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Abstract

We study a formulation of regular variation for multivariate stochastic processes on the unit

interval with sample paths that are almost surely right-continuous with left limits and we

provide necessary and sufficient conditions for such stochastic processes to be regularly

varying. A version of the Continuous Mapping Theorem is proved that enables the derivation

of the tail behavior of rather general mappings of the regularly varying stochastic process. For

a wide class of Markov processes with increments satisfying a condition of weak dependence in

the tails we obtain simplified sufficient conditions for regular variation. For such processes we

show that the possible regular variation limit measures concentrate on step functions with one

step, from which we conclude that the extremal behavior of such processes is due to one big

jump or an extreme starting point. By combining this result with the Continuous Mapping

Theorem, we are able to give explicit results on the tail behavior of various vectors of

functionals acting on such processes. Finally, using the Continuous Mapping Theorem we

derive the tail behavior of filtered regularly varying Lévy processes.
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1. Introduction

In applications one sometimes encounters data sets with a few extremely large
observations. For such data sets it is suggested to use heavy-tailed probability
distributions to model the underlying uncertainty. This is the case for instance in so-
called catastrophe insurance (fire, wind-storm, flooding) where the occurrence of
large claims may lead to large fluctuations in the cash-flow process faced by the
insurance company. The situation is similar in finance where extremely large losses
sometimes occur, indicating heavy tails of the return distributions. The probability
of extreme stock price movements has to be accounted for when analyzing the risk of
a portfolio. Another application is telecommunications networks where long service
times may result in large variability in the workload process. In many applications it
is appropriate to use a stochastic process fX t : tX0g to model the evolution of the
quantity of interest over time. The notion of heavy tails enters naturally in this
context either as an assumption on the marginals X t or as an assumption on the
increments X tþh � X t of the process. However, it is often the case that the marginals
or the increments of the process are not the main concern, but rather some functional
of the process. Natural examples are the supremum, supt2½0;T � X t; and the average,
T�1

R T

0 X t dt; of the sample path over a time interval. It may therefore be important
to know how the tail behavior of the marginals (or the increments) is related to the
tail behavior of functionals of the sample path of the process. For univariate
infinitely divisible processes results on the tail behavior for subadditive functionals
are derived in Rosiński and Samorodnitsky [17] under assumptions of subexpo-
nentiality. See also Braverman et al. [5] for further results on the tail behavior of
subadditive functionals of univariate regularly varying Lévy processes. In the
multivariate case one typically studies a d-dimensional stochastic process fXt : tX0g:
The process could be interpreted for instance as the continuous measurements of
certain quantities at d different locations, the log prices of d different stocks or the
reserve of an insurance company with d different insurance lines. A notable
difference between the multivariate case and the univariate case when analyzing
extremes is the possibility to have dependence between the components of the
random vector. Large values may for instance tend to occur simultaneously in the
different components. To have a good understanding of the dependence between
extreme events in the multivariate case may be of great importance in applications.
Similar to the univariate case some functional or vector of functionals of the sample
path may be the primary concern. Natural examples are for instance the
componentwise supremum, ðsupt2½0;T � X

ð1Þ
t ; . . . ; supt2½0;T � X

ðdÞ
t Þ; and the component-

wise average of the sample path of the process but other functionals or combinations
of functionals may also be of interest. We are typically interested in the probability
that the vector of functionals belongs to some set far away from the origin, i.e.
the probability of a certain extreme event. To analyze this type of questions we
need to know how the tail behavior of the marginals Xt is related to the tail
behavior of (vectors of) functionals of the sample path. In this paper we provide a
natural framework for addressing such questions and illustrate how it can be
applied.
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Multivariate regular variation provides a natural way of understanding the tail
behavior of heavy-tailed random vectors. A similar construction is possible for
stochastic processes with sample paths in Dð½0; 1�;RdÞ; the space of Rd-valued right-
continuous functions on ½0; 1� with left limits. This formulation seems to be well
suited for understanding the tail behavior of heavy-tailed stochastic processes. We
will exemplify this in various forms throughout the paper. An Rd -valued random
vector X is said to be regularly varying if there exist an a40 and a probability
measure s on the unit sphere SRd ¼ fx 2 Rd : jxj ¼ 1g (j � j denotes an arbitrary but
fixed norm on Rd ) such that, for every x40; as u ! 1;

PðjXj4ux;X=jXj 2 � Þ

PðjXj4uÞ
!
w

x�asð�Þ on BðSRd Þ;

where BðSRd Þ denotes the Borel s-algebra on SRd and !
w

denotes weak convergence.
The probability measure s is referred to as the spectral measure of X: It describes in
which directions we are likely to find extreme realizations of X: Similarly, we say
that a stochastic process X ¼ fXt : t 2 ½0; 1�g with sample paths in Dð½0; 1�;RdÞ is
regularly varying if there exist an a40 and a probability measure s on
SD ¼ fx 2 Dð½0; 1�;Rd Þ : supt2½0;1� jxtj ¼ 1g such that, for every x40; as u ! 1;

PðjXj14ux;X=jXj1 2 � Þ

PðjXj14uÞ
!
w

x�asð�Þ on BðSDÞ;

where BðSDÞ denotes the Borel s-algebra on SD and jxj1 ¼ supt2½0;1� jxtj: The
spectral measure s contains essentially all relevant information for understanding
the extremal behavior of the process X: For example, it might be interesting to know
under which conditions the extremes of X are due to (at most) one single extreme
jump (we allow also an extreme starting point). This can be formulated in terms of
the support of the spectral measure by showing that the spectral measure
concentrates on step functions with one step, i.e. on the set

fx 2 SD : x ¼ y1½v;1�; v 2 ½0; 1Þ; y 2 SRd g:

We show that this is the case for a large class of regularly varying Markov processes,
including all regularly varying additive processes (and hence also all regularly
varying Lévy processes).

Regular variation on Dð½0; 1�;RdÞ can equivalently be formulated as the
convergence of scaled probabilities nPða�1

n X 2 � Þ to a limit measure mð�Þ;

nPða�1
n X 2 � Þ ! mð�Þ (1)

in a suitable sense of convergence of measures (see Section 2), where fang; 0oan "1;
is a sequence of real numbers. A natural question is if regular variation for a
stochastic process X implies regular variation for a mapping hðXÞ of the process,
where h : Dð½0; 1�;RdÞ ! Dð½0; 1�;Rd Þ (or h : Dð½0; 1�;RdÞ ! Rk). For a measurable
mapping h (as above) that is positively homogeneous of order g40 (i.e. hðlxÞ ¼
lghðxÞ for lX0) and satisfies some mild conditions we derive a version of the
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Continuous Mapping Theorem, i.e. we show that (1) implies

nPða�g
n hðXÞ 2 � Þ ! m � h�1

ð�Þ (2)

in a suitable sense (see Section 2). Hence, under mild conditions on h, regular
variation of X implies regular variation of hðXÞ and we can express its limit measure
in terms of m and h as in (2).

In Section 2 we state the two formulations of regular variation on Dð½0; 1�;RdÞ and
show that they are equivalent. Moreover, we give necessary and sufficient conditions
for regular variation for a general stochastic process with sample paths in
Dð½0; 1�;RdÞ: Finally, we give a Continuous Mapping Theorem that provides a
powerful tool in the subsequent analysis. In Section 3 we focus on strong Markov
processes with increments satisfying a condition of weak dependence in the tails. We
obtain sufficient conditions for regular variation for such processes that are easier to
verify since they involve only the marginals Xt of the process X: Moreover, we show
that the limit measure m of such regularly varying Markov processes vanishes on Vc

0

(the complement of V0) where

V0 ¼ fx 2 Dð½0; 1�;Rd Þ : x ¼ y1½v;1�; v 2 ½0; 1Þ; y 2 Rdnf0gg:

This means that, asymptotically, the process reaches a set far away from the origin
either by starting there or by making exactly one big jump to this set and, in
comparison to the size of the jump, it stays essentially constant before and after the
jump. On the one hand, this means that we are able to quantify the idea of one big
jump in terms of the support of the regular variation limit measure. On the other
hand, and equally important, this in combination with the Continuous Mapping
Theorem (2) allow us to explicitly compute tail probabilities of hðXÞ for many
interesting choices of h. See e.g. Examples 18 and 19 with

hðxÞ ¼ sup
t2½0;1�

x
ð1Þ
t ; . . . ; sup

t2½0;1�
x
ðdÞ
t

 !
and

hðxÞ ¼

Z 1

0

x
ð1Þ
t dt; . . . ;

Z 1

0

x
ðdÞ
t dt

� �
;

respectively. In Section 4 we study filtered stochastic processes of the form

Yt ¼

Z t

0

f ðt; sÞdXs; t 2 ½0; 1�; (3)

where X is a regularly varying Lévy process with sample paths of finite variation.
Under the assumption that the kernel f is continuous an application of the
Continuous Mapping Theorem shows that Y is regularly varying on Dð½0; 1�;RdÞ and
we determine the associated limit measure.

The results of this paper are based on material in Hult [12] and Lindskog [14]. For
some supplementary results we will, in the sequel, refer to the latter.

In order to make the presentation as accessible as possible and in order to focus
the attention on the underlying ideas rather than on technicalities, we give the proofs
at the end of each section.
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2. Regular variation for stochastic processes

Let us introduce regular variation for stochastic processes with sample paths in
D ¼ Dð½0; 1�;RdÞ; the space of functions x : ½0; 1� ! Rd that are right-continuous
with left limits. This space is equipped with the so-called J1-metric (referred to as d0

in Billingsley [3]) that makes it complete and separable. The formulation of regular
variation we will use has recently been used by de Haan and Lin [11] in connection
with max-stable distributions on D. They extend many of the important results in
classical extreme value theory to an infinite-dimensional setting and show that the
concept of regular variation for stochastic processes with sample paths in D is
natural in this context. See also Giné et al. [10] for related results. Similar
constructions exist also in the theory of convergence of partial sums for iid sequences
of Banach space valued random variables (see e.g. [15,9]).

We denote by SD the subspace fx 2 D : jxj1 ¼ 1g (where jxj1 ¼ supt2½0;1� jxtj)
equipped with the subspace topology. Define D0 ¼ ð0;1� � SD; where ð0;1� is
equipped with the metric rðx; yÞ ¼ j1=x � 1=yj making it complete and separable.
Then D0; equipped with the metric maxfrðx�; y�Þ; d0ðex;eyÞg; is a complete separable
metric space. For x ¼ ðx�;exÞ 2 D0 we write jxj1 ¼ x�: The topological spaces Dnf0g

(equipped with the subspace topology of D) and ð0;1Þ � SD (equipped with
the subspace topology of D0) are homeomorphic; the function T given by
TðxÞ ¼ ðjxj1;x=jxj1Þ is a homeomorphism. Hence

BðD0Þ \ ðð0;1Þ � SDÞ ¼ BðTðDnf0gÞÞ;

i.e. the Borel sets of BðD0Þ that are of interest to us can be identified with the usual
Borel sets on D (viewed in polar coordinates) that do not contain the zero function.
For notational convenience we will throughout the paper identify D with the product
space ½0;1Þ � SD so that expressions like D0nD (¼ f1g � SD) make sense. We
denote by BðD0Þ \ D the Borel sets B 2 BðD0Þ such that B \ ðf1g � SDÞ ¼ ;: We
denote by R; Q and N the real, rational and natural numbers, respectively. For e40
and x 2 D (x 2 Rk), we denote by Bx;e the open ball fy 2 D : d0ðy;xÞoeg
(fy 2 Rk : jy� xjoeg).

We will see that regular variation on D is naturally expressed in terms of so-called
ŵ-convergence of boundedly finite measures on D0: A boundedly finite measure
assigns finite measure to bounded sets. A sequence of boundedly finite measures
fmn : n 2 Ng on a complete separable metric space E converges to m in the ŵ-

topology, mn !
ŵ

m; if mnðBÞ ! mðBÞ for every bounded Borel set B with mð@BÞ ¼ 0:

If the state space E is locally compact, which D0 is not but Rdnf0g (R ¼ ½�1;1�) is,
then a boundedly finite measure is called a Radon measure, and ŵ-convergence

coincides with vague convergence and we write mn !
v

m: Finally we note that if

mn !
ŵ

m and mnðEÞ ! mðEÞo1; then mn !
w

m: For details on ŵ; vague and weak
convergence we refer to Daley and Vere-Jones [6, Appendix 2]. See also Kallenberg
[13] for details on vague convergence.

Before formulating regular variation for stochastic processes with sample paths in
D we recall the definition (one of several equivalent formulations) of regular
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variation for Rd-valued random vectors [1,2,14,16]. For the classical theory of
regularly varying functions, see Bingham et al. [4].

Definition 1. An Rd-valued random vector X is said to be regularly varying if there
exist a sequence fang; 0oan "1; and a nonzero Radon measure m on BðRdnf0gÞ with
mðRdnRd Þ ¼ 0 such that, as n ! 1;

nPða�1
n X 2 � Þ!

v
mð�Þ on BðRdnf0gÞ:

We write X 2 RVðfang;m;Rdnf0gÞ:

If n is a measure satisfying, with fang and m as above, nnðan �Þ!
v
mð�Þ on BðRdnf0gÞ;

then we write n 2 RVðfang;m;Rdnf0gÞ: For stochastic processes with sample paths in
D, regular variation can be formulated similarly.

Definition 2. A stochastic process X ¼ fXt : t 2 ½0; 1�g with sample paths in D is said
to be regularly varying if there exist a sequence fang; 0oan "1; and a nonzero
boundedly finite measure m on BðD0Þ with mðD0nDÞ ¼ 0 such that, as n ! 1;

nPða�1
n X 2 � Þ!

ŵ
mð�Þ on BðD0Þ:

We write X 2 RVðfang;m;D0Þ:

Remark 3. The limit measure m has a homogeneity property; there exists an a40
such that mðuBÞ ¼ u�amðBÞ for every u40 and B 2 BðD0Þ: This follows from a
combination of more or less standard regular variation arguments (Lindskog [14,
Theorem 1.14, p. 19]).

An equivalent and perhaps more intuitive formulation of regular variation on D is
given in the next result. This is a direct analogue of the corresponding equivalence
for random vectors.

Theorem 4. A stochastic process X ¼ fXt : t 2 ½0; 1�g with sample paths in D is

regularly varying if and only if there exist an a40 and a probability measure s on

BðSDÞ such that, for every x40; as u ! 1;

PðjXj14ux;X=jXj1 2 � Þ

PðjXj14uÞ
!
w

x�asð�Þ on BðSDÞ: (4)

The probability measure s is referred to as the spectral measure of X and a is referred

to as the tail index.

The proof of Theorem 1.15 in Lindskog [14, p. 21] applies to Theorem 4 with a few
obvious notational changes.

Remark 5. For S 2 BðSDÞ; let V1;S ¼ fx 2 D : jxj141;x=jxj1 2 Sg: It follows from
the proof of Theorem 1.15 in Lindskog [14] that the probability measure s and the
boundedly finite measure m are linked through sðSÞ ¼ mðV1;SÞ=mðV1;SD

Þ:
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The following result is an analogue of the Continuous Mapping Theorem for weak
convergence. Let DiscðhÞ denote the set of discontinuities of a mapping h from a
metric space E to a metric space E0: It is shown on p. 225 in Billingsley [3] that
DiscðhÞ 2 BðEÞ:

Theorem 6. Let X ¼ fXt : t 2 ½0; 1�g be a stochastic process with sample paths in D and

let E0 be a complete separable metric space. Suppose that X 2 RVðfang;m;D0Þ and that

h : D0 ! E0 is a measurable mapping satisfying mðDiscðhÞÞ ¼ 0 and h�1
ðBÞ is bounded

in D0 for every bounded B 2 BðE0Þ: Then, as n ! 1;

nPðhða�1
n XÞ 2 � Þ!

ŵ
m � h�1

ð�Þ on BðE0Þ:

Remark 7. The theorem holds if one considers X 2 RVðfang;m;Rdnf0gÞ and
mappings h : Rdnf0g ! E0:

Let h : D ! D or h : D ! Rk be a measurable mapping that is positively
homogeneous of order g40; i.e. hðlxÞ ¼ lghðxÞ for lX0 and x 2 D: If X is a
regularly varying stochastic process with sample paths in D we may be interested in
the tail behavior of hðXÞ: For this purpose a different version of the Continuous
Mapping Theorem is more convenient.

Theorem 8. Let X ¼ fXt : t 2 ½0; 1�g be a stochastic process with sample paths in D and

let h : D ! D be a measurable mapping that is positively homogeneous of order g40
and such that h�1

ðBÞ is bounded in D0 for every bounded B 2 BðD0Þ \ D: Suppose that

X 2 RVðfang;m;D0Þ and mðDiscðhÞ \ D0Þ ¼ 0: Then, as n ! 1;

nPða�g
n hðXÞ 2 � Þ!

ŵ
m � h�1

ð � \ DÞ on BðD0Þ: (5)

Remark 9. (i) Note that hðXÞ 2 RVðfag
ng; em;D0Þ if emð�Þ ¼ m � h�1

ð � \ DÞ in (5) is
nonzero.

(ii) The theorem holds for mappings h : D ! Rk with the obvious notational
changes.

(iii) The theorem holds if one considers X 2 RVðfang;m;Rdnf0gÞ and mappings
h : Rd ! Rk:

The formulation of regular variation on D in combination with Theorem 8 allows
us to derive the tail behavior of a large class of continuous mappings of stochastic
processes. This will be illustrated in the following sections. The next theorem gives
necessary and sufficient conditions for a stochastic process with sample paths in D to
be regularly varying. Before stating these conditions we introduce some notation (see
[3]). For x 2 D; T0 � ½0; 1� and d 2 ½0; 1� let

wðx;T0Þ ¼ supfjxs � xtj : s; t 2 T0g;

w00ðx; dÞ ¼ sup
t1ptpt2;t2�t1pd

minfjxt � xt1 j; jxt2 � xtjg:
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Theorem 10. Let X ¼ fXt : t 2 ½0; 1�g be a stochastic process with sample paths in D.

Then the following statements are equivalent.
(i)
 There exist a set T � ½0; 1� containing 0 and 1 and all but at most countably many

points of ½0; 1�; a sequence fang; 0oan "1; and a collection fmt1:::tk
: k 2 N; ti 2 Tg

of Radon measures on BðRdknf0gÞ with mðRdknRdkÞ ¼ 0; and mt nonzero for some

t 2 T ; such that

nPða�1
n ðXt1 ; . . . ;Xtk

Þ 2 � Þ!
v

mt1:::tk
ð�Þ on BðRdknf0gÞ (6)

holds whenever t1; . . . ; tk 2 T : Moreover, for any e40 and Z40; there exist a

d 2 ð0; 1Þ and an integer n0 such that

nPðw00ðX; dÞXaneÞpZ; nXn0; (7)

nPðwðX; ½0; dÞÞXaneÞpZ; nXn0; (8)

nPðwðX; ½1 � d; 1ÞÞXaneÞpZ; nXn0: (9)
(ii)
 X 2 RVðfang;m;D0Þ:
The sequences fang in (i) and (ii) can be taken to be equal. Moreover, the measure m in

(ii) is uniquely determined by fmt1:::tk
: k 2 N; ti 2 Tg:

Note that (6) simply means regular variation on Rdk if the limit measure mt1:::tk
is

nonzero. Conditions (7)–(9) are relative compactness criteria. Consider the following
example that illustrates a violation of condition (7); the violation is due to the
nonnegligible probability of huge oscillations within an arbitrarily small time
interval.

Example 11. Let a40 and consider independent random variables Z and V where
Z � ParetoðaÞ; i.e. PðZ4xÞ ¼ x�a for xX1; and V is uniformly distributed on ½0; 1�:
Let fY t : tX0g be given by

Y t ¼

0 if t 2 ½0;V Þ;

Z if t 2 ½V ;V þ 1=ð2ZÞÞ;

0 if t 2 ½V þ 1=ð2ZÞ;V þ 1=ZÞ;

Z if t 2 ½V þ 1=Z;1Þ;

8>>><>>>:
and let X ¼ fX t : t 2 ½0; 1�g be given by X t ¼ Y t for t 2 ½0; 1�: Then X satisfies (with
an ¼ n1=a) all conditions of Theorem 10(i) except (7): for any e40 and d 2 ð0; 1Þ;
limn!1 nPðw00ðX ; dÞXn1=aeÞ ¼ limn!1 nPðZXn1=aeÞ ¼ e�a:

Proof of Theorem 6. Let B 2 BðE0Þ be bounded with m � h�1
ð@BÞ ¼ 0: Since

@h�1
ðBÞ � h�1

ð@BÞ [ DiscðhÞ we have mð@h�1
ðBÞÞpm � h�1

ð@BÞ þ mðDiscðhÞÞ ¼ 0:
Hence, since h�1

ðBÞ is bounded,

nPðhða�1
n XÞ 2 BÞ ¼ nPða�1

n X 2 h�1
ðBÞÞ ! m � h�1

ðBÞ:

The claim follows from Proposition A2.6.II in Daley and Vere-Jones [6]. &



ARTICLE IN PRESS

H. Hult, F. Lindskog / Stochastic Processes and their Applications 115 (2005) 249–274 257
Proof of Theorem 8. To prove the result we first define a mapping h from a subset of
D0 to D0 such that h and h coincide on points where both mappings are defined. Let
Nh ¼ fx 2 D : hðxÞ ¼ 0g: Since D0 does not contain 0 we must define h on D0nNh:
Since a D-valued random element X satisfies PðjXj1 ¼ 1Þ ¼ 0; we may take h to be
the identity on the points of D0nD (so that ‘‘infinity’’ is mapped to ‘‘infinity’’). With
these observations in mind we define h : D0nNh ! D0 by

hðxÞ ¼
hðxÞ if x 2 DnðNh [ f0gÞ;

x if x 2 D0nD:

�
With this definition we have DiscðhÞ � ðDiscðhÞ \ D0Þ [ ðD0nDÞ: By Theorem 6,

nPðhða�1
n XÞ 2 � Þ!

ŵ
m � h

�1
ð�Þ: Note that, for each B 2 BðD0Þ;

h
�1
ðBÞ ¼ fx 2 D0nNh : hðxÞ 2 Bg

¼ B \ ðD0nDÞ [ fx 2 DnNh : hðxÞ 2 B \ Dg

¼ B \ ðD0nDÞ [ fx 2 D : hðxÞ 2 B \ Dg:

Hence, m � h
�1
ð�Þ ¼ m � h�1

ð � \ DÞ so that, on BðD0Þ;

nPða�g
n hðXÞ 2 � Þ ¼ nPðhða�1

n XÞ 2 � Þ!
ŵ

m � h
�1
ð�Þ ¼ m � h�1

ð � \ DÞ:

The proof for mappings h : D ! Rk is similar. &

Proof of Theorem 10. (i) ) (ii): Let mnð�Þ ¼ nPða�1
n X 2 � Þ: First we will show that
(a)
 the sequence fmng is relatively compact in the ŵ-topology. To prove this we will
apply Proposition A2.6.IV in Daley and Vere-Jones [6, p. 630], which says that it
is sufficient that the restrictions fmn;gg to a sequence of closed spheres Sg " D0 are
relatively compact in the weak topology. Then we will show that
(b)
 any subsequential ŵ-limit m of fmng satisfies mðD0nDÞ ¼ 0 and to finish the proof
we will show that
(c)
 any two subsequential limits m and em of fmng coincide and the limit m is uniquely

determined by fmt1;...;tk
: k 2 N; ti 2 Tg:
(a) For g40; let Sg ¼ fx 2 D0 : jxj1Xgg; and for nX1; let mn;gð�Þ ¼ nPða�1
n X 2

� \ SgÞ: We will show that, for every g40; the family fmn;gg is uniformly
bounded and that it is relatively compact in the weak topology. Take g40 and
t1; . . . ; tk 2 T with 0 ¼ t1o � � �otk ¼ 1 and ti � ti�1od; where d40 is such that
nPðw00ðX; dÞXang=2ÞpZ for nXn0: Then

mn;gðD0Þ ¼ nPðjXj1XangÞ

pnP max
1pipk

jXti
jXang=2 or w00ðX; dÞXang=2

� �
pnP max

1pipk
jXti

jXang=2
� �

þ nPðw00ðX; dÞXang=2Þ

¼: f nðgÞ þ gnðgÞ:
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By (6), f f nðgÞg converges to some finite limit as n ! 1 and hence the sequence
f f nðgÞg is bounded. Moreover, gnðgÞpZ for nXn0; and clearly gnðgÞon0 for non0:
Hence, supnX1 mn;gðD0Þo1; i.e. fmn;gg is uniformly bounded. Next we show that
fmn;gg is relatively compact in the weak topology. Since mnð�Þ ¼ nPða�1

n X 2 � Þon0

for non0 and since a probability measure Pða�1
n X 2 � Þ on BðDÞ is tight it follows by

Theorem 15.3 in Billingsley [3, p. 125] that (7)–(9) hold for the finitely many n

preceding n0 by taking d small enough. Hence, we may assume that n0 ¼ 1: Note that
½g;1� � K1 2 BðD0Þ is compact in D0 if and only if K1 is compact in SD: For any
Z40; by (7)–(9), we can choose dk such that, if

Ak;1 ¼ fx 2 SD : w00ðx; dkÞo1=kg;

Ak;2 ¼ fx 2 SD : wðx; ½0; dkÞÞo1=kg;

Ak;3 ¼ fx 2 SD : wðx; ½1 � dk; 1ÞÞo1=kg;

then mn;gð½g;1� � ðSDnAk;jÞÞpð1=3ÞZ=2k for every j and n. Let B ¼
T1

k¼1

T3
j¼1 Ak;j : If

K1 is the closure of B, then by Theorem 14.4 in Billingsley [3, p. 119], K1 is compact
in SD: Moreover, for every n,

mn;gðD0nð½g;1� � K1ÞÞpmn;gð½g;1� � ðSDnBÞÞ

p
X1
k¼1

X3

j¼1

mn;gð½g;1� � ðSDnAk;jÞÞ

pZ
X1
k¼1

2�k ¼ Z:

Hence, we have shown that fmn;gg is uniformly bounded and tight. It follows from
Prohorov’s Theorem [6, Theorem A2.4.I, p. 619] that fmn;gg is relatively compact in
the weak topology. Thus, by Proposition A2.6.IV in Daley and Vere-Jones [6,
p. 630], fnPða�1

n X 2 � Þg is relatively compact in the ŵ-topology.
(b) We will now show that any subsequential ŵ-limit m satisfies mðD0nDÞ ¼ 0: By

(7) and the argument in the second part of (a) above we can choose u1 and d such
that nPðw00ðX; dÞXanu1=2ÞpZ=2 for every nX1 (i.e. we may take n0 ¼ 1 in (7)). By (6)
and Theorem 8 (Remark 9(iii)) there exist a Radon measure n on Bðð0;1�Þ with
nðf1gÞ ¼ 0 such that

nnð�Þ :¼ nP a�1
n max

1pipk
jXti

j 2 �

� �
!

v
nð�Þ on Bðð0;1�Þ:

It follows that n has the homogeneity property described in Remark 3 (the same
proof applies with the obvious notational changes). Hence there exists an a40 such
that nð½x;1�Þ ¼ x�anð½1;1�Þ for every x40: Choose x such that nð½x=2;1�ÞpZ=4:
Then there exists n1 such that nnð½x=2;1�ÞpZ=2 for nXn1: Clearly, there exists
x0 such that nnð½x

0=2;1�ÞpZ=2 for non1: Hence, with u2 ¼ maxfx; x0g;
nnð½u2=2;1�ÞpZ=2 for every nX1: Hence, with u ¼ maxfu1; u2g; for every nX1;

nPðjXj1XanuÞpnP max
1pipk

jXti
jXanu=2

� �
þ nPðw00ðX; dÞXanu=2Þ

pZ=2 þ Z=2 ¼ Z:
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Suppose mn0 !
ŵ

m: We have just shown that for any Z40 there exists u40 such that
mn0 ðfx 2 D0 : jxj14ugÞpZ for n0

X1: In particular, this implies that mn0 ðfx 2 D0 :
jxj14ugÞ ! 0 uniformly in n0 as u ! 1: Since Gu ¼ fx 2 D0 : jxj14ug is open and
bounded we have mðGuÞp lim infn0!1 mn0 ðGuÞ and because of uniform convergence

mðD0nDÞ ¼ lim
u!1

mðGuÞp lim
u!1

lim inf
n0!1

mn0 ðGuÞ

¼ lim inf
n0!1

lim
u!1

mn0 ðGuÞ ¼ 0:

(c) Finally, we will show that for any two subsequential ŵ-limits m and em we have
m ¼ em and m is uniquely determined by fmt1:::tk

: k 2 N; ti 2 Tg: Let Tm and T ~m

consist of those t 2 ½0; 1� for which the projection pt is continuous except at points
forming a set of m-measure 0 and em-measure 0, respectively. Then, by Theorem 8,
for t1; . . . ; tk 2 Tm \ T ~m \ T ;

m � p�1
t1:::tk

� \ Rdk
� �

¼ em � p�1
t1:::tk

� \ Rdk
� �

¼ mt1:::tk
ð�Þ on B Rdknf0g

� �
:

Since Tm; T ~m; and T each contain all but countably many points of ½0; 1�; the same is
true for Tm \ T ~m \ T ; in particular Tm \ T ~m \ T is dense in ½0; 1�: Moreover, 0;
1 2 Tm \ T ~m \ T : With some minor modifications of Theorem 14.5 in Billingsley
[3, p. 121] one can show that

p�1
t1:::tk

ðHÞ : k 2 N;H 2 B Rdknf0g
� �

\ Rdk; t1; . . . ; tk 2 Tm \ T ~m \ T
n o

generates BðD0Þ \ D: Hence em and m coincide on BðD0Þ \ D and since mðD0nDÞ ¼emðD0nDÞ ¼ 0 we have m ¼ em:
(ii) ) (i): Let Tm consist of those t in ½0; 1� for which the projection pt from D to

Rd is continuous except at points forming a set of m-measure 0. The projections p0

and p1 are continuous and hence 0; 1 2 Tm: For t 2 ð0; 1Þ; pt is continuous if and only
if mðfx : xtaxt�gÞ ¼ 0: By the same arguments as in Billingsley [3, p. 124] there are at
most countably many t 2 ð0; 1� such that mðfx : xtaxt�gÞ40: Then, since m is
nonzero and Tm is dense in ½0; 1�; there exists t 2 Tm such that mt is nonzero.
Moreover, if t1; . . . ; tk 2 Tm; then pt1:::tk

is continuous except at points forming a set
of m-measure 0. Hence, by Theorem 8, for t1; . . . ; tk 2 Tm;

nPða�1
n ðXt1 ; . . . ;Xtk

Þ 2 � Þ ¼ nP a�1
n X 2 p�1

t1:::tk
� \ Rdk
� �� �

!
v

m � p�1
t1:::tk

� \ Rdk
� �

on B Rdknf0g
� �

:

For t1; . . . ; tk 2 Tm; let mt1:::tk
ð�Þ ¼ m � p�1

t1:::tk
ð � \ RdkÞ: For nX1; let mnð�Þ ¼

nPða�1
n X 2 � Þ: By the homogeneity property of m, the set Su ¼ fx 2 D0 : jxj1Xug

is an m-continuity set for every u40: Hence, mnðSuÞ ! mðSuÞ ¼ u�amðS1Þ for every
u40: Choose u such that u�amðS1ÞpZ=4: Then there exists n1 such that mnðSuÞpZ=2
for nXn1: By Proposition A2.6.IV in Daley and Vere-Jones [6, p. 630], for every
0ogouo1; fmnð � \ fx 2 D : jxj1 2 ½g; u�gÞg is relatively compact in the weak
topology on D0: Since fx 2 D : jxj1 2 ½g; u�g � Dnf0g and on this subspace the
subspace topologies (of D0 and D) coincide it follows that fmnð � \ fx 2 D : jxj1 2

½g; u�gÞg is relatively compact in the weak topology on D. Hence, by Theorem 15.3 in
Billingsley [3, p. 125], for any e40 and Z40 there exist d 2 ð0; 1Þ and integer n2 such
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that

nPðw00ðX; dÞXane; jXj1 2 an½g; u�ÞpZ=2; nXn2;

nPðwðX; ½0; dÞÞXane; jXj1 2 an½g; u�ÞpZ=2; nXn2;

nPðwðX; ½1 � d; 1ÞÞXane; jXj1 2 an½g; u�ÞpZ=2; nXn2:

In particular the three inequalities above hold, with Z=2 replaced by Z and n2

replaced by n0 ¼ maxfn1; n2g; for u ¼ 1 and gpe=2 and for such g they coincide
with (7)–(9). &
3. Markov processes with increments that are weakly dependent in the tails

In this section we will study Markov processes with increments that are not too
strongly dependent in the sense that an extreme jump does not trigger further jumps
or oscillations of the same magnitude with a nonnegligible probability. We will
derive surprisingly concrete results for such Markov processes (see Theorems 13 and
15) that will prove very useful when used in combination with Theorem 8 (see e.g.
Examples 18 and 19).

Let fXt : t 2 ½0; 1�g be a Markov process on Rd with transition function Ps;tðx;BÞ:
For rX0; u 2 ½0; 1� and Bx;r ¼ fy 2 Rd : jy� xjorg define

ar;1ðuÞ ¼ supfPs;tðx;B
c
x;rÞ : x 2 Rd and s; t 2 ½0; 1�; t � s 2 ½0; u�g:

Note that if the random vectors Y and eY are independent and, for some sequence
fang; 0oan "1; and (not necessarily nonzero) Radon measures m and em with
mðRdnRdÞ ¼ emðRdnRdÞ ¼ 0 we have

nPða�1
n Y 2 � Þ!

v
mð�Þ and nPða�1

n
eY 2 � Þ!

v emð�Þ on BðRdnf0gÞ;

then [14, Theorem 1.28, p. 29]

nPða�1
n ðYþ eYÞ 2 � Þ!

v
mð�Þ þ emð�Þ on BðRdnf0gÞ;

i.e. the limit measure of the sum is the sum of the limit measures. If a regularly
varying Markov process satisfies limr!1 ar;1ð1Þ ¼ 0; then it has weakly dependent
increments in the above sense (with Y and eY representing two nonoverlapping
increments). This is illustrated in the next lemma.
Lemma 12. Let X ¼ fXt : t 2 ½0; 1�g be a Markov process on Rd satisfying

limr!1 ar;1ð1Þ ¼ 0: Fix arbitrary s; t 2 ½0; 1� with sot: Let fang be a sequence with

0oan "1; and let ms; mt and m be Radon measures on BðRdnf0gÞ with msðR
dnRdÞ ¼

mtðR
dnRdÞ ¼ mðRdnRd Þ ¼ 0: Consider the following statements:

nPða�1
n Xs 2 � Þ!

v
msð�Þ on BðRdnf0gÞ; (10)

nPða�1
n Xt 2 � Þ!

v
mtð�Þ on BðRdnf0gÞ; (11)
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nPða�1
n ðXt � XsÞ 2 � Þ!

v
mð�Þ on BðRdnf0gÞ: (12)

If any two of the above three statements hold, then the third also holds and the limit

measures are related through mt ¼ ms þ m:

By strong Markov process we mean a Markov process that satisfies Definition 2 in
Gihman and Skorohod [8, p. 56]. In particular, a strong Markov process is not
necessarily temporally homogeneous. It turns out that for a strong Markov process
with sample paths in D satisfying limr!1 ar;1ð1Þ ¼ 0 we can obtain sufficient
conditions for regular variation on D, which are easier to verify than the general
conditions of Theorem 10.

Theorem 13. Let X ¼ fXt : t 2 ½0; 1�g be a strong Markov process with sample paths in

D satisfying limr!1 ar;1ð1Þ ¼ 0: Suppose there exist a set T � ½0; 1� containing 0 and 1
and all but at most countably many points of ½0; 1�; a sequence fang; 0oan "1; and a

collection fmt : t 2 Tg of Radon measures on BðRdnf0gÞ; with mtðR
dnRdÞ ¼ 0 and with

m1 nonzero such that, as n !1;

nPða�1
n Xt 2 � Þ!

v
mtð�Þ on B Rdnf0g

� �
for every t 2 T ; (13)

and such that, for any e40 and Z40 there exists a d40; d 2 T ; 1 � d 2 T such that

mdðB
c
0;eÞ � m0ðB

c
0;eÞpZ and m1ðB

c
0;eÞ � m1�dðB

c
0;eÞpZ: (14)

Then X 2 RVðfang;m;D0Þ where m is uniquely determined by fmt : t 2 Tg:

Example 14. If X ¼ fXt : t 2 ½0; 1�g is a Lévy process, then it is strong Markov, it has
sample paths in D, limr!1 ar;1ð1Þ ¼ 0 and, if (13) holds for some t 2 ½0; 1�; then it is
not difficult to show that it holds for every t 2 ½0; 1� and that (14) holds. Note that if
X is an additive process [18, p. 3], then it is strong Markov, it has sample paths in D

and limr!1 ar;1ð1Þ ¼ 0 [14, Theorem 2.5 and Lemma 2.8]. However, one can
construct additive processes for which (13) holds but where (14) does not hold and X
is not regularly varying on D [14, Example 3.17].

It turns out that a regularly varying strong Markov process with increments that
are weakly dependent in the tails, in the sense of Lemma 12, has a very simple
extremal behavior. In this case the process reaches a set far away from the origin by
making at most one jump to that set (it might start there at time 0 since we allow for
a regularly varying starting point) and the process essentially stays constant before
and after the jump. This is formulated in the next theorem. Let

V0 ¼ x 2 D : x ¼ y1½v;1�; v 2 ½0; 1Þ; y 2 Rdnf0g
� �

; (15)

i.e. V0 is the family of nonzero right-continuous step functions with one step.

Theorem 15. Let X 2 RVðfang;m;D0Þ be a strong Markov process satisfying

limr!1 ar;1ð1Þ ¼ 0: Then mðVc
0Þ ¼ 0:
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Corollary 16. Let X be as in Theorem 15. Then (4) holds with sðfx 2 SD : x ¼ y1½v;1�;
v 2 ½0; 1Þ; y 2 SRd gÞ ¼ 1 and, on BðSRd Þ; sðfx 2 SD : x ¼ y1½v;1�; v 2 ½0; 1Þ; y 2 � gÞ

coincides with the spectral measure of X1:

For Lévy processes we can be even more explicit.

Example 17. Let X ¼ fXt : t 2 ½0; 1�g be a Lévy process on Rd : Suppose that X1 2

RVðfang;m1;Rdnf0gÞ: Note that for an infinitely divisible random vector Z with Lévy
measure nZ; Z 2 RVðfang;m;Rdnf0gÞ if and only if nZ 2 RVðfang; m;Rdnf0gÞ [14,
Theorem 2.3, p. 41]. Since X has stationary and independent increments, Xt 2

RVðfang; tm1;Rdnf0gÞ for every t 2 ½0; 1�: Hence, combining Theorems 4 and 13
implies that (4) holds with a40 being the tail index of X1 and

sð�Þ ¼ PðfZ1½V ;1�ðtÞ; t 2 ½0; 1�g 2 � Þ;

where Z and V are independent, the distribution of Z is the spectral measure of X1

and V is uniformly distributed on ½0; 1�: The random vector Z is the direction of the
big jump and V is the time of the big jump. See Fig. 1 for a graphical illustration of
typical extreme sample paths of a univariate Lévy process X (typical sample paths
given that jX j1 is large).

The following two examples illustrate the usefulness of Theorem 15 in
combination with Theorem 8.

Example 18. Let X be a strong Markov process with X0 ¼ 0 satisfying the conditions
in Theorem 15 and let h : D ! Rd be defined by

hðxÞ ¼ sup
t2½0;1�

x
ð1Þ
t ; . . . ; sup

t2½0;1�
x
ðdÞ
t

 !
:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-600

-400

-200

0

200

400

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-600

-400

-200

0

200

400

600

Fig. 1. Left: Extreme realizations xk ; k ¼ 1; . . . ; 5; of a compound Poisson process X with jump intensity

l ¼ 100 and t2-distributed jumps. Out of 1000 simulated sample paths, the one for which jX j1 was largest

was plotted. This procedure was repeated five times. Right: Extreme realizations of an Ornstein–Uhlen-

beck-type process Y driven by the compound Poisson process X shown in the left figure. The sample paths

shown are given by t 7! yk
t ¼

R t

0 e�yðt�sÞ dxk
s ; where xk ; k ¼ 1; . . . ; 5; are plotted in the left figure.



ARTICLE IN PRESS

H. Hult, F. Lindskog / Stochastic Processes and their Applications 115 (2005) 249–274 263
The mapping h satisfies the conditions of Theorem 8. Hence, nPða�1
n hðXÞ 2 � Þ!

v

m � h�1
ð� \ RdÞ on BðRdnf0gÞ and for B 2 BðRdnf0gÞ; with Rd

þ ¼ ½0;1Þ
d ;

m � h�1 B \ Rd
� �

¼ m x 2 D : hðxÞ 2 B \ Rd
� �

\V0

� �
¼ m x 2 D : x ¼ y1½v;1�; v 2 ½0; 1Þ; y 2 B \ Rd

þ

� �� �
¼ m p�1

1 B \ Rd
þ

� �
\V0

� �
¼ m p�1

1 B \ Rd
þ

� �� �
¼ m1 B \ Rd

þ

� �
;

where m1 is the vague limit of fnPða�1
n X1 2 � Þg and p1 is the projection p1ðxÞ ¼ x1:

Thus, for a Borel subset B of Rd
þ bounded away from 0 with m1ðBÞ40; PðhðXÞ 2

uBÞ=PðX1 2 uBÞ ! 1 as u ! 1:

Example 19. Let X be a strong Markov process with X0 ¼ 0 satisfying the conditions
in Theorem 15 and let h : D ! Rd be defined by

hðxÞ ¼

Z 1

0

x
ð1Þ
t dt; . . . ;

Z 1

0

x
ðdÞ
t dt

� �
:

The mapping h satisfies the conditions of Theorem 8. Hence, nPða�1
n hðXÞ 2 � Þ!

v

m � h�1
ð � \ RdÞ on BðRdnf0gÞ and for B 2 BðRdnf0gÞ

m � h�1 B \ Rd
� �

¼ m x 2 D : hðxÞ 2 B \ Rd
� �

\V0

� �
¼ m x 2 D : x ¼ y1½v;1�; v 2 ½0; 1Þ; yð1 � vÞ 2 B \ Rd

� �� �
¼ m x 2 D : xt 2

1

1 � t
B \ Rd some t 2 ½0; 1�

� �
\V0

� �
¼ m x 2 D : xt 2

1

1 � t
B \ Rd some t 2 ½0; 1�

� �� �
:

In particular, if X is a Lévy process, then the last expression reduces to [14, Theorem
2.16, p. 61]Z 1

0

m1
1

1 � s
B \ Rd

� �
ds ¼ m1 B \ Rd

� � Z 1

0

ð1 � sÞa ds ¼
1

aþ 1
m1ðBÞ;

where m1 is the vague limit of fnPða�1
n X1 2 � Þg: Thus, for a Borel subset B of

Rd bounded away from 0 with m1ðBÞ40; PðhðXÞ 2 uBÞ=PðX1 2 uBÞ ! ðaþ 1Þ�1

as u ! 1:

Proof of Lemma 12. Take a relatively compact B 2 BðRdnf0gÞ: Then there exist r40
such that B � Bc

0;r: Note that the homogeneity property implies that sets of the
form Bc

0;r; r40; are always ms-, mt- and m-continuity sets. Suppose that (10) and (11)
hold. We first show that fnPða�1

n ðXt � XsÞ 2 � Þg is vaguely relatively compact.
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We have

sup
nX1

nPða�1
n ðXt � XsÞ 2 BÞ

p sup
nX1

nPða�1
n ðXt � XsÞ 2 Bc

0;rÞ

p sup
nX1

nPða�1
n Xs 2 Bc

0;r=2Þ þ sup
nX1

nPða�1
n Xt 2 Bc

0;r=2Þo1;

since fnPða�1
n Xs 2 � Þg and fnPða�1

n Xt 2 � Þg are vaguely relatively compact. Hence
fnPða�1

n ðXt � XsÞ 2 � Þg is vaguely relatively compact. By essentially the same
argument it follows that if (10) and (12) hold, then fnPða�1

n Xt 2 � Þg is vaguely
relatively compact, and if (11) and (12) hold, then fnPða�1

n Xs 2 � Þg is vaguely
relatively compact. Let m be a subsequential vague limit such that

n0Pða�1
n0 ðXt � XsÞ 2 � Þ!

v
mð�Þ:

Fix e140; e240 and a relatively compact B 2 BðRdnf0gÞ with msð@BÞ ¼ mð@BÞ ¼ 0:
We have

n0Pða�1
n0 ðXs;Xt � XsÞ 2 Bc

0;e1 � Bc
0;e2 Þ

¼ n0Pða�1
n0 Xs 2 Bc

0;e1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
!msðB

c
0;e1

Þ

Pða�1
n0 ðXt � XsÞ 2 Bc

0;e2 j a�1
n0 Xs 2 Bc

0;e1 Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
paan0 e2 ;1

ð1Þ!0

! 0:

Since msðR
dnRdÞ ¼ mðRdnRd Þ ¼ 0 we may without loss of generality assume that

B \ Rda;: Then,

n0Pða�1
n0 ðXs;Xt � XsÞ 2 B � B0;e2Þ

¼ n0Pða�1
n0 Xs 2 BÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
!msðBÞ

 
1 � Pða�1

n0 ðXt � XsÞ 2 Bc
0;e2 j a�1

n0 Xs 2 BÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
paan0 e2 ;1

ð1Þ!0

!
! msðBÞ:

Clearly,

n0Pða�1
n0 ðXs;Xt � XsÞ 2 B0;e1 � BÞpn0Pða�1

n0 ðXt � XsÞ 2 BÞ ! mðBÞ:

Set g ¼ infx2B\Rd jxj: Then

n0Pða�1
n0 ðXs;Xt � XsÞ 2 B0;e1 � BÞ

¼ n0Pða�1
n0 ðXt � XsÞ 2 BÞ

� n0Pða�1
n0 Xs 2 Bc

0;e1 ÞPða
�1
n0 ðXt � XsÞ 2 B j a�1

n0 Xs 2 Bc
0;e1 Þ

Xn0Pða�1
n0 ðXt � XsÞ 2 BÞ

� n0Pða�1
n0 Xs 2 Bc

0;e1 Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
!msðB

c
0;e1

Þ

Pða�1
n0 ðXt � XsÞ 2 Bc

0;g j a�1
n0 Xs 2 Bc

0;e1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
paan0 g;1

ð1Þ!0

! mðBÞ:
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It follows that n0Pða�1
n0 ðXs;Xt � XsÞ 2 � Þ!

v bmð�Þ on BðR2dnf0gÞ; where bm is a Radon
measure that concentrates on ðf0g � RdÞ [ ðRd � f0gÞ: Hence

n0Pða�1
n0 ðXs þ Xt � XsÞ 2 � Þ!

v bmððx;exÞ : xþ ex 2 � Þ

¼ bmððx; 0Þ : xþ 0 2 � Þ þ bmðð0;exÞ : 0þ ex 2 � Þ

¼ msð�Þ þ mð�Þ:

However, n0Pða�1
n0 ðXs þ Xt � XsÞ 2 � Þ!

v
mtð�Þ and hence m ¼ mt � ms: Since this is

true for any subsequential vague limit of fnPða�1
n ðXt � XsÞ 2 � Þg it follows that

nPða�1
n ðXt � XsÞ 2 � Þ!

v
mtð�Þ � msð�Þ:

By essentially the same arguments one shows that (10) and (12) imply nPða�1
n Xt 2

� Þ!
v

msð�Þ þ mð�Þ and that (11) and (12) imply nPða�1
n Xs 2 � Þ!

v
mtð�Þ � mð�Þ: This

completes the proof. &

To prove Theorems 13 and 15 we need a couple of technical lemmas. For e40; a
positive integer p and M � ½0; 1� we say that an element x 2 D has e-oscillation p

times in M if there exist t0; . . . ; tp 2 M with t0o � � �otp such that jxti
� xti�1

j4e for
i ¼ 1; . . . ; p: Let

Bðp; e;MÞ ¼ fx 2 D : x has e-oscillation p times in Mg:

The following lemma is an immediate consequence of Lemma 2 in Gihman and
Skorohod [7, p. 420].

Lemma 20. Let X ¼ fX : t 2 ½0; 1�g be a Markov process with sample paths in D. If

for e40 and 0pT1oT2p1 the quantity ae=4;T2
ðT2 � T1Þ is less than 1, then

PðX 2 Bð1; e; ½T1;T2�ÞÞpae=4;T2
ðT2 � T1Þ=ð1 � ae=4;T2

ðT2 � T1ÞÞ:

Proof. First,

PðX 2 Bð1; e; ½T1;T2�ÞÞ ¼ P sup
s;t2½T1;T2�

jXt � Xsj4e

 !

pP sup
s2½T1;T2�

jXs � XT1
jXe=2

 !
;

and by Lemma 2 in Gihman and Skorohod [7, p. 420],

P sup
s2½T1;T2�

jXs � XT1
jXe=2

 !
p

PðjXT2
� XT1

jXe=4Þ
1 � ae=4;T2

ðT2 � T1Þ
:

Since PðjXT2
� XT1

jXe=4Þpae=4;T2
ðT2 � T1Þ the conclusion follows. &

Lemma 21. Let X ¼ fXt : t 2 ½0; 1�g be a strong Markov process with sample paths in

D satisfying limr!1 ar;1ð1Þ ¼ 0: Suppose there exist a sequence fang; 0oan "1; and

Radon measures m0 and m1 on BðRdnf0gÞ with m0ðR
dnRd Þ ¼ m1ðR

dnRdÞ ¼ 0 such that

nPða�1
n X0 2 � Þ!

v
m0ð�Þ and nPða�1

n X1 2 � Þ!
v

m1ð�Þ on B Rdnf0g
� �

:

Then, for every e40; nPðX 2 Bð2; ane; ½0; 1�ÞÞ ! 0 as n ! 1:
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Proof. Fix an arbitrary e40 and let tn ¼ infft : jXt � X0jXane=2g with the convention
inf ; ¼ 1: Then, combining Lemma 20 and the strong Markov property yields

nPðX 2 Bð2; ane; ½0; 1�ÞÞpnE 1ftnp1gE
tn;Xtn ð1Bð1;ane;½tn;1�ÞðXÞÞ

� �
pnEð1ftnp1gaane=4;1ð1Þ=ð1 � aane=4;1ð1ÞÞÞ

¼ nP sup
t2½0;1�

jXt � X0jXane=2

 !
aane=4;1ð1Þ

1 � aane=4;1ð1Þ
:

Moreover, combining Lemma 2 in Gihman and Skorohod [7, p. 420] and Lemma 12
yields

nP sup
t2½0;1�

jXt � X0jXane=2

 !
p

nPðjX1 � X0jXane=4Þ
1 � aane=4;1ð1Þ

! m1ðB
c
0;e=4Þ � m0ðB

c
0;e=4Þ;

as n ! 1; from which the conclusion follows. &

Proof of Theorem 13. Fix s; t 2 T with sot: We will show that there is a unique
vague limit ms;t such that nPða�1

n ðXs;XtÞ 2 � Þ!
v

ms;tð�Þ: By repeating the procedure
one can then show that, for any k 2 N ; there is a unique vague limit mt1;...;tk

; with
mt1;...;tk

ðRdknRdkÞ ¼ 0; such that nPða�1
n ðXt1 ; . . . ;Xtk

Þ 2 � Þ!
v

mt1;...;tk
ð�Þ if t1; . . . ; tk 2

T : By Lemma 12,

nPða�1
n ðXt � XsÞ 2 � Þ!

v
mtð�Þ � msð�Þ:

Clearly, there are unique Radon measures ms;s and em on BðR2dnf0gÞ with
ms;sðR

2dnR2dÞ ¼ emðR2dnR2dÞ ¼ 0 such that

nPða�1
n ðXs;XsÞ 2 � Þ!

v
ms;sð�Þ and nPða�1

n ð0;Xt � XsÞ 2 � Þ!
v emð�Þ

on BðR
2d
nf0gÞ: By arguments similar to those in the proof of Lemma 12,

nPða�1
n ðXs;XtÞ 2 � Þ ¼ nPða�1

n ððXs;XsÞ þ ð0;Xt � XsÞÞ 2 � Þ

!
v

ms;sð�Þ þ emð�Þ¼:ms;tð�Þ on BðR2dnf0gÞ:

By Lemma 21, nPðw00ðX; dÞXaneÞpnPðX 2 Bð2; ane; ½0; 1�ÞÞ ! 0 as n ! 1: Hence,
for any positive e and Z there is an n0 such that nPðw00ðX; dÞXaneÞpZ for any d 2

ð0; 1Þ if nXn0: Hence condition (7) of Theorem 10 holds. It remains to show that
conditions (8) and (9) also hold. Fix arbitrary e40 and Z40: By Lemma 2 in
Gihman and Skorohod [7, p. 420],

nPðwðX; ½1 � d; 1ÞÞXaneÞpnP sup
t2½1�d;1�

jXt � X1�djXane=2

 !

p
nPðjX1 � X1�djXane=4Þ

1 � aane=4;1ðdÞ
:
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By Lemma 12, for 1 � d 2 T

lim
n!1

nPðjX1 � X1�djXane=4Þ ¼ m1ðB
c
0;e=4Þ � m1�dðB

c
0;e=4Þ:

Hence, by (14) there exists a d40; 1 � d 2 T such that

lim sup
n!1

nPðwðX; ½1 � d; 1ÞÞXaneÞp lim sup
n!1

nPðjX1 � X1�djXane=4Þ
1 � aane=4;1ðdÞ

¼ m1ðB
c
0;e=4Þ � m1�dðB

c
0;e=4ÞpZ;

and it follows that (9) holds. An almost identical argument shows that (8) holds. The
conclusion now follows by Theorem 10.

Proof of Theorem 15. First note that Bð2; e; ½0; 1�Þ is open and, by Lemma 21,

lim infn!1 nPðX 2 Bð2; ane; ½0; 1�ÞÞ ¼ 0: Since nPða�1
n X 2 � Þ!

ŵ
mð�Þ on BðD0Þ as n !

1 is equivalent to lim infn!1 nPðX 2 anGÞXmðGÞ for every open bounded G 2

BðD0Þ; we have mðBð2; e; ½0; 1�ÞÞ ¼ 0: Since e40 was arbitrary it follows that
mðBð2; e; ½0; 1�ÞÞ ¼ 0 for every e40 and hence also mð

S
e40;e2Q Bð2; e; ½0; 1�ÞÞ ¼ 0: Since[

e40;e2Q

Bð2; e; ½0; 1�Þ ¼ ðD0nDÞ [Vc
0;

it follows that mðVc
0Þpmð

S
e40;e2QBð2; e; ½0; 1�ÞÞ ¼ 0: This proves Theorem 15. &

Proof of Corollary 16. By Theorem 4, there exist a40 and a probability measure s
such that (4) holds. Furthermore, by Theorem 8, X1 2 RVðfang;m � p�1

1 ð � \ Rd Þ;
Rdnf0gÞ; which holds if and only if there exists a probability measure s1 on BðSRd Þ

such that, for every x40; as u ! 1;

PðjX1j4ux;X1=jX1j 2 � Þ

PðjX1j4uÞ
!
w

x�as1ð�Þ on BðSRd Þ

holds, and s1 is given by

s1ð�Þ ¼
m � p�1

1 ðfx 2 Rdnf0g : jxj41; x=jxj 2 � gÞ

m � p�1
1 ðfx 2 Rdnf0g : jxj41gÞ

:

We have

PðjXj14an;X=jXj1 2 � Þ

PðjXj14anÞ
¼

nPða�1
n X 2 fx 2 D : jxj141; x=jxj1 2 � gÞ

nPða�1
n X 2 fx 2 D : jxj141gÞ

!
ŵ mðfx 2 D : jxj141;x=jxj1 2 � gÞ

mðfx 2 D : jxj141gÞ
;

which necessarily is equal to sð�Þ: Moreover,

sðfx 2 SD : x ¼ y1½v;1�; v 2 ½0; 1Þ; y 2 SRd gÞ ¼
mðfx 2 D : jxj141g \V0Þ

mðfx 2 D : jxj141gÞ

¼
mðfx 2 D : jxj141gÞ

mðfx 2 D : jxj141gÞ
¼ 1
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and, since mðVc
0Þ ¼ 0;

s1ð�Þ ¼
mðp�1

1 ðfx 2 Rdnf0g : jxj41;x=jxj 2 � gÞ \V0Þ

mðp�1
1 ðfx 2 Rdnf0g : jxj41gÞ \V0Þ

¼
mðfx 2 D : x ¼ y1½v;1�; v 2 ½0; 1Þ; jyj41; y=jyj 2 � gÞ

mðfx 2 D : x ¼ y1½v;1�; v 2 ½0; 1Þ; jyj41gÞ

¼
mðfx 2 D : jxj141; x=jxj1 ¼ y1½v;1�; v 2 ½0; 1Þ; y 2 � gÞ

mðfx 2 D : jxj141g \V0Þ

¼ sðfx 2 SD : x ¼ y1½v;1�; v 2 ½0; 1Þ; y 2 � gÞ:

This proves Corollary 16. &
4. Filtered Lévy processes

In this section we will give another application of regular variation on D by
studying asymptotics of stochastic processes Y of the type

Yt ¼

Z t

0

f ðt; sÞdXs; t 2 ½0; 1�; (16)

where X is a regularly varying Lévy process with sample paths of finite variation. The
idea here is that X is a regularly varying strong Markov process satisfying
limr!1 ar;1ð1Þ ¼ 0; and that extremes for the process Y are caused by one big jump in
the process X: It turns out that Y and Hf ðXÞ; where Hf : D ! D is defined in (17)
below, have the same regular variation limit measure and that Hf is sufficiently
regular so that Theorem 8 can be applied (we only need that Hf is continuous and
positively homogeneous on V0; the set of step functions with one step). In this way
we can show that the process Y is regularly varying. Furthermore, and equally
important, we are able to explicitly compute the spectral measure of such processes.
In doing so we provide a natural way for understanding the extremal behavior of
filtered regularly varying Lévy processes. As a concrete example we will compute the
spectral measure of an Ornstein–Uhlenbeck-type process driven by a regularly
varying Lévy process (Example 24). Note that finite variation of the sample paths of
X allows us to define the integral in (16) in a pathwise sense (with some additional
smoothness conditions of f one does not need finite variation for the sample paths of
X in order to define a pathwise integral). Let V ¼ V0 [ f0g; where V0 is defined in
(15). For x 2 D define

MðxÞ ¼ fz 2 V : d0ðz;xÞ ¼ inffd0ðez; xÞ : ez 2 Vgg;

i.e. MðxÞ consists of the step functions in D with one step that are closest to x: For
every x 2 D we have MðxÞa;; see Lemma 25 for details. Define c : D ! V such
that for x 2 D we take cðxÞ to be a unique element of MðxÞ chosen according to
some arbitrary criteria, any criteria for which cðxÞ 2 MðxÞ and c is well defined will
do. (For example, of the elements of MðxÞ with earliest jump choose cðxÞ as the one
with biggest positive jump in the first component, second component, etc.) For a
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nonzero and continuous function f : ½0; 1�2 ! R define hf : V ! D by

hf ðxÞt ¼

Z t

0

f ðt; sÞdxs; t 2 ½0; 1�:

Finally, define Hf : D ! D by

Hf ¼ hf � c: (17)

Note that Hf is in general not continuous. However, it is continuous on V; and this
is sufficient when considering integrators X whose regular variation limit measure
concentrates on V0 � V:

Theorem 22. Let X 2 RVðfang;m;D0Þ be a Lévy process with sample paths of

finite variation. For a nonzero and continuous function f : ½0; 1�2 ! R; define the

process Y by

Yt ¼

Z t

0

f ðt; sÞdXs; t 2 ½0; 1�:

Then Y 2 RVðfang; em;D0Þ with emð�Þ ¼ m � H�1
f ð � \ DÞ:

Remark 23. Theorem 22 can be interpreted as follows. Given that jXj1 is large, the
Lévy process X is well approximated by cðXÞ ¼ Z1½V ;1�; where Z is an Rd-valued
random vector and V is a ð0; 1Þ-valued random variable. We find that given that jYj1
is large, the process Y is well approximated by Hf ðXÞ given by

Hf ðXÞt ¼
0 if toV ;

Zf ðt;V Þ if tXV :

�
See Fig. 1 for a graphical illustration in the case f ðt; sÞ ¼ expf�yðt � sÞg; y40:

To illustrate Theorem 22 we will now compute the spectral measure of an
Ornstein–Uhlenbeck-type process driven by a regularly varying Lévy process.

Example 24. Let X ¼ fXt : t 2 ½0; 1�g be a Lévy process on Rd with sample paths of
finite variation. Necessary and sufficient conditions for having sample paths of finite
variation are that the generating triplet ðA; n; gÞ satisfies A ¼ 0 and either (i)

nðRdnf0gÞo1 or (ii) nðRdnf0gÞ ¼ 1 and
R
jxjp1;xa0 jxjnðdxÞo1 [18, p. 140]. Suppose

that X1 2 RVðfang;m1;Rdnf0gÞ: Since X has stationary and independent increments,

Xt 2 RVðfang; tm1;Rdnf0gÞ for every t 2 ½0; 1�: Let Y be an Ornstein–Uhlenbeck-type
process driven by X; given by

Yt ¼

Z t

0

e�yðt�sÞ dXs; y40; t 2 ½0; 1�:

Then, combining Theorems 4, 13 and 22 yields, for every x40; as u ! 1;

PðjYj14ux;Y=jYj1 2 � Þ

PðjYj14uÞ
!
w

x�asð�Þ on BðSDÞ;
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where a40 is the tail index of X1 and

sð�Þ ¼ PðfZe�yðt�V Þ1½V ;1�ðtÞ; t 2 ½0; 1�g 2 � Þ;

where Z and V are independent, the distribution of Z is the spectral measure of X1

and V is uniformly distributed on ½0; 1�: See Fig. 1 for a graphical illustration of
typical extreme sample paths of a univariate Ornstein–Uhlenbeck-type process Y

(typical sample paths given that jY j1 is large).

For the proof of Theorem 22 we will need the following results.

Lemma 25. MðxÞa; for every x 2 D:

Proof. For e 2 ð0; 1=2Þ and rX0; let Vðe; rÞ ¼ fy1½v;1� : jyjpr; v 2 ½e; 1 � e�g: Note that
Vðe; rÞ is closed and, by Theorem 14.4 in Billingsley [3], also relatively compact, i.e.
Vðe; rÞ is compact. Fix x 2 D: Then there exist e 2 ð0; 1=2Þ and rX0 (e.g. r ¼ jxj1)
such that

inffd0ðez;xÞ : ez 2 Vg ¼ inffd0ðez;xÞ : ez 2 Vðe; rÞg:

Since ez 7!d0ðez;xÞ is continuous and Vðe; rÞ is compact, there exists at least one
z 2 Vðe; rÞ such that d0ðz; xÞ ¼ inffd0ðez;xÞ : ez 2 Vðe; rÞg; i.e. MðxÞ is nonempty. &

Lemma 26. Hf ¼ hf � c is continuous on V:

Proof. We first show that c is continuous on V and then that hf is continuous. Take
x0 2 V and let fxng be a sequence in D such that d0ðxn; x0Þ ! 0 as n ! 1: By
construction, d0ðcðxnÞ; xnÞpd0ðx0;xnÞ: Since cðx0Þ ¼ x0 we have

d0ðcðxnÞ;cðx0ÞÞ ¼ d0ðcðxnÞ;x0Þpd0ðcðxnÞ;xnÞ þ d0ðxn; x0Þ:

Hence d0ðcðxnÞ;cðx0ÞÞ ! 0 as n ! 1; which proves the first claim. We now show
that hf is continuous. It is sufficient to show that hf is continuous on V � D

equipped with the Skorohod metric since this metric and the J1-metric are equivalent
[3, p. 114]. Take x 2 V0 and let fxng be a V-valued sequence such that xn ! x: This
implies that there exists n0 such that xn 2 V0 for nXn0 and hence we can, without
loss of generality, assume that xn 2 V0 for every n. Then there exist y; yn; v; vn

such that xn ¼ yn1½vn;1� and x ¼ y1½v;1�: Moreover, there exists a sequence
flng of strictly increasing continuous mappings of ½0; 1� onto itself satisfying
supt2½0;1� jlnðtÞ � tj ! 0 and

sup
t2½0;1�

jyn1½vn;1�ðlnðtÞÞ � y1½v;1�ðtÞj ! 0 as n ! 1:

First we show that xn ! x implies that yn ! y and vn ! v: Since

sup
t2½0;1�

jyn1½vn;1�ðlnðtÞÞ � y1½v;1�ðtÞjXjyn � yj;

it follows that yn ! y: Suppose that vnQv: Then there exists e40 such that
lim supn!1 jvn � vj4e: Since supt2½0;1� jlnðtÞ � tj ! 0 and yn ! y; this implies that

lim sup
n!1

sup
t2½0;1�

jyn1½vn;1�ðlnðtÞÞ � y1½v;1�ðtÞjXjyj=2;
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which is a contradiction. Hence vn ! v: We may now proceed to show that xn ! x

implies hf ðxnÞ ! hf ðxÞ: Indeed

sup
t2½0;1�

Z lnðtÞ

0

f ðlnðtÞ; sÞdxnðsÞ �

Z t

0

f ðt; sÞdxðsÞ

        
p sup

t2½0;1�
j f ðlnðtÞ; vnÞðyn1½vn;1�ðlnðtÞÞ � y1½v;1�ðtÞÞj

þ sup
t2½0;1�

jðf ðlnðtÞ; vnÞ � f ðt; vÞÞy1½v;1�ðtÞj

p sup
t2½0;1�

j f ðlnðtÞ; vnÞj sup
t2½0;1�

jyn1½vn;1�ðlnðtÞÞ � y1½v;1�ðtÞj

þ jyj sup
t2½0;1�

j f ðlnðtÞ; vnÞ � f ðt; vÞj:

Since f is bounded and xn ! x; the second to last term tends to 0 as n ! 1: Since f

is uniformly continuous on ½0; 1�2; supt2½0;1� jlnðtÞ � tj ! 0 and vn ! v; the last term
tends to 0 as n ! 1: Hence, hf is continuous on V0: Finally, if xn ! 0; then clearly
hf ðxnÞ ! 0: Hence hf is continuous on V: &

Lemma 27. If B 2 BðD0Þ is bounded in D0; then H�1
f ðB \ DÞ 2 BðD0Þ is bounded

in D0:

Proof. We will show that for each r40 there exists an er ¼ erðr; f Þ40 such that
supt2½0;1� j

R t

0 f ðt; sÞdcðxÞsj4r implies supt2½0;1� jxtj4er; i.e. that H�1
f ðBc

0;rÞ � Bc
0;~r; from

which the conclusion follows. Fix r40 and suppose that supt2½0;1� j
R t

0
f ðt; sÞdcðxÞsj

4r: Then cðxÞ ¼ y1½v;1� with y 2 Rdnf0g and v 2 ½0; 1Þ: Hence

sup
t2½0;1�

Z t

0

f ðt; sÞdcðxÞs

        ¼ sup
t2½0;1�

j f ðt; vÞjjyj4r;

which implies jyj4r=supu;v2½0;1� j f ðu; vÞj: By construction of c; supt2½0;1� jxtjXjyj; so
that supt2½0;1� jxtj4r=supu;v2½0;1� j f ðu; vÞj: &

For h 2 D and t 2 ½0; 1�; we denote by vtðhÞ the total variation of h on ½0; t� [18,
p. 138].

Lemma 28. Y has sample paths in D.

Proof. By assumption there exists O0 � O with PðO0Þ ¼ 1 such that for each o 2 O0;
XðoÞ 2 D and has finite variation. For such o we also have, since f is continuous on
½0; 1�2 and hence also uniformly continuous on ½0; 1�2;

lim
v"t

Z
½0;v�

ðf ðt; sÞ � f ðv; sÞÞdXsðoÞ
        p lim

v"t
sup

s2½0;t�
j f ðt; sÞ � f ðv; sÞjvtðXðoÞÞ ¼ 0:
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Hence, for o 2 O0;

lim
v"t

ðYtðoÞ � YvðoÞÞ

¼ lim
v"t

Z
½0;t�

f ðt; sÞdXsðoÞ �
Z
½0;v�

f ðv; sÞdXsðoÞ
� �

¼ lim
v"t

Z
½0;v�

ðf ðt; sÞ � f ðv; sÞÞdXsðoÞ þ lim
v"t

Z
ðv;t�

f ðt; sÞdXsðoÞ

¼ 0 þ f ðt; tÞðXtðoÞ � Xt�ðoÞÞ;

since XðoÞ is right-continuous with left limits. Similarly,

lim
v#t

ðYvðoÞ � YtðoÞÞ

¼ lim
v#t

Z
½0;v�

f ðv; sÞdXsðoÞ �
Z
½0;t�

f ðt; sÞdXsðoÞ
� �

¼ lim
v#t

Z
½0;t�

ðf ðv; sÞ � f ðt; sÞÞdXsðoÞ þ lim
v#t

Z
ðt;v�

f ðv; sÞdXsðoÞ

¼ 0 þ f ðt; tÞðXtþðoÞ � XtðoÞÞ ¼ 0:

Hence YðoÞ is right-continuous with left limits. &

Lemma 29. Let X 2 RVðfang;m;D0Þ be a Lévy process with sample paths of finite

variation. Then Y ¼ fvtðXÞ : t 2 ½0; 1�g is a Lévy process satisfying, for every e40; as

n ! 1; nPðY 2 Bð2; ane; ½0; 1�ÞÞ ! 0:

Proof. Let n denote the Lévy measure of X1 and let g : Rd ! ½0;1Þ be given by
gðxÞ ¼ jxj: Then, Y t ¼ vtðXÞ is infinitely divisible with Lévy measure tn � g�1 and Y is
a Lévy process. Since X1 2 RVðfang;m1;Rdnf0gÞ it follows that n 2 RVðfang;
m1;Rdnf0gÞ [14, Theorem 2.3, p. 41] and Theorem 8 implies that n � g�1 2 RVðfang;
m1 � g�1ð � \ RÞ;Rnf0gÞ: Again [14, Theorem 2.3] can be applied giving Y 1 2

RVðfang;m1 � g�1ð � \ RÞ;Rnf0gÞ: The conclusion follows from Lemma 21. &

Proof of Theorem 22. By Lemma 28, Y has sample paths in D. Since m vanishes on
Vc

0 and, by Lemma 26, Hf is continuous on V0; it follows as in Theorem 8 that

nPðHf ða
�1
n XÞ 2 � Þ!

ŵ
m � H�1

f ð � \ DÞ on BðD0Þ

(here we do not need positive homogeneity of Hf ). We now show that this implies
that nPða�1

n Y 2 � Þ!
ŵ

m � H�1
f ð � \ DÞ on BðD0Þ; from which the conclusion follows.

Without loss of generality we assume that supu;v2½0;1� j f ðu; vÞj ¼ 1 (to avoid having to
introduce additional constants). For y 2 D and r40 let By;r ¼ fz 2 D : d0ðy; zÞorg:
Fix arbitrary x 2 Dnf0g and 0oeodog with gþ dod0ðx; 0Þ and eog� d: More-
over, g and d are chosen so that Bx;g;Bx;g�d and Bx;gþd are m � H�1

f -continuity sets.

Let bXn
be given by

bXn

t ¼

Z t

0

1Bc
0;ane

ðDXsÞdXs
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(where DXs ¼ Xs � Xs�B0;ane ¼ fx 2 Rd : jxjoaneg). Then bXn
and eXn

¼ X� bXn
are

independent Lévy processes for all n. Hence we can write Y ¼ bYn
þ eYn

where bYn
and eYn

are independent and bYn

t ¼
R t

0 f ðt; sÞdbXn

s and eYn

t ¼
R t

0 f ðt; sÞdeXn

s : Note that

nPða�1
n Y 2 Bx;gÞXnPða�1

n
bYn
2Bx;g�d; a�1

n
eYn
2B0;dÞ

¼ nPða�1
n
bYn
2Bx;g�dÞPða

�1
n
eYn
2B0;dÞ;

nPða�1
n Y 2 Bx;gÞpnPða�1

n
bYn
2Bx;gþd; a

�1
n
eYn
2B0;dÞ þ nPða�1

n
eYn
2Bc

0;dÞ

¼ nPða�1
n
bYn
2Bx;gþdÞPða

�1
n
eYn
2B0;dÞ þ nPða�1

n
eYn
2Bc

0;dÞ:

Hence if we show that

nPða�1
n
eYn
2Bc

0;dÞ ! 0;

nPða�1
n
bYn
2Bx;g�dÞ ! mðH�1

f ðBx;g�dÞ \ Bc
0;eÞ;

nPða�1
n
bYn
2Bx;gþdÞ ! mðH�1

f ðBx;gþdÞ \ Bc
0;eÞ;

then we can let d ! 0 (from which e ! 0 follows) and conclude that

nPða�1
n Y 2 Bx;gÞ ! m � H�1

f ðBx;gÞ: Since x and g were arbitrary the conclusion then

follows since the m � H�1
f -continuity sets Bx;r � Dnf0g generate BðD0Þ \ D: We first

show that nPða�1
n
eYn

2 Bc
0;dÞ ! 0: Note that (recall that supu;v2½0;1� j f ðu; vÞj ¼ 1)

nPðeYn
2 anBc

0;dÞ ¼ nPðjeYn
j1XandÞ

pnP sup
u;v2½0;1�

j f ðu; vÞjv1ðXÞXand

 !
¼ nPðv1ðXÞXand; v�ðXÞ 2 Bð2; anðd� eÞ; ½0; 1�ÞÞ

pnPðv�ðXÞ2Bð2; anðd� eÞ; ½0; 1�ÞÞ ! 0;

by Lemma 29 and the fact that jDeXn

t joaneoand for all t. Note that if o 2 fbXn
e

Bð2; ane; ½0;1�Þg; then bXn
ðoÞ2V so that a�1

n
bYn
ðoÞ¼a�1

n Hf ðbXn
ðoÞÞ¼Hf ða

�1
n
bXn
ðoÞÞ:Hence

nPða�1
n
bYn
2Bx;g�dÞ ¼ nPða�1

n
bYn
2Bx;g�d; bXn

eBð2; ane; ½0; 1�ÞÞ

þ nPða�1
n
bYn
2Bx;g�d; bXn

2Bð2; ane; ½0; 1�ÞÞ

¼ nPðHf ða
�1
n
bXn

Þ2Bx;g�d; bXn
eBð2; ane; ½0; 1�ÞÞ

þ nPða�1
n
bYn
2Bx;g�d; bXn

2Bð2; ane; ½0; 1�ÞÞ

¼ nPðHf ða
�1
n
bXn

Þ2Bx;g�dÞ

� nPðHf ða
�1
n
bXn

Þ2Bx;g�d; bXn
2Bð2; ane; ½0; 1�ÞÞ

þ nPða�1
n
bYn
2Bx;g�d; bXn

2Bð2; ane; ½0; 1�ÞÞ:

Since nPða�1
n
bXn

2 � Þ!
ŵ

mð � \ Bc
0;eÞ; applying Theorem 8 (positive homogeneity not

needed here) nPðHf ða
�1
n
bXn

Þ 2 Bx;g�dÞ ! mðH�1
f ðBx;g�dÞ \ Bc

0;eÞ: Since

PðbXn
2 Bð2; ane; ½0; 1�ÞÞpPðv�ðXÞ 2 Bð2; ane; ½0; 1�ÞÞ
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it follows by Lemma 29 that the remaining two terms converges to 0. Hence

nPða�1
n
bYn
2Bx;g�dÞ ! mðH�1

f ðBx;g�dÞ \ Bc
0;eÞ: By the same arguments it follows that

nPða�1
n
bYn
2Bx;gþdÞ ! mðH�1

f ðBx;gþdÞ \ Bc
0;eÞ: &
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[10] E. Giné, M.G. Hahn, P. Vatan, Max-infinitely divisible and max-stable sample continuous processes,

Probab. Theory Related Fields 87 (1990) 139–165.

[11] L. de Haan, T. Lin, On convergence toward an extreme value limit in C½0; 1�; Ann. Probab. 29 (2002)

467–483.

[12] H. Hult, Topics on fractional Brownian motion and regular variation for stochastic processes, Ph.D.

Thesis, Department of Mathematics, Royal Institute of Technology, Sweden, 2003.

[13] O. Kallenberg, Random Measures, third ed., Akademie-Verlag, Berlin, 1983.

[14] F. Lindskog, Multivariate extremes and regular variation for stochastic processes, Ph.D.

Thesis, Department of Mathematics, Swiss Federal Institute of Technology, Switzerland, 2004

(http://e-collection.ethbib.ethz.ch/cgi-bin/show.pl?type=diss&nr=15319).

[15] V. Mandrekar, Domain of attraction problem on Banach spaces: a survey, in: Lecture Notes in

Math., vol. 860, Springer, Berlin, 1981, pp. 285–290.

[16] S.I. Resnick, Extreme Values, Regular Variation, and Point Processes, Springer, New York, 1987.
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