enil is applied)

D ` τ ≡ τcons

D ` τ ′ ≡ τ ′1
D ` τ ′ ≡ τ ′2

hd , tl 6∈ dom(Γ)
D; Γ, hd : τ ′1, x : Lp(τ ′), tl : Lp−1(τ ′2) `Σ econs :τcons

D; Γ, x : Lp(τ ′) `Σ match x with | nil ⇒ enil

| cons(hd , tl) ⇒ econs

:τ
Match

The sugared version : τ, τ ′are canonical w.r.t. D
p = 0, D; Γ, x : Lp(τ ′) `Σ enil :τ

hd , tl 6∈ dom(Γ)
D; Γ, hd : τ ′1, x : Lp(τ ′), tl : Lp−1(τ ′2) `Σ econs :τcons

D; Γ, x : Lp(τ ′) `Σ match x with | nil ⇒ enil

| cons(hd , tl) ⇒ econs

:τ
Match-TLCA

8

Σ(f) = τ◦1 × · · · × τ◦n → τk+1

D ` τ ′ ≡ τ ′′

True; x1 : τ◦1 , . . . , xk : τ◦k `Σ e1 : τk+1 D; Γ `Σ e2 : τ ′′

D; Γ `Σ letfun f(x1, . . . , xk) = e1 in e2 :τ ′
LetFun

The sugared version :
Σ(f) = τ◦1 × · · · × τ◦n → τk+1

True; x1 : τ◦1 , . . . , xk : τ◦k `Σ e1 : τk+1 D; Γ `Σ e2 : τ ′

D; Γ `Σ letfun f(x1, . . . , xk) = e1 in e2 :τ ′
LetFun

In the generic function application rule below if τ◦i = Lno
i1

(. . . Lno
ili

(Int) . . .)
then D ` τ ′i ≡ Lpi1(. . . Lpil′

i
(Int) . . .), for some polynomials pij . Similarly, if

τ◦i = Lno
i1

(. . . Lno
ili

(αi) . . .) then D ` τ ′i ≡ Lpi1(. . . Lpil′
i
(τ ′′i) . . .) for some τ ′′i .

Strictly speaking, no
ij are meta-variables for size variables. They are turned

into size variables when considered for the rule for some fixed function. For
instance, for the “vector multiplication” above no

11 is n and no
21 is n. Equations

C are imposed by syntactical equality of size variables. For instance, when the
“vector multiplication” function rule is applied on actual arguments of type
Lp1(Int) and Lp2(Int), then the set of equations C contains p1 = p2 (and only
such equations).

Similarly, when two arguments contain the same type variable, say α lile in the
type for “constructor” α×Lp(α) → Lp+1(α), then the correspinding equivalence
of types for the actual parameters must be added to E (and E contains only
such equivalences). That is, for instance, if hd :τ ′′ and tl :Ln2+15(τ ′), then to call
“constructor” on them one needs D ` τ ′′ ≡ τ ′.

Σ(f) = τ◦1 × . . .× τ◦k → τk+1

D ` τ ′i ≡ Lpi1(. . . Lpil′
i
(Int[τ ′′i]) . . .)

D ` τ ′k+1 ≡ ∗(τk+1)
D ` C
D ` E

D; Γ, x1 : τ1
′, . . . , xk : τn

′ `Σ f(x1, . . . , xk) :τk+1
′ FunApp

The sugared version of this rule has the form:
Σ(f) = τ◦1 × . . .× τ◦k → τk+1

D ` τ ′i = Lpi1(. . . Lpil′
i
(Int[τ ′′i]) . . .), canonical

D ` τ ′k+1 = canon(∗(τk+1))
D ` C
D ` E

D; Γ, x1 : τ1
′, . . . , xk : τn

′ `Σ f(x1, . . . , xk) :τk+1
′ FunApp

9

The type system needs no conditions on non-negativity of size expressions.
Size expressions in types of meaningful data structures are always non-negative.
The soundness of the type system (section 6.2) ensures that this property is
preserved throughout (the evaluation of) a well-typed program.

ToDo: In the soundness we need a canonized version! We finish this
section with the following two lemmas.

Lemma 2. For any derivable judgment D; Γ `Σ e : τ the set FVS (Γ) of the
free size variables contains the set FVS (τ) of the free size variables of type τ .

Proof. The lemma is proved by induction on the (height of the) derivation tree
for D; Γ `Σ e :τ .

Axioms If D; Γ `Σ e : τ is an instance of one of the axioms of the system
(IConst, Var, Nil, Cons), then FVS (τ) ⊆ FVS (Γ) holds trivially.

FunApp For Σ(f) = τ◦1 × . . . × . . . × τ◦k → τk+1 it holds that FVS (τk+1) ⊆
FVS (τ◦1) ∪ . . . ∪ FVS (τ◦k). From the rule it follows

FVS (τ) = FVS (∗(τk+1)) ⊆ FVS (∗(τ◦1)) ∪ . . . ∪ FVS (∗(τ◦k)) =
= FVS (τ1) ∪ . . . ∪ FVS (τk) ⊆ FVS (Γ).

LetFun From the induction hypothesis on the type derivation for e2 we have
that FVS (τ) ⊆ FVS (Γ).

Let In this case e = let x = e1 in e2 for some x, e1, e2 and we have D; Γ `Σ e1 :
τ ′, x /∈ dom(Γ) and D; Γ, x :τ ′ `Σ e2 :τ for some τ ′. By induction we have
FVS (τ ′) ⊆ FVS (Γ) and FVS (τ) ⊆ FVS (Γ ∪ {x : τ ′}). Hence, FVS (τ) ⊆
FVS (Γ).

Match Then, e = match x with | nil ⇒ enil | cons(hd , tl) ⇒ econs for some
x, hd , tl , enil, and econs. We also have x : Lp(τ ′) ∈ Γ for some, τ ′, p,
and we know hd , tl 6∈ dom(Γ). By induction we have FVS (τ) ⊆ FVS (Γ)
if p = 0, so that case is proved. For the cons-branch one has FVS (τ) ⊆
FVS (Γ ∪ {hd : τ ′, tl : Lp−1(τ ′)}). Because FVS (τ ′) ⊆ FVS (Lp(τ ′)) and FVS (Lp−1(τ ′)) ⊆
FVS (Lp(τ ′)) and x : Lp(τ ′) ∈ Γ we have FVS (Γ ∪ {hd : τ ′, tl : Lp−1(τ ′)}) =
FVS (Γ) and, hence, also FVS (τ) ⊆ FVS (Γ) in this case.

If Then e = if x then e1 else e2 for some x, e1, and e2. By induction we have
FVS (τ) ⊆ FVS (Γ). ¤

Lemma 3 (All free variables in a typed expression have a type).
If D; Γ `Σ e :τ is derivable in the type system, then FV (e) ⊆ dom(Γ).

Proof. The lemma is proved by induction over the derivation tree for D; Γ `Σ

e :τ .

Axioms If D; Γ `Σ e : τ is an instance of one of the axioms of the system
(IConst, Var, Nil, Cons, FunApp), then FV (e) ⊆ dom(Γ) holds trivially.

If Then e = if x then e1 else e2 for some x, e1, and e2. By induction we have
FV (e1) ⊆ Γ and FV (e2) ⊆ Γ and therefore FV (e1) ∪ FV (e2) ⊆ Γ .

10

Let Then e = let x = e1 in e2 for some x, e1, e2 and we have D; Γ `Σ e1 : τ ′,
x /∈ dom(Γ) and D; Γ, x : τ ′ `Σ e2 : τ for some τ ′. By induction we
have FV (e1) ⊆ dom(Γ) and FV (e2) ⊆ dom(Γ, x : τ ′). Therefore, FV (e) =
FV (e1) ∪ (FV (e2) \ {x}) ⊆ dom(Γ).

LetFun By the rule and induction hypothesis FVS (letfun f((x1, . . . , xn)) = e1 in e2) =
FVS (e2) ⊆ dom(Γ).

Match Then e = match x with | nil ⇒ enil | cons(hd , tl) ⇒ econs for some x, hd ,
tl , enil, and econs, Γ = Γ ′ ∪ x : Lp(τ ′) for some Γ ′, τ ′, and hd , tl 6∈ dom(Γ).
By induction we have FV (enil) ⊆ dom(Γ ′) and FV (econs) ⊆ dom(Γ ′) ∪ {x :
Lp(τ), hd : τ ′, tl :Lp−1(τ)}. Then FV (e) = FV (enil)∪ (FV (econs) \ {hd , tl}) ⊆
dom(Γ ′, x : Lp(τ)).

¤

3.2 Type-checking algorithm underlying the TLCA paper

Let one need to type-check
D; Γ `Σ e :τ.

Pre-requisists: underlying type (on the involved types with erased size anno-
tations) is accepted by a standard type-checking procedure.

The type-checking algorithm is inductive on e.

– e = c (not the expression in a let-binding). Then, since underlying type is
succesfully checked, τ must be Int.

– e = x (not the expression in a let-binding). Then, since underlying type is
succesfully checked, Γ is of the form Γ ′, x : τ ′ for some τ ′, and underlying
types of τ and τ ′ are the same. The typing is accepted if and only of D `
τ ≡ τ ′ (which is the same as D ` τ c = τ ′c).

– e = nil (not the expression in a let-binding). The typing is accepted if and
only if D ` τ ≡ L0(τ0), that is τ = Lp(τ ′) for some τ ′ and D ` p = 0.

– e = cons(hd , tl) (not the expression in a let-binding). The typing is accpeted
if and only if D ` Γ (tl) ≡ Lp(Γ (hd)) for some p and D ` τ ≡ Lp+1(Γ (hd).

– e = f(x1, . . . , xk) (not the expression in a let-binding), and Σ(f) = τ◦1 ×. . .×
τ◦k → τk+1, with τ◦i = Lno

i1
(. . . Lno

ili
(αi) . . .), and xi :τ ′i in Γ . Then τ ′i must be

of the form Lpi1(. . . Lpil′
i
(τ ′′i) . . .) for some τ ′′i . Accept the type, if and only

if D ` ∗(τk+1) ≡ τ , D ` C and D ` E hold. Here ∗ is the instantiation n0
ij

with pij and for C see the definition of the Fun rule.
– e = if x then et else ef . Accept the typing if and only if D; Γ `Σ et :τ and

D; Γ `Σ ef :τ are accepted.
– e = let x = e1 in e2. Since e1 may be only a basic expression one immediately

instantiates the fresh type variable ? τx in the let-rule. The typing is accpeted
if and only if

D; Γ, x : instantiated(? τx) `Σ e2 :τ

is accepted and:
• e1 = c: instantiated(? τx) = Int,

11

• e1 = y: instantiated(? τx) = Γ (y),
• e1 = nil: instantiated(? τx) = L0(. . . L0([Int [α]) . . .), where nestedness of

the list is reconstructed by the underlying type-checker,
• e1 = cons(hd , tl): instantiated(? τx) = Lp+1(Γ (hd)), and D ` Γ (tl) ≡

Lp(Γ (hd)) for some p
• e1 = f(x1, . . . , xk): instantiated(? τx) = ∗(τk+1), where ∗ is the insatnti-

ation of formal-parameters’ types with the actual-arguments’ types, and
D ` C, D ` E hold.

– e = match x with | nil ⇒ enil

| cons(hd , tl) ⇒ econs

.

Then Γ (x) = Lp(τ ′) for some τ ′, p. Accept the typing if and only if p =
0, D; Γ `Σ enil :τ and and D; Γ, hd :τ ′, tl :Lp−1(τ ′) `Σ ef :τ are accepted.

– e = letfun f(x1, . . . , xk) = e1 in e2. Accept the typing if and only if

True; x1 : τ◦1 , . . . , xk : τ◦k `Σ e1 : τk+1

and
D; Γ `Σ e2 : τ

are accepted, where Σ(f) = τ◦1 × · · · × τ◦n → τk+1.

3.3 Examples of type checking

In this section, some examples of type derivations of typable functions will be
given. The functions are: append, multiple copying, pairs (used for Cartesian
product), cprod (Cartesian product), sqdiff (quadratic difference), and mmaux
(matrix multiplication).

Append Consider the following definition of the append function:

append (x , y) =
match x with | nil ⇒ y

| cons(h, t) ⇒ let z = (append(t, y)) in cons(h, z)

According to the LetFun-rule, checking that append has the type Ln(α) ×
Lm(α) → Ln+m(α) means deriving x : Ln(α), y : Ln(α) `Σ eappend : Ln+m(α)
where Σ(append) = Ln′(α) × Lm′(α) → Ln′+m′(α) and eappend is the function
body. Applying the Match-rule yields two branches to be proven:

Nil: n = 0; y : Lm(α) `Σ y :Ln+m(α)
Cons: h : α, x : Ln(α), t : Ln−1(α), y : Lm(α) `Σ

let z = (append t y) in cons(h, z) :Ln+m(α)

Applying the Var-rule to the Nil-branch gives n = 0 ` n + m = m, which is
trivially true. The Cons-branch is proven by applying the Let-rule. This yields
two proof obligations:

12

Binding: t : Ln−1(α), y : Lm(α) `Σ append(t y) :τ
Expr: h :α, z : τ `Σ cons(h, z) :Ln+m(α)

The Binding-branch is proven by applying the FunApp-rule, which instanti-
ates τ with L(n−1)+m(α) due to the tautology ` n−1+m = n−1+m. Proving the
Expr-branch only requires applying the Cons-rule giving ` n + m = (n− 1 + m) + 1,
which is also true.

Because for every syntactic construction there is only one typing rule that is
applicable, type checking is straightforward.

Multiple Copying Now we consider a program which takes a pair of lists l1,
l2 and copies the first argument |l2| times, where |l2| is the length of l2:

f (l1, l2) =
match l2 with | nil ⇒ nil

| cons(h, t) ⇒ let x = f(l1, t) in append(l1, x)

We will check the body ef of f within the signature

Σ = {append : Ln(α)× Lm(α) → Ln+m(α), f : Ln(α)× Lm(α) → Ln∗m(α)}

First note that any pattern matching generates an obvious case split – the proof
tree splits into two parts, one of which is for zero-size case, another – for nonzero.
In our example the split happens w.r.t size variable m. The nil-branch is:

m = 0 ` n ∗m = 0
m = 0; l1 : Ln(α), l2 : Lm(α) `Σ nil :Ln∗m(α) Nil

l1 : Ln(α), l2 : Lm(α) `Σ ef :Ln∗m(α) Match

The cons-branch is:

` p = n ∗ (m− 1)

l1 : Ln(α), tl : Lm−1(α) `Σ f(l1, tl) :Lp(α)
Fun

(?)

l1 : Ln(α), l2 : Lm(α),
h : α, t : Lm−1(α)

}
`Σ

{
let x = f((l1, tl))
in append(l1, x) :Ln∗m(α)

} Let

l1 : Ln(α), l2 : Lm(α) `Σ ef :Ln∗m(α) Match

where ? is:

` n ∗m = n + n ∗ (m− 1)

l1 : Ln(α),
x : Ln∗(m−1)(α)

}
`Σ append(l1, x) :Ln∗m(α)

Fun

13

Pairs The function pairs is used to define the Cartesian product of two lists.
The function, given an element and a list of the same type, creates the list of
two-element lists. A pair of the output list consists of the input element and an
element of the input list. For instance, pairs(1, [1, 2, 3]) = [[1, 1], [1, 2], [1, 3]].

pairs x y =
match y with | nil ⇒ nil

| cons(hd , tl) ⇒ let z = cons(hd , nil)
in let z′ = cons(x, z)

in let z′′ = pairs(x, tl)
in cons(z′, z′′)

We type-check pairs : x : α× y : Ln(α) −→ Ln(L2(α)). The Nil-branch is proved
by:

n = 0 ` n = 0
n = 0; x : α, y : Ln(α) `Σ nil :Ln(L2(α)) Nil

x : α, y : Ln(α) `Σ epairs :Ln(L2(α)) Match

The (sugared) Cons-branch is proved by:

` n = 0 + 1
hd : α `Σ cons(hd , nil) :L?n(α) Cons (?)

x : α, hd : α, y : Ln(α), t : Ln−1(α) `Σ let z = ... in ... :Ln(L2(α)) Let

x : α, y : Ln(α) `Σ epairs :Ln(L2(α)) Match

where (?) is

` m = 1 + 1
z : L1(α), x : α `Σ cons(x, z) :Lm(α) Cons (??)

z : L1(α), x :α, y : Ln(α), tl : Ln−1(α) `Σ let z′ = ... in ... :Ln(L2(α))
Let

and (??) is

` p1 = 2 ∧ p2 := n− 1

x :α, tl : Ln−1(α) `Σ (pairs(x, tl) :Lp2(Lp1(α)) FA (? ? ?)
z′ : L2(α), x :α, t : Ln−1(α) `Σ let z′′ = ... in ... :Ln(L2(α))

Let

with (? ? ?):

` n = (n− 1) + 1
z′′ : Ln−1(L2(α)), z′ : L2(α) `Σ cons(z′, z′′) :Ln(L2(α))

Cons

14

Cartesian Product In the introduction, the Cartesian product was presented
using a “sugared” syntax. Here, we present the cprod function in the language
defined in section 2.

letfun cprod(x , y) = match x with | nil ⇒ nil
| cons(hd , tl) ⇒ let z1 = pairs(hd , y)

in let z2 = cprod(tl , y)
in append(z1, z2)

Functions pairs and append are assumed to be defined in the core syntax of the
language as well. Hence, Σ contains the following types:

Σ(append) = Ln(α)× Lm(α) → Ln+m(α)
Σ(pairs) = α× Lm(α) → Lm(L2(α))
Σ(cprod) = Ln(α)× Lm(α) → Ln∗m(L2(α))

To type-check cprod : Ln(α)× Lm(α) → Ln∗m(L2(α)) means to check:

Prove: x : Ln(α), y : Lm(α) `Σ ecprod :Ln∗m(L2(α))

where ecprod is the function body. This is demanded by the first branch of the
LetFun-rule. Applying the Match-rule branches the proof:

Nil: n = 0; y : Lm(α) `Σ nil :Ln∗m(L2(α))
Cons: h :α, x : Ln(α), t : Ln−1(α), y : Lm(α) `Σ

let z1 = pairs(hd , y)
in let z2 = cprod(tl , y)
in append(z1, z2)

 :Ln∗m(L2(α))

Applying the Nil-rule to the Nil-branch gives n = 0 ` n ∗ m = 0, which is
trivially true. The Cons-branch is proven by applying the Let-rule twice. This
results in three proof obligations:

Bind-z1: hd :α, y : Lm(α) `Σ pairs(hd , y) :τ1

Bind-z2: tl : Ln−1(α), y : Lm(α) `Σ cprod(tl , y) :τ2

Body: z1 : τ1, z2 : τ2 `Σ append(z1, z2) :Ln∗m(α)

From the applications of the FunApp-rule to Bind-z1 and Bind-z2 it follows
that τ1 should be Lm(L2(α)) and τ2 should be L(n−1)∗m(L2(α)). Lastly, applying
the FunApp-rule to Body yields the proof obligation ` (n−1)∗m+m = n∗m,
which is true in the axiomatics.

Quadratic difference Now we will consider the function whose output-size
polynomial contains subtraction. The polynomial is (x − y)2 = x2 − 2xy + y2.
Given two lists, the functions “subtracts” elements from lists simultaneously, till
one of the lists is empty. The function return the Cartesian product of the rest
list with itself.

15

sqdiff (x, y) =
match x with | nil ⇒ cprod(y, y)

| cons(hd , tl) ⇒ match y with | nil ⇒ cprod(x, x)
| cons(hd ′, tl ′) ⇒ sqdiff (tl , tl ′)

We want to type-check sqdiff : Ln(α)×Lm(α) −→ L(n2+m2−2∗n∗m)(L2(α)) using:

Σ(sqdiff) = Ln(α)× Lm(α) → Ln2+m2−2∗n∗m(L2(α))
Σ(cprod) = Ln(α)× Lm(α) → Ln∗m(L2(α))

After applying the LetFun and Match rules in the, by now, familiar way, we are
left with two Nil-branches and one Cons-branch. The first nil-branch is proved
by:

n = 0 ` 2 = 2 ∧ n2 + m2 − 2 ∗ n ∗m = m2

n = 0; x : Ln(α), y : Lm(α) `Σ cprod(y, y) :L(n2+m2−2∗n∗m)(L2(α)) Fun

x : Ln(α), y : Lm(α) `Σ esqdiff :L(n2+m2−2∗n∗m)(L2(α)) Match

The second nil-branch is proved by:

m = 0 ` 2 = 2 ∧ n2 + m2 − 2 ∗ n ∗m = n2

m = 0; x : Ln(α), y : Lm(α),
hd : α, tl : Ln−1(α) `Σ cprod(x, x) :L(n2+m2−2∗n∗m)(L2(α))

FunApp

x : Ln(α), y : Lm(α),
hd :α, t : Ln−1(α) `Σ match... :L(n2+m2−2∗n∗m)(L2(α))

Match

The recursive part of the derivation tree is

` n2 + m2 − 2 ∗ n ∗m = (n− 1)2 + (m− 1)2 − 2 ∗ (n− 1) ∗ (m− 1)

x : Ln(α), y : Lm(α)
hd : α, tl : Ln−1(α),
hd ′ : α, tl ′ : Lm−1(α)

`Σ sqdiff(tl , tl ′) :L(n2+m2−2∗n∗m)(L2(α))

FunApp

x : Ln(α), y : Lm(α),
hd :α, t : Ln−1(α) `Σ match... :L(n2+m2−2∗n∗m)(L2(α))

Match

Matrix multiplication For the matrix multiplication we need auxiliary func-
tions The function transpose transposes a matrix; the columns become rows, and
the rows become columns. The function inprod computes the scalar product of
two integer vectors. We define the matrix multiplications mmult, that leaves the
interesting work for newrow, which calculates a single row of the result matrix.

16

letfun newrow(x , y) = match y with | nil ⇒ nil
| cons(hd , tl) ⇒ let z = inprod(x , hd)

in let z ′ = newrow(x , tl)
in cons(z , z ′)

in letfun mmaux(x , y) = match y with | nil ⇒ nil
| cons(hd , tl) ⇒ let z = newrow(hd , y)

in let z ′ = mmaux(tl , y)
in cons(z , z ′)

in letfun mmult(x , y) = let z = transpose(y)
in mmaux(x , z)

Σ contains the following types:

Σ(transpose) = Ln(Lm(α)) → Lm(Ln(α))
Σ(inprod) = Ln(Int)× Ln(Int) → Int
Σ(newrow) = Ln(Int)× Lm(Ln(Int)) → Lm(Int)
Σ(mmaux) = Lm(Ln(Int))× Lm′(Ln(Int)) → Lm(Lm′(Int))
Σ(mmult) = Lm(Ln(Int))× Ln(Lm′(Int)) → Lm(Lm′(Int))

Now, according to the LetFun-rule, checking that mmaux has the type Lm(Ln(Int))×
Lm′(Ln(Int)) → Lm(Lm′(Int)) means deriving x :Lm(Ln(Int)), y :Lm′(Ln(Int)) `Σ

emmaux :Lm(Lm′(Int)) where emmaux is the function body. Applying the Match-
rule yields two branches to be proven:

Nil: m = 0 `Σ nil :Lm(Lm′(α))
Cons: hd : Ln(Int), tl : Lm−1(Ln(Int)), y : Lm′(Ln(Int)) `Σ

let z = newrow(hd , y)
in let z′ = mmaux(tl , y)
in cons(z, z′)

:Lm(Lm′(α))

Applying the Nil-rule to the Nil-branch gives m = 0 ` m = 0, which is trivially
true. The Cons-branch is proven by applying the Let-rule twice. This yields
three proof obligations:

Bind-z: hd : Ln(Int), y : Lp(Ln(Int)) `Σ newrow(hd , y) :τ1

Bind-z’: tl : Lm−1(Ln(Int)), y : Lp(Ln(Int)) `Σ mmaux(tl , y) :τ2

Body: z : τ1, z
′ : τ2 `Σ cons(r, t) :Lm(Lm′(α))

Function application instantiates τ1 and τ2 with Lm(Int) and Lm−1(Lm′(α)).

4 Decidability Issues for Type Checking

In the examples above, type checking ends up with a set of entailments like
n = 0 ` 0 = n ∗m or ` m + m ∗ (n − 1) = m ∗ n that have to hold. However,
we show that there is no procedure that can check all entailments that possibly
arise. To make type checking decidable, we formulate a syntactical condition on

17

the structure of a program expression that ensures the entailments have a trivial
form. The idea is to prohibit pattern-matchings in a let-body.

4.1 Type checking in general is undecidable

We show that the existence of a procedure that may check all possible entail-
ments at the end of type checking is reduced to Hilbert’s tenth problem: whether
there exists a general procedure that given a polynomial with integer coefficients
decides if this polynomial has natural roots or not.2 Matiyasevich [MJ91] has
shown that such a procedure does not exist. This means that type checking, in
the general case, is undecidable as well.

We show that type checking is reducible to a procedure of checking if arbitrary
size polynomials of shapely programs have natural roots. It turns out that the
latter is the same as finding natural roots of integer polynomials.

Consider the following expression eH with free variables x1, . . . , xk:

let x = f0(x1, . . . , xk) in match x with | nil ⇒ f1(x1, . . . , xk)
| cons(hd , tl) ⇒ f2(x1, . . . , xk)

We check if it has the type Ln1(α1) × . . . × Lnk
(αk) −→ Lp(n1,..., nk)(α), given

that fi : Ln1(α1) × . . . × Lnk
(αk) −→ Lpi(n1,..., nk)(α), with i = 0, 1, 2. Then at

the end of the type checking procedure we obtain the entailment:

p0(n1, . . . , nk) = 0 ` p1(n1, . . . , nk) = p(n1, . . . , nk).

Even if p and p1 are not equal, say p1 = 0 and p = 1, it does not mean that type
checking fails; it might not be possible to enter the “bad” nil-branch. To check
if the nil-branch is entered means to check if p0 = 0 has a solution in natural
numbers. Thus, a type-checker for any size polynomial p0 must be able to define
if it has natural roots or not.

Checking if any size polynomial has roots in natural numbers, is the same
as checking whether an arbitrary polynomial has roots or not. For polynomials
q(n1, . . . , nk) = 0 if and only if q2(n1, . . . , nk) = 0 so it is sufficient to prove
that the square of any polynomial is a size polynomial for some shapely program.
First, note that any polynomial q may be presented as the difference q1 − q2 of
two polynomials with non-negative coefficients3. So, q2 = (q1 − q2)2 is a size
polynomial, obtained by superposition of sqdiff with q1 and q2. Here q1 and q2

are size polynomials with positive coefficients for corresponding compositions of
cprod and append functions.

So, existence of a general type-checker reduces to solving Hilbert’s tenth
problem. Hence, type checking is undecidable.

2 The original formulation is about integer roots. However, both versions are equivalent
and logicians consider natural roots.

3 If q = Σai1,...,ikxi1
1 . . . xik

k , then q1 = Σai1,...,ik
≥0ai1,...,ikxi1

1 . . . xik
k , and q2 =

Σai1,...,ik
<0|ai1,...,ik |xi1

1 . . . x
ik
k .

18

We can show this in a more constructive way using the stronger form of
the undecidability of Hilbert’s tenth problem: for any type-checking procedure
I one can construct a program, for which I fails to give the correct answer.
We will use the result of Matiyasevich who has proved the following: there is
a one-parameter Diophantine equation W (a, n1, . . . , nk) = 0 and an algorithm
which for given algorithm A produces a number aA such that A fails to give the
correct answer for the question whether equation W (aA, n1, . . . , nk) = 0 has
a solution in (n1, . . . , nk). So, if in the example above one takes the function
f0 such that its size polynomial p0 is the square of the W (aI , n1, . . . , nk) and
p = 1, p1 = 0, then the type checker I fails to give the correct answer for eH .

For checking a particular program it is sufficient to solve the correspond-
ing sets of Diophantine equations. Type checking depends on decidability of
Diophantine equations from D in any entailment D ` p = p′, where p is not
equal to p′ in general (but might be if the equations from D hold). If we have
a solution for D we can substitute this solution in p and p′. A solution over
variables n1, . . . , nm, nm+1, . . . , nk is a set of equations ni = qi(nm+1, . . . , nk)
where 1 ≤ i ≤ m. The expressions for ni are substituted into p = p′ and one
trivially checks the equality of the two polynomials over nm+1, . . . , nk in the
axiomatics of the integers’ ring. Recall that two polynomials are equal if and
only if the coefficient at monomials with the same degrees of variables are equal.

4.2 Syntactical condition for decidability

The most simple way to ensure decidability is to require that all equations in D
have the form n = c, where c is a constant. This would in particular exclude the
example eH from above. As we will see below, this requirement can be fulfilled by
imposing a syntactical condition on program expressions: “no let before match”.

The refined grammar of the language is defined as the main grammar where
the let-construct in e is replaced by let x = b in enomatch with

enomatch := b
| letfun f(x1, . . . , xn) = e in e′

| let x = b in enomatch

| if x then e′nomatch else e′nomatch

Theorem 1. Let a program expression e satisfy the refined grammar, and its
type to check is τo

1 × . . .× τo
k −→ τ .

Then at the end of type checking procedure for ∅; x1 : τo
1 , . . . , xk : τo

k `∅ e : τ
one has to check entailments of the form

D ` p′ = p,

where D is a set of equations of the form n−c = 0 for some n ∈ FVS (τo
1 × . . .× τo

k)
and constant c and p, p′ are polynomials in FVS (τo

1 × . . .× τo
k).

The proof of the theorem is based on the following lemma.

19

Lemma 4. Let a variable x : Lqm
(. . . Lq1(τb) . . .) be pattern-matched in an ex-

pression e, where τb is either Int or a type variable. Let the type-checking tree
for ∅; x1 : τo

1 , . . . , xk : τo
k `∅ e : τ be considered. Then qi = ni − ci for some

size variable ni ∈ FVS (τo
1 × . . .× τo

k) and some constant ci.

Proof. (Of the Lemma.) By induction on the length of the path that leads from
the root of the tree to the pattern-matching point.

– The path is empty, that is

e = match x with | nil ⇒ e1

| cons(hd , tl) ⇒ e2

for some hd , tl , e1, e2.That is x is free in e and x : τo
j for some j. From the

definition of τo-type qi = ni for some size variables ni.
– Let the path is not empty. Consider two cases.

• x is free in e. then, as above, qi = ni for some size variables ni.
• x is not free in e. We use the fact, that the pattern matching may

not be a sub-expression of a let-body. Thus, there is y, such that e′ =
match y with | nil ⇒ e1

| cons(x, tl) ⇒ e2

or e′ = match y with | nil ⇒ e1

| cons(hd , x) ⇒ e2

are sub-expressions of e. (The pattern matching for x is a sub-expression
of e2 in both cases.) In the first case y : Lq(Lqm(. . . Lq1(τb) . . .)) for some
q. In the second case y : Lq′m(. . . Lq1(τb) . . .) for qm = q′m − 1.
In the first case qi = ni − ci, in the second case – the same but qm =
nm − (cm + 1), where ni, ci are obtained by induction assumption for y.

Proof. (Of the Theorem.) Consider a path in the type checking tree which ends
up with some D ` p′ = p, and let an equation q = 0 belong to D. It means
that in the path there is the nil-branch of the pattern matching for some x :
Lqm(. . . Lq1(τb) . . .), with qm = q. Apply the lemma to get q = n − c for some
n ∈ FVS (τo

1 × . . .× τo
k) and some constant c.

Note, that prohibiting pattern matching in let-bodies is very natural, since
it prohibits “risky” definitions of the form f(x) = g(f(f0(x))). Here x is a non-nil
list, and f0 is a function over lists, possibly with the property |f0(x)| ≥ |x|, with
| · | denoting length, so termination of f becomes questionable. In a “shapely
world” the condition |f0(x)| < |x| for all x starting from a certain x0, which
ensures termination, implies |f0(x)| = |x| − c or |f(x)| = c for some constant c.

In principle, any program expression that does not do pattern matching on a
variable bound by a let-expression may be recoded so that it satisfies the refined
grammar and defines the same map. For instance, an expression

let x ′ = f0(y) in match x with | nil ⇒ f1(x, x′)
| cons(hd , tl) ⇒ f2(x, x′)

and the expression

match x with | nil ⇒ let x′ = f0(y) in f1(x, x′)
| cons(hd , tl) ⇒ let x′ = f0(y) in f2(x, x′)

20

define the same map of lists.
Of course, the syntactical condition of the theorem may be relaxed. One may

allow expressions with pattern-matching in a let-body, assuming that functions
that appear in let-bindings, like f0, give rise to solvable Diophantine equations.
For instance, when p0 is a linear function, one of the variables is expressed via
the others and the constant and substituted into p1 = p. Or, p0 is a 1-variable
quadratic, cubic or degree 4 equation. We leave relaxations of the condition for
future work.

5 Weak Type Inference

Here we discuss weak type inference under the syntactical condition defined in
the previous section. Weak type inference is defined as follows: assuming that a
function always terminates and is well-typable, find its type. Since we consider
shapely functions, there is a way to reduce weak type inference to type checking
using the well-known fact that a finite polynomial is defined by a finite number
of points.

For each size polynomial in the output type of a given function, one assumes
a hypothesis about the degree and the variables. Then, to obtain the coefficients,
the function is run (preferably in a sand-box) as many times as the number of
coefficients the polynomial has. This finite number of input-output size pairs de-
fines a system of linear equations, where the unknowns are the coefficients of the
polynomial. When (the sizes of the data-structures in) the set of input data satis-
fies some criteria known from the polynomial interpolation theory [CL87,Lor92],
the system has a unique solution. Input sizes that satisfy these criteria, which
are nontrivial for multivariate polynomials, can be determined algorithmically.
Section 5.1 explains how.

The interpolation theory used in the previous paragraph finds the Lagrange
interpolation of a size function. If the hypothesis about the degree and the vari-
ables of the size expression was correct, the Lagrange interpolation coincides
with that desired size function. To check if this is the case, the interpolation is
given to the type checking procedure. If it passes, it is correct. Otherwise, one
repeats the procedure for a higher degree of the polynomial. Since the function
is well-typable, the procedure will eventually find the correct size polynomial
and terminate.

For instance, standard type inference for the underlying type system yields
that the function cprod has the following underlying type cprod : L(α)×L(α) −→
L(L(α)). Adding size annotations with unknown output polynomials gives cprod :
Ln(α)×Lm(α) −→ Lp1(Lp2(α)). We assume p1 is quadratic so we have to compute
the coefficients in its presentation:

p1(x, y) = a0,0 + a0,1x + a1,0y + a1,1xy + a0,2x
2 + a2,0y

2

21

Running the function cprod on six pairs of lists of length 0, 1, 2 yields:

n m x y cprod(x, y) p1(n,m) p2(n,m)
0 0 [] [] [] 0 ?
1 0 [0] [] [] 0 ?
0 1 [] [0] [] 0 ?
1 1 [0] [1] [[0, 1]] 1 2
2 1 [0, 1] [2] [[0, 2], [1, 2]] 2 2
1 2 [0] [1, 2] [[0, 1], [0, 2]] 2 2

This defines the following linear system for the external output list:

a0,0 = 0
a0,0 + a0,1 + a0,2 = 0
a0,0 + a1,0 + a2,0 = 0

a0,0 + a0,1 + a1,0 + a0,2 + a1,1 + a2,0 = 1
a0,0 + 2a0,1 + a1,0 + 4a0,2 + 2a1,1 + a2,0 = 2
a0,0 + a0,1 + 2a1,0 + a0,2 + 2a1,1 + 4a2,0 = 2

The unique solution is a1,1 = 1 and the rest of coefficients are zero. To verify
whether the interpolation is indeed the size polynomial, one checks if cprod :
Ln(α)× Lm(α) −→ Ln∗m(L2(α)). This is the case, as was shown in section 3.3.

As an alternative way of finding the coefficients, one could try to directly solve
the systems defined by entailments D ` p = p′. When the degree is assumed, the
unknowns in these systems are the polynomial coefficients. However, the systems
are nonlinear in general, see section 5.2. By combining testing with type checking
we do not have to solve these nonlinear Diophantine equations anymore.

5.1 Interpolation theory for generating hypotheses

In this section, the conditions under which a set of data points has a unique
polynomial interpolation are discussed. The well-known univariate case is used
for introduction. The general algorithm is illustrated by a bivariate example.

To define a polynomial p(x) of degree m it suffices to know the values of
the polynomial function in m + 1 different points. The set

(
xi, p(xi)

)
of pairs of

numbers, where 1 ≤ i ≤ m + 1, determines the system of linear equations w.r.t.
the polynomial coefficients a0, . . . , am:

a0 + a1 xi + . . . + am xm
i = p(xi)

for 1 ≤ i ≤ m + 1. The main matrix of the system is given by:
∣∣∣∣∣∣∣∣∣∣

1 x1 . . . xm−1
1 xm

1

1 x2 . . . xm−1
2 xm

2

.
1 xm . . . xm−1

m xm
m

1 xm+1 . . . xm−1
m+1 xm

m+1

∣∣∣∣∣∣∣∣∣∣

22

Its determinant, the Vandermonde determinant, is equal to
∏

i>j(xi − xj) and
is non-zero for pairwise different points x1, . . . , xm+1. This means that there
exists a unique solution for the system of equations.

Similar holds for polynomials of two or more variables. However, the condi-
tions under which multivariate Vandermonde determinants are non-zero are not
trivial. They are explored in polynomial interpolation theory [CL87], [Lor92].
In fact, we are looking for the Lagrange interpolation of a complexity function.
Since this complexity function is itself a polynomial of the same degree and num-
ber of variables as the Lagrange interpolation, the interpolation coincides with
the complexity function.

The problem is finding the condition under which a set of data uniquely
determines an interpolation of the data to a polynomial. It is stated as fol-
lows [CL87]. Let m be the degree, n be the number of variables (dimensionality)
and Nn

m =
(
m+n

n

)
be the number of the coefficients. What is needed is the

condition on a set of nodes {w̄i : i = 1, . . . , Nn
m}, such that for every data

{fi : i = 1, . . . , Nn
m}, there is a unique polynomial p(w̄) = Σ0≤|j|≤majw̄

j with
total degree m which interpolates the given data at the nodes, that is p(w̄i) = fi,
where 1 ≤ i ≤ Nn

m. Here w̄j = wj1
1 . . . wjn

n , |j| = j1 + . . . + jn is the usual mul-
tivariate notation. The configuration of points which ensures the existence and
uniqueness of Lagrange interpolation in general is not trivial.

2 dimensional For the 2-dimensional case of degree m it is stated as follows:
there are m + 1 lines containing m + 1, . . . , 1 of the nodes, respectively, and the
nodes do not lie on the intersections of the lines. Such a configuration of nodes
is presented for parallel lines in figure 1a. The formal definition is as follows:

Definition 1. NCA configuration [CL87] for 2 variables (2-dimensional space):
there exist different lines γ0, . . . , γn, such that one poses m + 1 nodes on γm, m
nodes on γm−1 \ γm, ... , 1 nodes is placed on γ0 \ {γ1 ∪ . . . ∪ γm}.

Assuming the program terminates on all inputs, there is no problem to find
such points for (outer) lists, for example using a triangle of points on parallel
lines (figure 1b). However, one must treat with care typings with nested lists,
like, for instance, Lp(Lq(α)). When while testing the outer list is empty, that
is p(x, y) = 0, there is no size value for the inner list (shown by the question
marks in the table for cprod). Thus, the points which send p to zero, must be
excluded from a testing process. So, one first finds the size polynomial p. There
is a finite number of lines y = i, where p(x, i) ≡ 0 and infinitely many other
lines (see lemma 5). By the diagonal search one can find as many points (x, y)
as one wants, such that p(x, y) 6= 0 (see, for instance, figure 1c).

Note, that in the first-order signatures we do not consider nested lists with
the outer type be a constant zero, like L0(Lq(τ)). This is not a principal type,
that is we accept only L0(α) for the outer polynomial be a constant zero.

Lemma 5. A polynomial p(x, y) of the degree m has at most m “root” lines,
y = i, such that p(x, i) ≡ 0, or is constant 0.

23

Proof. Suppose the opposite. Then it is easy to pick up nodes on some m + 1
“root” lines, and with these nodes the system of linear equations for the coef-
ficients of p will have the zero-solution, that is all the coefficients of p will be
zeros.

The algorithm we are using works not by diagonal search, but uses a limit
on the number of the lines y = i and nodes on them that have to be searched at
most. Essentially, it just tries to find the triangle shape (as in figure 1b) while
skipping all positions that do not give a value for the inner polynomial.

Lemma 6. Let the result type of a function be Lp(Lq(α)) and n = 2 be the
amount of variables, m1 be the degree of p(x, y) and m2 be the degree of q(x, y).
We want to find test points for q at places where p(x, y) 6= 0. We need to find
(m2+1)(m2+2)/2 data points: from m2+1 points lie on the line γm2+1 to 1 point
lying on the line γ1. It is sufficient to search the parallel lines y = 0, . . . , y =
m1 + m2 in the square [0, . . . , m1 + m2]× [0, . . . , m1 + m2].

Proof. We show that in the square [0, . . . ,m1 + m2]× [0, . . . ,m1 + m2] there
are at least m2 +1 lines where at least m2 +1 points do not send p to 0. Indeed,
due to lemma 5 there are at most m1 lines y = i such that p(x, i) ≡ 0, so at
least m2 +1 are not “root” lines. All those lines p(x, i) 6≡ 0 have degree m1, thus
each contains at most m1 nodes (x, i), such that p(x, i) = 0. This leaves m2 + 1
non-zero size values.

(a) (b) (c)

Fig. 1.

Generalization

Definition 2. The NCA configuration [CL87] for n variables (n-dimensional
space) is defined inductively on n.

Let {x1, . . . , xNn
m
} be a set of distinct points in Rn such that there exists

m + 1 hyperplanes Kn
j , 0 ≤ j ≤ m with

24

xNn
m−1+1, . . . , xNn

m
∈ Kn

m

xNn
j−1+1, . . . , xNn

j
∈ Kn

j \ {Kn
j+1 ∪ . . . ∪Kn

m}, for 0 ≤ j ≤ m− 1

and each of set of points xNn
j−1+1, . . . , xNn

j
, 0 ≤ j ≤ n, considered as points in

Rn−1 satisfies NCA in Rn−1.

In other words, a hyperplane Kn
j may be viewed as a set, where test points

for a polynomial of n − 1 variable of the degree j lie. There must be Nn−1
j =

Nn
j −Nn

j−1 such points.
Thus, in the general algorithm, similarly to lines in a square, parallel hyper-

planes in a hypercube are searched.

The 3-dimensional case: condition and solution We consider in more
detail the choice of the testing (triples of) lengths for functions with the output
type Lp(Lq(α)), where p and q are polynomials of three variables x, y, z. The
procedure is similar tow two-variable case. As in two-dimensional case, m1 is the
degree of p and m2 is the degree of q.

Lemma 7 (Testing for 3-variable polynomials). Let p(x, y, z) be not a
constant zero. Browsing the integer points in the cube

[0, . . . , m1 + m2]× [0, . . . , m1 + m2]× [0, . . . , m1 + m2]

one can find N3
m2

points, which satisfy NCA in R3 and will not be zeros of p.

Proof. We consider m1+m2 planes z = 0, . . . m1+m2. Amongst them at most m1

planes z = i may be zero-planes for p(x, y, z), that is p(x, y, i) ≡ 0. (Otherwise
p(x, y, z) ≡ 0.) Thus, there are at least m2+1 planes z = i, such that p(x, y, i) 6≡
0. Fix such non zero-plane i and some degree j between 0 and m2.

As for 2-dimensional case, one shows that on the square [0, . . . , m1 + j] ×
[0, . . . , m1 + j] on the plane z = i, one can find N2

j points that satisfy NCA in
R2.

5.2 Direct calculation of coefficients

In weak type inference coefficients of polynomials, at least on the right-hand side
of an entailment, are unknown. The task is to find the coefficients, which make
two polynomials on the right-hand side equal. For any entailment one equates
the coefficients at the monomials of the same degrees. Thus, one obtains the
system of Diophantine equations to solve.

Consider, for instance, the (“sugared”) code for the function sqdiff ′(x, y)

match x with | nil ⇒ sqr(y)
| cons(hd , tl) ⇒ match y with | nil ⇒ sqr(x)

| cons(hd ′, tl ′) ⇒ e

25

where sqr(x) may be defined as sqdiff(x, nil) and

e = sqdiff(sqdiff ′(tl , y)@x@x@x, sqdiff ′(x, tl ′)@y@y@y),

and @ denotes append. In type inference for this code one must obtain a poly-
nomial of the form

p(x, y) = a0,0 + a0,1x + a1,0y + a1,1xy + a0,2x
2 + a2,0y

2

from the equation

p(x + 1, y + 1) =
(
(p(x, y + 1) + 3x)− (p(x + 1, y) + 3y)

)2
.

Opening parentheses and comparing coefficients at the corresponding monomials
gives the following system of quadratic equations:

a2,0 = (2a2,0 − a1,1 − 3)2

a0,2 = (2a0,2 − a1,1 − 3)2

a1,1 = −2(2a0,2 − a1,1 − 3)(2a2,0 − a1,1 − 3)
a2,0 + a1,1 + a1,0 = −2((a0,2 − a2,0) + (a0,1 − a1,0))(2a2,0 − a1,1 − 3)
a0,2 + a1,1 + a0,1 = 2((a0,2 − a2,0) + (a0,1 − a1,0))(2a0,2 − a1,1 − 3)
a0,0 + a0,1 + a1,0+
+a0,2 + a1,1 + a2,0 = ((a0,2 − a2,0) + (a0,1 − a1,0))2

The solution is a0,2 = a2,0 = 1, a1,1 = −2, the rest of coefficients are zero.
We do not know for sure how complex are procedures for solving systems of

Diophantine equations at the end of weak type-inference. Moreover, it may be
that for some of these systems solving procedures do not exist.

6 Semantics of the Type System

Informally, soundness of the type system ensures that “well-typed programs
will not go wrong”. This is achieved by demanding that, when a function is
given meaningful values of the types required as arguments, the result will be a
meaningful value of the output type.

In section 6.1, we formalize the notion of a meaningful value using a heap-
aware semantics of types and give an operational semantics of the language.
Section 6.2 formulates the soundness statement with respect to this semantics
and section 6.3 sketches the proof. The system is shown not to be complete in
section 6.4.

6.1 Semantics of program values and expressions

In our semantic model, the purpose of the heap is to store lists. Therefore, it
essentially is a finite collection of locations l that can store list elements. A
location is the address of a cons-cell each consisting of a hd-field, which stores

26

the value of the list element, and a tl-field, which contains the location of the
next cons-cell of the list (or the NULL address). Formally, a program value is
either an integer constant, a location, or the null-address and a heap is a finite
partial mapping from locations and fields to such program values:

Val v ::= c | ` | NULL ` ∈ Loc c ∈ Int 4

Heap h : Loc ⇀ {hd, tl} ⇀ Val

We will write h[`.hd := vh, `.tl := vt] for the heap equal to h everywhere but in
`, which at the hd-field of ` gets value vh and at the tl-field of ` gets value vt.

The semantics w of a program value v is a set-theoretic interpretations with
respect to a specific heap h and a ground type τ•, via the four-place relation
v |=h

τ• w. Integer constants interprets themselves, and locations are interpreted
as non-cyclic lists.

i |=h
Int i

NULL |=h
L0(τ•) []

` |=h
Ln(τ•) whd :: wtl iff n ≥ 1, ` ∈ dom(h),

h.`.hd |=h|dom(h)\{`}
τ• whd,

h.`.tl |=h|dom(h)\{`}
Ln−1(τ•)

wtl

where h|dom(h)\{`} denotes the heap equal to h everywhere except for `, where
it is undefined.

When a function body is evaluated, a frame store maintains the mapping from
program variables to values. It only contains the actual function parameters, thus
preventing access beyond the caller’s frame. Formally, a frame store is a finite
partial map from variables to values:

Store s : ExpVar ⇀ Val

An operational-semantics judgment s; h; C ` e Ã v; h′ informally means
that at a store s and a heap h with a set of closures C an expression e terminates
and evaluates to the value v at the heap h′. Using heaps and frame stores,
and maintaining a mapping C from function names to bodies for the functions
definitions encountered, the operational semantics of expressions is defined by
the following rules:

c ∈ Int
s; h; C ` c Ã c; h

OSICons
s; h; C ` x Ã s(x); h

OSVar

s; h; C ` nil Ã NULL; h
OSNil

4 To avoid overhead with notations we treat integer values as integer literals. Ideally,
one considers integer values i rather than literals c.

27

s(hd) = vhd s(tl) = vtl ` /∈ dom(h)
s; h ` cons(hd , tl) Ã `; h[`.hd := vhd, `.tl := vtl]

OSCons

s(x) 6= 0 s; h; C ` e1 Ã v; h′

s; h; C ` if x then e1 else e2 Ã v; h′
OSIfTrue

s(x) = 0 s; h; C ` e2 Ã v; h′

s; h; C ` if x then e1 else e2 Ã v; h′
OSIfFalse

s; h; C ` e1 Ã v1; h1 s[x := v1]; h1; C ` e2 Ã v; h′

s; h; C ` let x = e1 in e2 Ã v; h′
OSLet

s(x) = NULL s; h; C ` e1 Ã v; h′

s; h; C ` match x with | nil ⇒ e1

| cons(hd , tl) ⇒ e2

Ã v; h′
OSMatch-Nil

h.s(x).hd = vhd h.s(x).tl = vtl
s[hd := vhd, tl := vtl]; h ` e2 Ã v; h′

s; h; C ` match x with | nil ⇒ e1

| cons(hd , tl) ⇒ e2

Ã v; h′
OSMatch-Cons

s; h; C[f := ((x1, . . . , xn)× e1)] ` e2 Ã v; h′

s; h; C ` letfun f((x1, . . . , xn)) = e1 in e2 Ã v; h′
OSLetFun

s(x1) = v1 . . . s(xm) = vn C(f) = (y1, . . . , yn)× ef

[y1 := v1, . . . , yn := vn]; h; C ` ef Ã v; h′

s; h; C ` f(x1, . . . , xn) Ã v; h′
OSFunApp

6.2 Soundness

Let a valuation ε map size variables to concrete (natural) sizes and an instanti-
ation η map type variables to ground types:

Valuation ε : SizeVar → Z
Instantiation η : TypeVar → τ•

Applied to a type, context, or size equation, valuations (and instantiations) map
all variables occurring in it to their valuation (or instantiation) images:

28

ε(p + p) = ε(p) + ε(p)
ε(p− p) = ε(p)− ε(p)
ε(p ∗ p) = ε(p) ∗ ε(p)
η(Lp(τ)) = Lp(η(τ))

The soundness statement is defined by means of the following two predicates.
One indicates if a program value is meaningful with respect to a certain heap
and ground type. The other does the same for sets of values and types, taken
from a frame store and ground context 5 respectively:

Validval(v, τ•, h) = ∃w[v |=h
τ• w]

Valid store(vars, Γ, s, h) = ∀x∈vars [Validval(s(x), Γ (x), h)]

Now the soundness statement is straightforward:

Theorem 2. Let s; h; [] ` e Ã v; h′. Then for any context Γ , signature
Σ, and type τ , such that True; Γ `Σ e : τ is derivable in the type system,
and any size valuation ε and type instantiation η, it holds that if the store is
meaningful w.r.t. the context η(ε(Γ)) then the output value is meaningful w.r.t
the type η(ε(τ)).

∀η,ε[Valid store(FV (e), η(ε(Γ)), s, h) =⇒ Validval(v, η(ε(τ)), h′)]

To prove the theorem one needs to discuss some semantic notions and prove
a few technical lemmas.

We assume benign sharing of variables [HJ03]. It means that evaluation of an
expression leaves intact the regions of the heap, accessible from the free variables
of the continuation. This condition is not typeable, but may be approximated
statically by some type system, such as uniqueness types [BS99]. The discussion
on this topic is beyond the scope of this report. Now we can define the operational
semantics of let-expressions respecting benign sharing of variables:

To formalize the notion of benign sharing we introduce a function R :
Heap ×Val −→ P(Loc), which computes the set of locations accessible in a
given heap from a given value:

R(h, c) = ∅
R(h, NULL) = ∅

R(h, `) =

∅, if ` /∈ dom(h)
{`} ∪ R(h|dom(h)\{`}, h.`.hd) ∪ R(h|dom(h)\{`}, h.`.tl),
if ` ∈ dom(h)

where f |X denotes the restriction of a (partial) map f to a set X.
We extend R to stores by R(h, s) =

⋃
x∈dom(s)R(h, s(x)). So, operational-

semantics rule with benign sharing looks as follows:
5 By a ground context we understand the context that maps variable names to ground

types.

29

s; h; C ` e1 Ã v1; h1

s[x := v1]; h1; C ` e2 Ã v; h′

h|R(h, s|FV (e2)) = h1|R(h, s|FV (e2))

s; h; C ` let x = e1 in e2 Ã v; h′
OSLet

6.3 Lemmas and soundness proof

One proves by induction on the size of (the domain of) the heap following lem-
mas:

Lemma 8 (A program value’s footprint is in the heap).
R(h, v) ⊆ dom(h).

Proof. The lemma is proved by induction on the size of the (domain of the) heap
h.

dom(h) = ∅: Then no ` ∈ dom(h) exists and R(h, c) = ∅ or R(h, NULL) = ∅,
which is trivially a subset of dom(h).

dom(h) 6= ∅:
v = c or v = NULL: Then,R(h, v) = ∅, which is trivially a subset of dom(h).
v = ` and dom(h) = (dom(h) \ {`}) ∪ {`}: From the definition of R we get

R(h, `) = {`} ∪ R(h|dom(h)\{`}, h.l.hd) ∪ R(h|dom(h)\{`}, h.l.tl). Ap-
plying the induction hypotheses we derive thatR(h|dom(h)\{`}, h.`.hd) ⊆
dom(h|dom(h)\{`}) andR(h|dom(h)\{`}, h.`.tl) ⊆ dom(h|dom(h)\{`}). Hence,
R(h, l) ⊆ dom(h). ¤

Lemma 9 (Extending a heap does not change the footprints of pro-
gram values). If ` /∈ dom(h) and h′ = h[`.hd := vhd, `.tl := vtl], for some
vhd, vtl then for any v 6= ` one has R(h, v) = R(h′, v).

Proof. The lemma is proved by induction on the size of the (domain of the) heap
h.

dom(h) = ∅: Because h′ = [l.hd = vhd, l.tl := vtl] and v 6= l we have v 6∈
dom(h′). Therefore, R(h, v) = ∅ = R(h′, v)).

dom(h) 6= ∅: We proceed by case distinction on v.
v = c or v = NULL: Then, R(h, v) = ∅ = R(h′, v).
v = `′: If `′ /∈ dom(h), then due to `′ 6= `, `′ /∈ dom(h) either and R(h, v) =

∅ = R(h′, v)).
Let ` /∈ dom(h). From the definition of R we get

R(h, `′) = {`′} ∪ R(h|dom(h)\{`′}, h.`′.hd) ∪ R(h|dom(h)\{`′}, h.`′.tl).

Due to h′(`′) = h(`′) and

h′|dom(h′)\{`′} = h|dom(h)\{`′}[`.hd := vhd, `.tl := vtl],

30

and the induction assumption one has

R(h|dom(h)\{`′}, h.`′.hd) = R(h′|dom(h′)\{`′}, h′.`′.hd)
R(h|dom(h)\{`′}, h.`′.tl) = R(h′|dom(h′)\{`′}, h′.`′.tl)

So,

R(h′, `′) =
= {`′} ∪ R(h′|dom(h′)\{`′}, h′.`′.hd) ∪ R(h′|dom(h′)\{`′}, h′.`′.tl) =
= {`′} ∪ R(h|dom(h)\{`′}, h.`′.hd) ∪ R(h|dom(h)\{`′}, h.`′.tl) =
= R(h, `′).

Lemma 10 (Validity for Union of Variable Sets). For all stores s and
ground contexts Γ the predicate Valid store(vars1 ∪ vars2, Γ, s, h) is true if and
only if both Valid store(vars1, Γ, s, h) and Valid store(vars2, Γ, s, h) are true.

The lemma follows immediately from the definition of a valid store.

Lemma 11 (Extending heaps preserves model relations).
For all heaps h and h′, if h′|dom(h) = h then v |=h

τ• w implies v |=h′
τ• w.

Proof.
The lemma is proved by induction on the structure of τ•.

τ• = Int: In this case, v is a constant i and w = i, hence v |=h′
τ• w by the

definition.
τ• = Ln̄(τ•′): We proceed by induction on n̄.

n̄ = 0: In this case, v = NULL and w = [], hence v |=h′
τ• w by the definition.

n̄ = m̄ + 1: By the definition v is a location ` and ` |=h
Lm̄+1(τ•′) whd :: wtl

for some whd and wtl such that

` ∈ dom(h),
h.`.hd |=h|dom(h)\{`}

τ•′ whd,

h.`.tl |=h|dom(h)\{`}
Lm̄(τ•′) wtl

We want to apply the induction assumption, with heaps h|dom(h)\{`},
h′|dom(h′)\{`} (as “h” and “h′” respectively). The condition of the lemma
is satisfied because

h′|dom(h′)\{`}|dom(h|dom(h)\{`})

= h′|dom(h′)\{`}|dom(h)\{`}
= h′|dom(h)\{`} = h|dom(h)\{`}

Thus, we apply the induction assumption and with h.` = h′.` obtain

` ∈ dom(h′),

h′.`.hd |=h′|dom(h′)\{`}
τ•′ whd,

h′.`.tl |=h′|dom(h′)\{`}
Lm̄(τ•′) wtl

Then, ` |=h′
Lm̄+1(τ•′) whd :: wtl by the definition. ¤

31

Lemma 12 (Values only depend on values at their footprints).
For v, h, w, and τ•, the relation v |=h

τ• w implies v |=h|R(h, v)
τ• w.

Proof. The lemma is proved by induction on τ•.

τ• = Int: By the definition, v is a constant i and thus w = i. Then v |=h|R(h, v)
τ•

w.
τ• = Ln̄(τ•): We proceed by induction on n̄.

τ• = L0(τ•′): By the definition v = NULL and w = []. Then v |=h|R(h, v)
τ• w.

τ• = Lm̄+1(τ•′): By the definition v = `. Then ` |=h
Lm̄+1(τ•′) w means that

w = whd :: wtl for some whd and wtl, and

` ∈ dom(h),
h.`.hd |=h|dom(h)\{`}

τ•′ whd,

h.`.tl |=h|dom(h)\{`}
Lm̄(τ•′) wtl

We apply the induction assumption, with the heap h|dom(h)\{`}:

` ∈ dom(h),

h.`.hd |=h|dom(h)\{`}|R(h|dom(h)\{`}, h.`.hd)

τ•′ whd,

h.`.tl |=h|dom(h)\{`}|R(h|dom(h)\{`}, h.`.tl)

Lm̄(τ•′) wtl

Due to R(h|dom(h)\{`}, h.`.hd) ⊆ dom(h) \ {`} (lemma 8) we have

h|dom(h)\{`}|R(h|dom(h)\{`}, h.`.hd) =
= h|R(h|dom(h)\{`}, h.`.hd) =
= h|R(h|dom(h)\{`}, h.`.hd)\{`}.

Similarly h|dom(h)\{`}|R(h|dom(h)\{`}, h.`.tl) = h|R(h|dom(h)\{`}, h.`.tl)\{`}.
Due to ` ∈ R(h, `), and lemma 11 – with R(h|dom(h)\{`}, h.`.hd)\{`} ⊆
R(h, h.`.hd) \ {`}, we have

` ∈ dom(hR(h, `)),
h|R(h, `).`.hd |=h|R(h, h.`.hd)\{`}

τ•′ whd,

h|R(h, `).`.tl |=h|R(h, h.`.hd)\{`}
Ln̄(τ•′) wtl

Thus, ` |=h|R(h, `)

Lm̄+1(τ•′)
whd :: wtl. ¤

Lemma 13 (Equality of the “meanings” of a program value in two
heaps follows from the eq. of the footprints).
If h|R(h, v) = h′|R(h, v) then v |=h

τ• w implies v |=h′
τ• w.

Proof. Assume v |=h
τ• w. Lemma 12 states that this implies v |=h|R(h, v)

τ• w.

Assuming h|R(h, v) = h′|R(h, v) we get v |=h′|R(h, v)
τ• w. Since h′|dom(h′|R(h, v)) =

h′|R(h, v) we may apply lemma 11, which gives v |=h′
τ• w. ¤

32

Lemma 14 (ChangeStore).
Given a typing context Γ , store s, heap h, value v, a set of variables vars and a
variable x 6∈ vars, s.t. x 6∈ dom(s), we have Valid store(vars, Γ, s[x := v], h) ⇐⇒
Valid store(vars, Γ, s, h).

Proof. The lemma follows from the definition of Valid store.

Lemma 15 (SubsetFV).
Given a set of variables vars1, typing context Γ , stack s, and heap h, for any set
of variables vars2 such that such that vars2 ⊆ vars1 we have Valid store(vars1, Γ, s, h) =⇒
Valid store(vars2, Γ, s, h).

Proof. The lemma follows from the definition of Valid store.

The soundness theorem is a partial case of the following lemma:

Lemma 16 (Soundness). For any s, h, C, e, v, h′, a set of equations D, a
context Γ , a signature Σ, and a type τ , any size valuation ε, a type instantiation
η such that

– s; h; C ` e Ã v; h′,
– D; Γ `Σ e : τ is derivable in the type system, and is a node in some

derivation tree, where all functions called in e are declared via letfun,
– D holds on size variables valuated by ε (i.e. Dε holds)

if the store is meaningful w.r.t. the context η(ε(Γ)) then the output value is
meaningful w.r.t the type η(ε(τ)).

Proof. For the sake of convenience we will denote η(ε(τ)) via τηε and η(ε(Γ))
via Γηε.

We prove the statement by induction on the height of the derivation tree for
the operational semantics. Given s; h; C ` e Ã v; h′ we fix some Γ , Σ, and
τ , such that D; Γ `Σ e : τ . We fix a valuation ε ∈ FV (Γ)∪FV (τ) → Zeta, a
type instantiation ε ∈ FV (Γ) ∪ FV (τ) → τ•, such that the assumptions of the
lemma hold.

We must show that Validval(v, τηε, h
′) holds.

ToDo: move to op.sem For C we have that if C(f) = x×e then FV (e) ⊆ x .

OSICons: In this case v = c for some constant c and τ = Int. Then, by the
definition we have c |=h

Int c and Validval(v, Int, h′).
OSNull: In this case v = NULL and τ = L0(τ ′) for some τ ′, s.t. FVS (τ) ⊆

FVS (Γ) Then, by the definition we have NULL |=h
L0(τ ′ηε)

[].
OSVar: From Dε (and soundness of equational reasoning) it follows that τηε =

τ ′ηε. From this and Valid store(FV (x), (Γ ∪ (x : τ ′)ηε, h, s) it follows that

Valid val(s(x), τηε, h)

33

OSCons: In this case e = cons(hd , tl), τ = Lp(τ ′), {hd : τ ′, tl : Lp′(τ ′)} ⊆ Γ for
some hd , tl , p′ and τ ′. Since Valid store(FV (e), Γηε, s, h) there exist whd and
wtl such that s(hd) |=h

τ ′ηε
whd and s(tl) |=h

(Lp′ (τ ′))ηε
wtl. From the opera-

tional semantics judgment we have that v = ` for some location ` /∈ dom(h),
and h′ = h[`.hd := s(hd), `.tl := s(tl)]. Therefore, h′.`.hd |=h

τ ′ηε
whd and

h′.`.tl |=h
(Lp′ (τ ′))ηε

wtl also hold. It is easy to see that h = h′|dom(h′)\{`}.
Thus,

h′.`.hd |=h′|dom(h′)\{`}
τ ′ηε

whd

h′.`.tl |=h′|dom(h′)\{`}
(Lp′ (τ ′))ηε

wtl

This and Dε, which implies pε = (p′ + 1)ε gives ` |=h′
(Lp(τ ′))ηε

whd :: wtl and
thus Validval(`, τηε, h

′).
OSIfTrue: In this case e = if x then e1 else e2 for some e1, e2, and x. Knowing

that D; Γ `Σ e1 :τ we apply the induction hypothesis to the derivation of
s; h; C ` e1 Ã v; h′, with the same η, ε to obtain Valid store(FV (e1), Γηε, s, x) =⇒
Validval(v, τηε, h

′). From FV (e1) ⊆ FV (e), Valid store(FV (e), Γηε, s, x), and
lemma 15 it follows that Validval(v, τηε, h

′).
OSIfFalse: In this case e = if x then e1 else e2 for some e1, e2, and x. Knowing

that D; Γ `Σ e2 : τ . we apply the induction hypothesis to the deriva-
tion of s; h; C ` e2 Ã v; h′ to obtain Valid store(FV (e2), Γηε, s, x) =⇒
Validval(v, τηε, h

′). From FV (e2) ⊆ FV (e), Valid store(FV (e), Γηε, s, x), and
lemma 15 it follows that Validval(v, τηε, h

′).
OSLetFun: The result follows from the induction hypothesis for

s; h; C[f := (x × e1)] ` e2 Ã v; h′,

with D; Γ `Σ e2 : τ and the same η, ε.
OSLet: In this case e = let x = e1 in e2 for some x, e1, and e2 and we have

s; h; C ` e1 Ã v1; h1 and s[x := v1]; h1; C ` e2 Ã v; h′ for some
v1 and h1. We know that D; Γ `Σ e1 : τ ′, x 6∈ Γ and D; Γ, x : τ ′ `Σ

e2 : τ for some τ ′. Applying the induction hypothesis to the first branch
gives Valid store(FV (e1), Γηε, s, h) =⇒ Validval(v1, τ

′
ηε, h1). Since FV (e1) ⊆

FV (e1) ∪ (FV (e2) \ {x}) = FV (e) and Valid store(FV (e), Γηε, s, h) we have
from lemma 15 that Valid store(FV (e1), Γηε, s, h) holds and hence we have
Validval(v1, τ

′
ηε, h1).

Now apply the induction hypothesis to the second branch to get

Valid store(FV (e2), Γηε ∪ {x : τ ′ε}, s[x := v1], h1) =⇒ Validval(v, τηε, h
′).

Fix some y ∈ FV (e2). If y = x, then Validval(v1, τ
′
ηε, h1) implies Validval(s[x :=

v1](x), τ ′ηε, h1). If y 6= x, then s[x := v1](y) = s(y). Because we know
that sharing is benign, h|R(h, s(y)) = h1|R(h, s(y)), applying lemma 13 and
then 15 we have that s(y) |=h

Γηε(y) wy implies s(y) |=h1
Γηε(y) wy implies

s[x := v1](y) |=h1
Γηε(y) wy and thus Validval(s[x := v1](y), Γηε(y), h1). Hence,

Valid store(FV (e2), Γηε∪{x :τ ′ηε}, s[x := v1], h1). Therefore, Validval(v, τηε, h
′).

34

OSMatch-Nil: In this case e = match x with | nil ⇒ e1 | cons(hd , tl) ⇒
e2 for some x, hd , tl , e1, and e2. The typing context has the form Γ =
Γ ′ ∪ {x : Lp(τ ′)} for some Γ ′, τ ′, p. The operational-semantics deriva-
tion gives s(x) = NULL, hence validity for s(x) gives x : L0(τ ′) and thus
ε(p) = 0. From the typing derivation for D; Γ `Σ e : τ we then know
that p = 0, D; Γ ′ `Σ e1 : τ . Applying the induction hypothesis, with
p = 0 ∧ D then yields Valid store(FV (e1), Γ ′ηε, s, h) =⇒ Validval(v, τηε, h

′).
From FV (e1) ⊆ FV (e), Valid store(FV (e), Γηε, s, h), and lemma 15 it follows
that Validval(v, τηε, h

′).
OSMatch-Cons: In this case e = match x with | nil ⇒ e1 | cons(hd , tl) ⇒ e2 for

some x, hd , tl , e1, e2. The typing context has the form Γ = Γ ′∪{x :Lp(τ ′)} for
some Γ ′, τ ′, p. From the operational semantics we know that h.s(x).hd = vhd
and h.s(x).vtl for some vhd and vtl – that is s(x) 6= NULL – hence, due to
validity of s(x), we have x :Lp(τ ′) for some τ ′ and ε(p) ≥ 1. From the typing
derivation of e we obtain that D; Γ ′, x :Lp(τ ′), hd :τ ′, tl :Lp−1(τ ′) `Σ e2 :τ
Applying the induction hypothesis yields

Valid store(FV (e2),

Γ ′ηε∪
∪{x : (Lp(τ ′))ηε}∪
∪{hd : τ ′ηε}∪
∪{tl : Lp−1(τ ′)}ηε}

, s

[
hd := vhd,
tl := vtl

]
, h) =⇒

=⇒ Validval(v, τηε, h
′).

From Valid store(FV (e), Γηε, s, h), (FV (e2) \ {hd , tl}) ⊆ FV (e), and lemma
15 we obtain Valid store(FV (e2) \ {hd , tl}, Γηε, s, h). Due to hd , tl 6∈ dom(s)
we can apply lemma 14 and get Valid store(FV (e2) \ {hd , tl}, Γε, s[hd :=
vhd, tl := vtl], h).
From the validity s(x) |=h

(Lp(τ ′))ηε
whd :: wtl, and obvious ε(p−1) = ε(p)−1

the validity of vhd and vtl follows: vhd |=h
τ ′ηε

whd, vtl |=h
(Lp−1(τ ′))ηε

wtl (and
thus, again, ε(p) ≥ 1.)
Now Valid store(FV (e2), Γηε ∪ {hd : τ ′, tl : Lp−1(τ ′)}ηε, s, h) and, hence,

Validval(v, τ ε, h
′).

OSFun: We want to apply the induction assumption to

[y1 := v1, . . . , yk := vk]; h; C ` ef Ã v; h′.

Since the original typing judgment is a node in a derivation tree, where all
called in e functions are defined via letfun, there must be a node in the
derivation tree with True, y1 : τ◦, . . . , yk : τ◦ `Σ ef : τ ′.
We take η′ and ε′, such that
– η′(α) = η(τα), where τα is such that α is replaced by τα in the instanti-

ation of the signature in *this* application of the FunApp-rule.
– ε′(nij) = ε(pij), where nij is replaced by pij in the instantiation of the

signature in *this* application of the FunApp-rule.

35

True (“no conditions”) holds trivially on ε′.
From the induction assumption we have

Valid store((y1, . . . yk), (y1 : τ◦1 η′ε′ , . . . , yk : τ◦k, η′ε′), [y1 := v1, . . . , yn := vn], h)
=⇒ Validval(v, τ ′η′ε′ , h

′)

From Valid store(FV (e), Γηε, s, h) we have validity of the values of the ac-
tual parameters: vi |=h

Γηε(xi)
wi for some wi, where 1 ≤ i ≤ k. Since

Γηε(xi) = τ◦i η′ε′ , the left-hand side of the implication holds, and one obtains
Validval(v, τ ′η′ε′ , h

′).
Since Dε implies τ ′[. . . α := τα . . .][. . . nij := pij . . .]ηε = τηε, and τ ′[. . . α :=
τα . . .][. . . nij := pij . . .]ηε = τ ′η′ε′ we have Validval(v, τε, h

′).

¤

6.4 Completeness

The system is not complete – there are shapely functions that are not well-
typed. For instance, the type checking fails for the function faildueif : Ln(Int) →
Ln(Int) defined by:

letfun faildueif(x) = let y = length(x) in if y then x else nil

where length(x) returns the length of list x. We believe that in some cases pro-
gram transformations might help to make such functions typeable.

7 Conclusion and Further Work

We have presented a natural syntactic restriction such that type checking of a
size-aware type system for first-order shapely programs is decidable for polyno-
mial size expressions without any restrictions on the degree of the polynomials.

Type inference for this system is shown to be undecidable. A non-standard,
practical method to infer types is introduced. It uses run-time results to generate
a solvable set of equations. The results of this method are shown to be correct
in all cases. Of course, termination of this method cannot be guaranteed since
this would be in conflict with the undecidability of type inference.

The system is defined for polymorphic lists. In principle, the system may be
extended so that more general data structures will be allowed. This extension
should not influence the approach itself, however it brings additional technical
overhead.

An obvious limitation of our approach is that we consider only shapely pro-
grams. In practice, one is often interested to obtain upper bounds on space com-
plexity for non-shapely programs. A simple example where for a non-shapely
program an upper bound would be useful, is the program to insert an ele-
ment in a list, provided the list does not contain the element. In the future

36

we plan to consider program transformations which, given a non-shapely pro-
gram p with upper bound (worst-case) complexity c, translate it into a shapely
program p’ with complexity c. Effectively, this will make the analysis applica-
ble to non-shapely programs obtaining upper bounds on the space consumption
complexity.

Addition of other data structures and extension to non-shapely programs will
open the possibility to use the system for an actual programming language.

References

[BS99] Erik Barendsen and Sjaak Smetsers. Graph rewriting aspects of functional
programming. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg,
editors, Handbook of Graph Grammars and Computing by Graph Transfor-
mation, pages 63–102. World Scientific, 1999.

[CBF91] S. Chatterjee, G. E. Blelloch, and A. L. Fischer. Size and access inference
for data-parallel programs. In PLDI ’91: Proceedings of the ACM SIGPLAN
1991 conference on Programming language design and implementation, pages
130–144, New York, NY, USA, 1991. ACM Press.

[CL87] C. Chui and H.C. Lai. Vandermonde determinant and Lagrange interpolation
in Rs. In Nonlinear and convex analysis, pages 23–35, 1987.

[EJPS05] M. van Eekelen, B. Jacobs, E. Poll, and S. Smetsers. AHA: Amor-
tized Heap Space Usage Analysis. NWO project proposal, August 2005.
http://www.cs.ru.nl/ marko/research/aha2005.pdf.

[HJ03] M. Hofmann and S. Jost. Static prediction of heap space usage for first-order
functional programs. SIGPLAN Not., 38(1):185–197, 2003.

[HL01] C. A. Herrmann and C. Lengauer. A transformational approach which com-
bines size inference and program optimization. In Walid Taha, editor, Seman-
tics, Applications, and Implementation of Program Generation (SAIG’01),
Lecture Notes in Computer Science 2196, pages 199–218. Springer-Verlag,
2001.

[JS97] C. B. Jay and M. Sekanina. Shape checking of array programs. In Computing:
the Australasian Theory Seminar, Proceedings, 1997, volume 19 of Australian
Computer Science Communications, pages 113–121, 1997.

[Lor92] R. A. Lorenz. Multivariate Birkhoff Interpolation, Lecture Notes in Math.,
volume 1516. Springer-Verlag, New York, 1992.

[MJ91] Yu. Matiyasevich and J. P. Jones. Proof or recursive unsolvability of hilbert’s
tenth problem. American Mathematical Monthly, 98(10):689–709, October
1991.

[Par98] L. Pareto. Sized Types. Chalmers University of Technology, 1998. Dissertation
for the Licentiate Degree in Computing Science.

[VK04] P. B. Vasconcelos and Hammond K. Inferring cost equations for recursive,
polymorphic and higher-order functional programs. In P. Trinder, G. Michael-
son, and R. Peña, editors, Implementation of Functional Languages: 15th
International Workshop, IFL 2003, Edinburgh, UK, September 8–11, 2003.
Revised Papers, volume 3145 of Lecture Notes in Computer Science, pages
86–101. Springer-Verlag, Berlin, 2004.

37

