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Abstract 
This paper presents an integrated approach to 

tactile perception, both in terms of data acquisition and 
of data interpretation. 

In humans, touch sensing is implemented through a 
number of different sensing elements embedded in: the 
skin. The interpretation of perceived data to the level of 
detection of basic features, such as material, shape of 
surjface, shape of contact, is achieved by integrating the 
different sensorial inputs at a low level, with no 
involvement of high level cognitive processes. 

The approach we propose in this paper follows this 
anthropomorphic model of tactile perception, by 
including, on one hand, a miniature fingertip 
integrating different sensors and, on the other hand, a 
parallel data interpretation module, implemented 
through a fuzzy neural-network, which processes all the 
different inputs at the same level. 

The paper describes the characteristics of the 
integrated fingertip sensor and of the neuro-fuuy 
system, and discusses experimental results achieved 
during exploratory tasks on a set of common object are 
discussed in detail in the following. 

1. Introduction 
A key issue in modern robotics both involves the 

robot capability of dealing with uncertainties, in the 
working environment and in the behavior to adopt 
according to current circumstances. This is particularly 
true in the emerging field of service robotics, where 
robots interact with humans and deal with unstructured 
environments. For these reasons, the capability of 
perceiving the external environment and of planning 
and modifying behavior according to the perceived 
features is of main concern in robotics. 

Tactile perception is an important tool for extracting 
information by means of direct interaction with objects, 
especially if different sensory modalities are integrated, 
such as dynamic, thermal, force, torque and contact [l]. 
In recent years many efforts have been devoted to the 
development of sensors for tactile probes and grippers 
[2] [3] [4]. These sensors have been developed using 
different approaches and technologies, with the common 
aim of improving robot performance in two main kinds 
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of operations: "exploratory" tasks and "manipulative" 
tasks. 

Although these types of actions are performed 
simultaneously in most practical cases, they can be 
considered conceptually as separated for the sake of 
clarity. According to this classification, the primary goal 
of recognition and exploration tasks by touch is to 
provide the robot system with information on the 
physical properties of surfaces and objects. This 
knowledge is useful to characterise more accurately the 
robot workspace (in most cases along with the 
information provided by vision and by range sensing) 
and may be used for subsequent manipulative tasks. To 
this aim, the robot end effector should be capable of 
gathering as much and as varied information as possible 
on the explored object. Thus the main technical problem 
in recognition and exploration is to design a tactile 
sensor with multiple sensory capabilities. If the model 
from which the designer can take inspiration is the 
biological one (a reasonable choice for robots intended 
to operate, for example, in the service field) it is not 
necessary to fabricate sensors extremely accurate. In this 
context, tactile sensors should be regarded as tools 
useful to extract qualitative or semi-quantitative 
information, rather than precision instruments. 

In parallel with the advances in tactile sensing 
technology, important results have been achieved in the 
field of tactile data interpretation. Starting from the 
paradigm of 'Active Perception' [5]  and from studies on 
human perception [6], typical exploratory procedures 
have been formulated for tactile exploration of object [7] 
[8]. The problem of object recognition through 
perception has usually been faced by integration of 
different sensor modalities, such as vision and touch [9] 
or different touch modalities [ 101. Furthermore, 
interesting results have been achieved in robot sensory- 
motor co-ordination [ 1 11 [I 21. 

The aspects of noise robustness, adaptability, parallel 
processing, low level integration and ability to learn, 
typical of human tactile perception have suggested the 
implementation of neural networks and fuzzy systems 
for tactile models in robotics [ 121 [ 131. 

In this paper, an integrated tactile sensor, including 
a custom tactile array, a thermal sensor and a dynamic 
sensor, is presented. This sensor is the core of a robotic 
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system for investigating tactile perception. A neuro- 
fuzzy approach to data interpretation is then discussed 
and experimental results are reported, for the case of an 
object sorting problem. Finally, hints for future research 
and experiments to be carried out on the proposed 
sensor are given and conclusions are drawn on the 
validity of the proposed approach. 

2. Design Concepts 
The approach we propose to tactile perception in 

robotics starts from considerations on the human tactile 
system and perception model. Tactile sensing, in 
humans, is achieved through a number of different 
sensing elements, corresponding to different sensor 
modalities, physically integrated into the skin, a 
miniature support allowing sensors to perceive external 
environment and to be protected, at the same time. The 
perceived signals are acquired in parallel, in humans, 
and integrated at a low level, with no involvement of 
high level cognitive processes. Furthermore, the human 
tactile system shows high noise robustness and high 
adaptability and learning capabilities. 

Based on these considerations, we propose a tactile 
model including an integrated miniature fingertip 
sensor and a neuro-fuzzy processing systeim. 

The integrated fingertip sensor has novel 
technological features, such as the use of space-variant 
sensor geometry and the partial integration of the pre- 
processing electronics, which alleviate some serious 
practical problems, like the number and encumbrance of 
electrical wiring. These features reflect consideration for 
mechatronic and (in the near future) micromechatronic 
design concepts and fabrication technologies. 
Furthermore, the unique “anthropomorphic” features of 
the fingertip sensor may open new opportunities for 
fundamental research on tactile perception. The 
fingertip sensor was developed with support from the 
Korean Institute of Science and Technology (KIST) in 
the framework of the “CENTAUR’ Project [14]. 

The proposed approach aims at integrating tactile 
perception, by allowing a supervisor-control system to 
evaluate contact conditions through several parameters. 
Different sensors have been integrated inito one sensory 
system, including a miniature control electronics, such 
as to be physically assembled onto an anthropomorphic 
fingertip, with sensors on the external surface and 
electronics inside. 

The proposed solution includes three different types 
of sensors: 

a Tactile Array sensor, to determine contact 
patterns; 

0 a Dynamic sensor, to detect micro-vibrations due 
to stick-slip movements; 

a Thermal sensor, to detect thermal conductivity 
of contact object surfaces. 

The electronic circuitry that interfaces and acquires 
the signals of the sensors has been purposely designed to 
allow fabrication by SMD technology: it yields to 
completely embed the interface and acquisition 
electroinics inside the fingertip. Specific software has 
been developed for the management of the acquisition 
modalities and data transfer. 

The: resulting sensory system is an integrated 
anthropomorphic sensorised fingertip with contact, 
dynamic and thermal sensor capabilities and data 
acquisition functionality. 

A short description of the fingertip different sensors 
is given in the following section, though further 
technical details can be found in [14] 

The: neuro-fuzzy system we propose is based on a 
multi-layer feed-forward neural network comprising two 
level of features extraction and classification. 

From the tactile and dynamic signals, the first level 
was ablle to extract two fuzzy values about the degree of 
curvature and roughness of an object surface. Together 
with temperature and shape, these values were used to 
train the final network to classify different sensed 
objects. 

We focus our attention on the choice of a neural 
network as a classifier system for the high parallel 
nature of the algorithm that has to process parallel 
signals. Furthermore, the complexity of the recognition 
task is significantly reduced via the iterative learning 
supervised process, that, in the meanwhile, allows a 
robust and distributed knowledge representation and 
treatment. 

3. The Integrated Fingertip 
The integrated fingertip comprises the “Tactile 

Array sensor” ,the ”Dynamic sensor” and the “Thermal 
sensor”. 

The “KIST” Tactile Array sensor is an evolution of 
the ARTS Tactile Sensor, previously designed by some 
of the authors and described in [15]. The sensor reflects 
the unique space-variant disposition of the sensing sites, 
aiming to increase the size of the tactile sensing area 
and reproducing the concept of tactile “focus of 
attention” at the fingertip (very similar to the analogous 
well known concept of foveal vision [16]), though it has 
been re:duced in  size in order to be integrated in the 
fingertip; in particular, site number has decreased from 
256 to 64 and the connection “tail” has been reduced to 
a compact connector. 

Fig. 1 depicts the Tactile sensor stand-alone and 
mounted on the robotic fingertip. 
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Fig. I The Tactile array sensor 

The Dynamic sensor is based on a bimorph piezo- 
ceramic element, generating a signal related to applied 
stress. Further technical details on the design and 
development of the Dynamic sensor can be found in 

The Thermal sensor is composed of two miniature 
resistors embedded in thermally conductive rubber: one 
is for heating the sensor and the other is for detecting 
temperature variations. So, the sensor requires two 
phases: the heating phase and the measuring phase. 

In the heating phase the heating element is powered 
on, thus heating the sensor up to an appropriate 
temperature. 

In the measuring phase the heating element is 
powered off, the thermal sensor assembly is put in 
contact with the object surface and the NTC sensor 
measures the temperature versus time variations. This 
function is related with the thermal flow between the 
sensor assembly and the object. 

A proper interface electronics acquires the signals 
from the sensor and put them in numerical format. 

The integrated fingertip is contained in a compact 
and lightweight assembly of 27.4 x 25 x 52 mm that can 
be mounted on a commercial hand (Barrett Hand, by 
Barrett Technology Inc., Cambridge, MA); the Tactile 
Sensor and the Thermal Sensor are placed on the 
contact surface, while the Dynamic Sensor leans out 
from the fingertip upper side. In order to limit possible 
damages to the dynamic sensor during grasping 
operations, the sensor stick may glide into the fingertip 
structure. 

The electronic boards for data acquisition are 
embedded inside the fingertip structure, too; the tactile 
acquisition electronics is connected to the Tactile Sensor 
through a connector that is supported by the small 
custom made mechanical assembly. 

~ 4 1 .  

4. Tactile Information 
The integration of different sensory modalities in the 

fingertip sensor provides rich information, which gives 
indications on a variety of features, such as material, 
shape of the surface, roughness, curvature, and kind of 
contact with the fingertip. By detecting the normal 
forces applied at a number of different sites of the 
surface of the fingertip, an indication on the shape of 

contact can be extracted, together with the position of 
contact with respect to the fingertip. Furthermore, the 
force values that the sensor detect for each active site 
allow to recover rough information on the curvature of 
the object. Fig.2 shows typical tactile images for a 
spherical (a) and a flat (b) object. 

(a) (b) 
Fig.2. Typical tactile images for a spherical (a)  and aflat (b)  

object. 

The particular anthropomorphic fovea-like structure 
of the tactile array allows to collect information on a 
wider area, respect to the number of active sites; though 
high definition information is available at the central 
part of the array, further rougher information is also 
available on a wider area of the object surface, so that 
indications on ‘what is next’ (especially helpful for 
directing exploratory research) are also given. A well- 
suited application of this particular sensor feature is in 
edge tracking, as indications on the prosecution of edge 
can be extracted from the rough sensor area information 
during the detection of an edge in the high definition 
area. 

The Dynamic sensor provides important information 
during tactile exploratory actions, when the sensor is 
being moved along the contact surface. The perceived 
information gives indications both on the surface 
roughness and on the slippage between fingertip and 
object surface. Fig.3 shows typical outputs for a smooth 
(a) and a rough (b) surface. 

I I I I 

(a) (b) 
Fig.3. Typical dynamic responses for a smooth (a)  and a 

rough (b) surface. 

By detecting the thermal conductivity of the object in 
contact, the information provided by the Thermal sensor 
especially concern the material it is composed of. 

The integration of the different kinds of data 
detected by the integrated fingertip sensor gives an 
overall perception which is similar to what, in humans, 
is detected and integrated at a low level, with no 
involvement of high level cognitive processes. 
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5. Use of integrated fingertip data 
The multi-sensorial nature of the integrated fingertip 

sensor makes its use possible in  different robotics 
research and application areas, specifically in 
manipulation strategy and object recognition. 

These areas are strictly dependent; for instance, 
when we want to grasp an unknown object, the first 
attempt is to manipulate it in some manner in order to 
acquire information about the weight, the surface, the 
material and then, using these instances, we calibrate 
our fingers to obtain a stable grasp. General 
computational geometry, computer vision methods and 
mathematical model of the sensed surface have been 
applied for object recognition applications, relaying on 
the assumption of a completely known object 
representation; in contrast, real-time robotic tasks in 
unstructured environments require a more suitable 
"fuzzy" object representation without reference to a 
priori models. 

In this paper we focus our attention onto the problem 
of object recognition by the design of a neural based 
system. 

Our framework can be modelled as an integrated 
system of neural networks and fuzzy Ilogic combining 
the artificial neural network ability to learn and to adapt 
itself with noise robustness to new environmental 
information, especially at the low-level, with the attitude 
of fuzzy-logic to treat incomplete knowledge. 

The innovative aspect of our approach is the parallel 
nature of the entire process of data acquisition and data 
processing. 

In our past work [8] [17] for instance, we 
sequentially acquired the different sensorial components 
of the object to be identified and then we used a 
sequential algorithm based on a decisional tree for the 
classification task. 

In the present paper, we exploit the multi-sensorial 
nature of integrated fingertip sensor to obtain in a 
parallel way the features input vector of the neural 
networks. The vector has thermal, dynarmic and tactile 
components. We validated our approach through an 
experimental trial on common object recognition during 
exploratory procedures. 

5.1 Experimental scenario 
The experiment consisted in  the recognition of a 

typical shopping bag with 14 objects, including 
vegetables, fruits, cans and bottles. The neural net (NN) 
learns via an iterative process how to distinguish 
between the thermal, tactile, visual and dynamic 
features of the objects. In the choice of the training 
objects, we put attention to have little but meaningful 
variations from one object to another in order the 
network to be able to discriminate. For instance the 

orange and the apple have the same visual, thermal and 
tactile: characterisation but different dynamic texture; 
the black and the green olive cans differ only for the 
material they are made out of and so on. The successful 
convergence of the final neural network indicates the 
ability of this computing model to replicate also the 
classic decision tree [I  71, with stronger robustness and 
generalisation ability. 

The integrated fingertip sensor was mounted on a 
PUMA robot arm; simple compliant control algorithm 
was used to slide the sensor over the surface of different 
objects with constant pressure, speed and inclination. At 
the same time the three different sensorial modalities 
were iicquired and a camera took the object image. 

5.2 Data acquisition and system description 
The system global architecture is depicted in Fig. 4. 

1 Neural Network 
3 .  

Neural 
Network 1 

dynamic 
signal tactile 

signal 

--J 

visual 
input 

Fig. 4. Global system architecture design 

For each object, the signals were acquired twice: the 
first signals were for the training set while the second 
for the validation test set. 

The system comprised two levels of NN: the first 
was aimed at features extraction from the tactile and 
dynamic signals; and the second, fed by the output of 
the previous NN, the output of the visual recognition 
module and by the direct thermal sensor output, was 
aimed at recognition. All of the inputs to the NNs were 
first normalised. Since the output of the NN is computed 
by a sigmoidal function limited between 0 and 1, we 
assume that the 0 was represented by the value 0.1 and 1 
by the value 0.9. 

At the first level, two windows of 256 dynamic 
samples each (512 input nodes) were taken from the 
dynamic sensor and sent to a first NN. This NN ("1) 
was trained to produce as output a fuzzy value in the 
range [0.1 ... 0.91 were the left extreme represents a 
smooth surface and the right value a very irregular one. 
At the same level, a single stable tactile 8x8 image was 
sent to a second parallel NN with the task of classifying 
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the surface curvature. As output, the NN ("2) 
produced a single fuzzy value in  the range [0.1 ... 0.91, 
where 0.1 was for planar surface and 0.9 for curved 
surface. 

In Table 3 the values used for each object in  the 
training are presented. 

apple fruit 
sponge 
soap bar 
zucchini 

0.2 0.3 0.7 4 
0.95 0.7 0.2 1 
0.15 0.9 0.1 1 
0.3 0.3 0.8 2 

cucumber 

plastic bottle 
glass bottle 

milk (box) 

INPUT, HIDDEN and OUTPUT units. The first level 
received the inputs, the last produced the output and the 
hidden level operated non-linear transformations. Table 
4 shows the dimensions of the different NNs used in our 
experiments. 

Hidden units 

Tolerance 0.05 0.05 0.1 

Table 4 

Each units is fully connected to the following level 
and each connection has a weight parameter. The 
hidden and output level units perform a weighted sum of 
their input and the result is transformed by a sigmoid 
function. The learning algorithm changes the weights 
associated to each units by back propagating the error 
from the output level to the hidden level. A momentum 
variation was introduced in order to speed up the 
convergence time. The variation adds to each weight a 
fraction of the previous variation to enhance the 
direction of the gradient descent. The BP with 
momentum variation algorithm is the following: 

w(t+l) = W(t)+AW+kiW,ld 
Aw = kzi3eenorinp 

0.6 0.3 0.8 2 
0.1 0.3 0.75 3 

0.85 0.9 0.2 3 
0.15 0.5 0.2 1 

where w is the weight vector, kl and kz constant, 
Se,,, is an error function proportional to the negative 
gradient and inp is the node input. 

After the training phase, we made a validation phase 
to test the NN capability to generalise and to 
discriminate patterns never seen before. 

5.4 Discussion 

The NNl network has a large number of input and 
hidden nodes, so that the simulation takes many hours 
to learn how to perform the dynamic analysis of the 
surface (on a PC Pentium 166MHz). However in the 
validation phase the NNl network showed high 
tolerance to noise. 

The "2 network has lower performance since the 
tactile image does not have a good resolution. However 
the training made i t  able to perform the required task 
with a sufficient precision. 

The "3 network has few nodes and reached the 
convergence in 855 iterations, i n  a time of 44 s and an 
error tolerance of 10%. The network has an output node 
for each object to recognise. each one with its ordinal 
number. If the output unit  with the major activation 
value (about 0.9) is N. the object class is N and the other 
13 units have a small value (near 0.1); so tolerance level 
of 10% is very large. 

The validation phase consisted in  testing the NN 
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system with the validation set (with which the network 
was not trained). In this test, recognition was obtained 
with a success of 100%. In fact, thanks to the robustness 
of a distributed system like this, the generalisation 
capability is remarkable. This was evident when in  the 
test, the thermal and visual value remained almost the 
same, while the dynamic and tactile values varied with 
less or more slight changes: the “3 network was yet 
able to reach a total success classifying i n  the right way 
the new sensed object. 

In our NN simulations, the use of fuzzy output gave 
us further information about the nature: of the signal 
under examination. In fact, we interpret the final net 
result as the node with the higher activity (first 
hypothesis); in the meanwhile, if the other nodes have a 
low activity the first hypothesis is the only acceptable 
for the network, otherwise significant activities (>OS) in  
the other output nodes can suggest secondary hypothesis 
about the class membership of the sensed object. For 
instance, when we analyse the net result with the values 
of cucumber obtained in  the training phase as input, its 
related output node has an activity of 0.91 and the 
others are at 0. U0.25, but when we perturbate lightly 
the roughness fuzzy value (moving it towards the 
zucchini relative value) we obtain 0.9 for cucumber 
output node and 0.7 for zucchini output node: “it is 
probably a cucumber, otherwise a zucchini” (which are 
actually very similar). 

6. Conclusions 
In this paper we presented an integrated approach to 

tactile perception, by describing the: design and 
development of an integrated miniature tactile sensor 
and the implementation of a neuro-fuzzy network for 
data acquisition and interpretation. Innovative aspects of 
the proposed approach especially regard the integration 
of tactile perception at low level, according to the 
anthropomorphic model of tactile sensing. Experimental 
trials, carried out in the case of object sorting, 
demonstrated the validity of the proposed integrated 
approach, showing a high tolerance to noise and a high 
generalisation ability given by the neuro-fuzzy structure. 

Future developments of the proposed work concern 
the planning of proper motor strategies, based on tactile 
feedback, for purposive exploration of objects and for 
object manipulation. 

Possible applications are all fields involving robot 
capability of exploration and manipulation, such as 
service robotics (personal assistance, imedical care), 
surgery, industrial assembly/disassembly processes. The 
integrated fingertip can also be improved as a prosthetic 
sensor. 
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