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ABSTRACT

Aeroacoustic  formulations in time domain are
frequently used to model the aerodynamic sound of airfoils, the
time data being more accessible. The formulation 1A developed
by Farassat, integral solution of the Ffowcs Williams and
Hawkings equation, holds great interest because of its
adequacy for surfaces in arbitrary motion. The aim of this work
is to study the numerical sensitivity of this model to specified
parameters and the geometry used in the calculation. The
numerical algorithms, spatial and time discretizations, and
approximations used for far-field acoustic simulation are
presented. A parametrical study of the relevant criteria is
carried out based on the Isom’s and Tam’s test cases.

A helicopter blade airfoil as defined by Farassat to investigate
the Isom’s case is used in this work. According to Isom, the
acoustic response of a dipole source with a constant

aerodynamic load p,ci is equal to the thickness noise

contribution. In practice, this observation is subject to
numerical errors that are not systematically well controlled.
Variations of these errors depending on the time step, Mach
number and the source-observer distance are studied. The
analysis is then extended to the Tam’s test case. Tam test case
has the advantage of providing an analytical solution for the
first harmonic.

NOMENCLATURE
Co ambient sound speed
ds element of the control surface

D(®)  Tam’s directivity in spherical coordinates

f =0 function that describes the source surface

Fy, Fr,F, Tam’s forces in cylindrical coordinates

H(f) Heaviside function

Jn( ) the m™-order Bessel function

L components of local force intensity that acts on the

fluid, L; =[(p— Po)dij —7ij + pu; (U _Vj)hj

oL
' or r

M local Mach number vector of source with respect to a
frame fixed to the undisturbed medium, with
components M;

M oM;

or

M, Mach number in direction normal to the surface, M;n;

M, Mach number of source in radiation direction, M,

M r Mi f|

mtr number of time steps per period

fA unit outward normal vector to the surface, with

components

1 Copyright © 2007 by ASME



p far-field acoustic pressure

PL loading noise component

Py thickness noise component

P; compressive stress tensor

r source-observer distance, r =|x-y|

f unit vector in the radiation direction, with components
f

t observer time

t, n' time step

T blade passage time

Ty Lightill stress tensor, puju; +P; —c?p's;

u; components of local fluid velocity

A local normal velocity of source surface

Vi Viﬁi

Vn Viﬁi

X observer position vector, with components x;

(x,r, ) cylindrical coordinates for Tam’s test case

y source position vector, with components y;

o(f) Dirac function

Jij Kronecker delta

AN the N root of J’p,, that means J’p, (Amn) = O

7 the angle defined by the rotation axis and the source-
observer direction

Q rotor angular velocity

£o density of the medium at rest

T source time (retarded time).

Indices:

1] the over dotted variables denote retarded temporal
derivatives

[ index denotes projection onto the source-observer
direction

[Im index denotes projection on the Mach number vector.

INTRODUCTION

Noise reduction is one of the challenges that
transportation industry has to face because of the clients
demands as well as the increasing legal restrictions. The aim is
to take into account noise constraints during the design process.
For this, Direct Numerical Simulations allow an accurate noise
prediction. However, such approach is still underdevelopment
for simple geometries, flow around cavity and cylinder, and
could not be used in an industrial design process or even
applied to a realistic rotating machine because of their high
computations resources requirements. An alternative technique
consists of coupling accurate aerodynamic calculations, such as
Large Eddy Simulation or Detached Eddy Simulation, and

aeroacoustic analogy. The numerical simulation has to
determine accurately the unsteady loading on the blades, which
are to be fed into Ffowcs Williams and Hawkings integral
formulations. Noise sources are only computed around the
surface. Then, far field acoustic pressure can be calculated by
the evaluation of integrals.

Significant theoretical and computational
advancements have been achieved with developments of the
time domain integral formulations. Today, almost all
deterministic rotor noise predictions are based on time-domain
integral formulations of the FW&H equation. The formulation
1A developed by Farassat [1], integral solution of the FW&H
equation, holds great interest because of its adequacy for
surfaces in arbitrary motion. Di Francescantonio [2] proposed a
new boundary integral formulation, which does not require the
non-penetration condition neither the calculation of the surface
pressure normal derivative. Casalino [3] introduced the
advanced time approach in the retarded time formulation 1A of
Farassat. Then, algorithms gain in efficiency because no
iterative solutions of the retarded time equation need to be
performed. Ghorbaniasl and Hirsch [4] presented a series of
validation test cases for Farassat’s formulation.

The results are very sensitive to the algorithms, spatial
and time discretizations, and approximations used for far-field
acoustic simulation. A look forward in evaluation of the
numerical errors resulting from implementation of formulation
1A is essential. In practical situations, computation codes have
to be verified and validated by means of well-known test cases.
The verification can be ideally carried by comparing the
computations to analytical solutions; the numerical errors are
calculated through the discrepancies between the numerical and
analytical solutions.

In this paper, a parametrical study of the relevant
criteria in numerical implementation of Farassat’s formulation
1A is carried out based on two efficient test cases: the Isom’s
test [5] and the Tam’s test BenchMark [6, 7]. According to
Isom, the acoustic response of a moving dipole source with a

constant aerodynamic load p,c? is equal to the thickness noise

contribution. Hence, Isom gave a consistency test to validate
aeroacoustic calculation codes. In practice, this observation is
subject to numerical errors that are not systematically well
controlled. Variations of these errors depending on the time
step, Mach number and the source-observer distance are
studied.

Tam test case has the advantage of providing an
analytical solution for the first harmonic of the produced by a
specific distribution of forces. The analysis is then completed
with the Tam’s test case. The numerical errors of integral
extension from the near-field aerodynamic data to the acoustic
far-field are mainly the so-called spatial and temporal
discretization errors, which should be convergent to zero if the
spatial and temporal resolutions are sufficiently refined. These
two kinds of errors are confirmed in the present verification
through the following procedures.
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FORMULATION 1A : NUMERICAL IMPLEMENTATION

In this part, development of the J.E. Ffowcs Williams
and D.L. Hawkings analogy [8] is carried out. The acoustic
solver is based on the integral retarded time FW&H
formulation 1A with permeable surfaces of Di Francescantonio
[9] and Brentner & Farassat [10, 11]. The interest of this
formulation lies in the fact that time derivative of the integral
terms of FW&H has been eliminated. Moreover, the evaluation
of the noise can be done even if the observer is moving. The
thickness and the loading noise of a surface in arbitrary motion
is given as:

ﬁT (X,t) = ﬁTl()_(’t) + ﬁTZ()_('t)

o
ﬁL ()?,t) = ELl(X!t) + 5L2 (X't) + 5L3(X’t)
so,
B(X.t) = Br (%.1) + P (R.) @
Where:
o U, +U
4z pTl(X’t) = §f(y,r)0|:/%(l’ln)—:n):| % (3)
r=t-r/c,
A ETZ()—(’t) = §f(yy,)_0|:poun(riMi :—2(33('\/' r M ))i| ds (4)
and:
s 1 L
— —_ r 5
4z le(X’t) - C §f(y,r)—0|:|"D2 :|T_t_r/c as ©
= o L — Ly
A pLz(X’t) - §f()7.r)=0 |:r2D2i|,t_r/cods (6)

- 1
4r pLg(x,t)=§fw{

Lr(er +CU(Mr_M2)):| ds (7)
Co r=t-r/c,

r2D3

p is the acoustic pressure, X being the observer position and
y the source position sor =|)?—Y| is the source-observer
distance, D=1-M, the Doppler factor, L the aerodynamic
pressure force L;= [(p— Po)Sij —zij + pU; (U] —vj)JnJ— , Tjj

the viscosity stress tensor and d;; : Kronecker symbol. py and cg
are respectively the density of the fluid and the sound speed in

a medium at rest. v; is the velocity of the surface control and u;

. . u;
represents the fluid velocity so U; = LR, (1— i}vi .
Po Po

When the control surface is solid, the relative

velocity (u; —v;)=0.

It is important to point out that the terms between the
brackets of equations (3-7) are evaluated at delayed time. The
retarded-time integrals are approximated by mid-panel-
quadrature algorithm. Values of physical variablesQ are

approximated at panel centroids y; as :

N N t=r/
4z h(R,t)= ) Z[Q(ijlt_ MT_CO)} S, ®)
J ret

i-1| j=1

their evaluations are carried out with the source time regarded
as the primary time (i.e., dominant). The source time for a
panel is chosen and determines when the signal will reach the
observer. The second then the fourth order Runge-Kutta
equidistant derivation are used in this work for the calculation
of L; based on the inputs of p(t).

If the observer is static, z being the emission time, then the
expression of time reception is basically :

t=r+ '@ 9)
C

The signal is the summation of all computed values of
disturbances emitted by the sources at different retarded times
and reaching the observer at a unique observer time. Thus, an
interpolation of the acoustic pressure at reception time is
performed with spline algorithm so that the contributions from
all source panels can be summed at the same observer times.
For a moving observer an expression of the advanced time has
been given by Casalino [3].

ISOM TEST-CASE

Firstly, the Isom [5] test is reviewed. It has been
shown that if a constant aerodynamic load pocg is applied over

a moving surface, then generated thickness noise and loading
noise could be equal. This assumption can be demonstrated
applying the wave operator at the generalized function

poc§ [1— H(f)] that is always equal to zero out of the surface
defined by f =0. Then,

gb%%ﬁﬁﬂ=—é%Mwﬁﬁﬁﬂ, (10)

the mathematical form of thickness noise, left side, and loading
noise, right side, are recognized. A more complete
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demonstration can be found in [5, 12]. This analytical result is
not always exact when applied numerically due to the
differences of robustness in the integration of the two noises.
This difference is affected by several geometrical and physical
parameters of which the influence is not well studied.

A conventional rotor has been defined for the Isom’s
test case. The same helicopter rotor as defined by Farassat to
study the Isom’s case is used in this work. It is composed of 2
blades, Figure 1, of 4 m spanwise length for an external
diameter of 10 m. The blades are symmetrical biconvex airfoil
with a 10% thickness ratio (a NACAO0010 profile is used in this
work). The main chord is equal to 0.4 m.

[_>X

y

b)
Fig. 1: a) Used blade geometry b) Zoom on the tip, the
thickness ratio is decreasing at the extremities of the blade.

In their first calculations, Farassat et al. [13] did not
take into account the tips and the inner faces and the results did
not agree with the theory. Then, they found that blade tip is an
effective noise generation area when Isom’s thickness noise
formulae was studied [14]. This being corrected, a non
negligible discrepancy remained especially at low tip Mach
numbers. Their first idea was to refine the grid at the inner and
outer radii of the blade. Thus, the quality of the results is
improved. Last amelioration consists in decreasing the
thickness ratio at the extremities of the blade, as shown in
Figure 1. Once these ameliorations done, the result is excellent.
Here appears the need of studying effect of these criteria. They
will depend on the accuracy of the program computing the
formulation F1A and are not unique. They will traduce the
robustness of the program. Firstly, the results obtained for 0.4
and 0.8 tip Mach number with the code developed during this
study for the blade shown in figure 1. are presented in figure 2.
The observer is located in the rotation plane at 50 m away from

the rotation axis. A good agreement is noticed between the
Isom and monopole noise.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t/T, T=0.1155s
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5L i
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t/T, T=0.0577 s
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Fig. 2 : Acoustic pressure signatures for a two-bladed rotor, a)
Tip Mach number 0.4 b) Tip Mach number 0.8 .

DEFINITION OF THE ERROR

In order to compare the results obtained when
parameters are varied, an accurate definition of the error is
required. This definition must allow for studying the Mach
number, the time step, and the source-observer distance effects.
For Isom’s test case, two sets of values must be compared p,

and p; whereas, for Tam’s benchmark, the comparison is

carried out between analytical and numerical solutions. The
relative error E; takes into account the differences of scales
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(magnitude), its definition for the comparison of loading and
thickness noises at each time step is:

‘ﬁTftn)_ 5L~(tn)‘ (11)
maxqu (tn) pL(tn)‘)
In order to evaluate the discrepancy between two curves, the

error considered is the arithmetical mean of the time relative
errors:

Er(tn):

E-L1 3E) (12)

mtr 5o

An absolute error could also be used :
T

1 ~ ~
= - 13
Ba = }Ezto,\pT(m P (ty) (13)

TIME STEP AND ORDER OF THE DERIVATION

The first parameter studied is the number of time steps
per one rotation period. Figure 3. presents the mean relative
error depending on the number of time steps used in the
computation. The previous geometry is kept with the same
mesh grid, the observer is in the rotation plane, and only the
number of time steps per one rotation period is varied. Two

differentiation algorithms used in the computation of L are
compared: second order (RK 2) and fourth order Runge Kutta
equidistant derivation scheme (RK 4), the tip Mach number is
fixed here to 0.8.

0.2
——RK 4
N ——RK 2
W 9150 1
<l
5]
g
E 0.1 B
L
c
8
2 o005 1
0 ‘ ‘ ‘ ‘
0 500 1000 1500 2000

Number of time steps
Fig. 3: Time step and order of the derivation.

The error is decreasing when the number of time steps per one
rotation period is increasing. For the presented configuration,
512 time steps are sufficient to give a minimal error. This value
is used for all the following computations. Although the order
of the scheme used is not relevant in this case, the fourth order
Runge Kutta equidistant derivation scheme is kept for the rest
of computations. For practical configurations, carrying out this
test should give the minima of the number of time steps needed
to have a possible accurate acoustic solution.

SOURCE-OBSERVER DISTANCE

The parameter considered here is the source-observer
distance. Even if theoretically the formulation F1A is adequate
to predict aeroacoustic noise in near-field domain, as noticed in
Farassat [10], the numerical results are sensitive to source-
observer distance.

10™

Ea [Pa]

-5
10 L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
Distance [m]
Fig. 4: Absolute error function of the source-observer
distance.

In figure 4, the absolute error depending on the source
observer distance is presented. The discrepancies decrease
when the observer is in the far field. When the mean relative

error E is considered, figure 5, although a minimum is

noticed around 250 m, the discrepancy between loading noise
and thickness noise is nearly not varying in relative value
staying between 0.54 and 0.57%.

6 10°
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©
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o
]

o
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Mean Relative Error
(4] (4] (4] (6]
N w s
. .

o
[N
I

a1

0 200 400 600 800 1000
Distance (m)

Fig. 5: Relative error E, over the source observer distance.
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In other terms, the integrals in 1/r (far field domain) and 1/r2
(near field domain) are estimated with the same accuracy.
Source-observer distance is not a source of error and presented
numerical scheme describes far field domain noise generation
as well as near field confirming the adequacy to predict the
aeroacoustic noise in near-field domain.

DIRECTIVITY

In order to study the directivity, the observer is located
at 50 m away from the rotation centre and the angle defined by
observer position vector and the rotation plane is varied, 0°
angle corresponds to observer position at the rotation plane.
The tip Mach number is fixed to 0.8. The number of time steps
per rotation period is 512. Figure 6. a) shows the maximum of
pr and p, over one period depending on the rotation angle.

The directivity feature shows a dipolar character.
Cl)

6 [Pa]

Isom
Monopole, M = 0.8

180

90 150 [dB]

Isom
Monopole, M = 0.8

b)
Fig. 6: Directivity of the maximum of isom and thickness
noise P; and P, over one period a) [Pa] b) dB, p=2 10° Pa

Acoustic pressures found are maxima in the rotation
plane. On other hand, the acoustic pressure is minima along the
rotation axis. In the rotation axis, the tangential aerodynamics
forces are not responsible on noise emission in the axis. Only
the axial forces can generate noise in the rotation axis.

The look at the relative error depending on the angle
Ogir, figure 7, brings out that the regions with maximum relative
error are those with the minimum acoustic pressures. For some

values of Oq,, Er is nearly equal to 1, that means near the
rotation axis, the error is significant. One could think that the
large error shown in figure 7 at rotation axis has no real
significance in that the acoustic pressures at these locations are
nearly zero, figure 6 a). However, the look at acoustic pressure
levels, figure 6 b), illustrate that these errors are physically
consistent; the range of the pressure levels are important.

Fig. 7: Directivity of the mean relative error E, .

MACH NUMBER

As noticed by Farassat [10], for subsonic motions, the
discrepancy between Isom’s noise and thickness noise
increases when Mach number is decreasing. A good illustration
is given on figure 8 for 0.2 tip Mach number. The used
parameters are the same as those in computing of the results for
0.4 and 0.8 Mach numbers (figure 2).
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15 ISOM
Monopole, M = 0.2

Acoustic Pressure, [Pa]

-1.5+

25 I I I I I I I I |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t/T, T=0.231s
Fig. 8: Acoustic pressure signatures for a two-bladed rotor, tip
Mach number 0.2 .

The evolution of the relative error depending on the
Mach number is represented in figure 9,. The mean relative
error decreases when the Mach number is increasing. This
result suggests that the mesh grid has to be refined near the
regions moving at low Mach number, i-e near the inner radius.

0.7

0.6 B

Mean Relative Error

0 | I I I 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Tip Mach number

Fig. 9: Mean relative error E, over tip Mach number.

TAM TEST CASE

The second test case studied in this work has been
provided by Tam [6]. It is the exact solution of the linearized
Euler equations for the first harmonic of the noise produced by
a specific distribution of forces. This test has been described in
the third CAA benchmark problems workshop [7]. The

geometrical configuration is shown in figure 10: the rotor is
1.6m long and its radius is 1m.

/F!

™

I
Axis of rotor P ! /?l/ ?
e

<A
,/

Fig. 10: Tam’s open rotor.

X axis

In this section the variables are non-dimensionalized with
respect to the following scales :

length scale . b, length of the blade
velocity scale  : ¢, , ambient sound speed
. b
time scale —

Co
density scale . g, ambient fluid density
pressure scale  : poc2

PoCh

body force scale : o

The physical rotor is replaced in a cylindrical coordinates
(x, r, @) by the following distribution of forces:

F (r, o, xt) 0
_ = im(p-Q1)
F,(r.o.x,t) [= ReqF, (r,x) ™" (14)

F.(r,o x1) F (r, )
where

F (r,x)=
o) r>1

{F(X)Jm(/lmNr) r<i
0

{F(x)er(ﬂmNr) r<i
0

ﬁX(r'X): r>1

F(x) = exp{— (In2) (10x)? }

and Jn( ) is the m™-order Bessel function, Amy is the N root of
J’m, that means J°, (Amn) = 0. The calculation has been made
for an 8 blade rotor, so m = 8 and setting N = 1 (Apn =
9.64742). Q, as every variable is nondimensional.

Tam showed that the acoustic pressure, the frequency of the
radiated sound is the first harmonic m Q, can be approached by

5(R,0,t)z%A(ks)eimn(R4) —5(me) x (15)
R—w
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where 10

m’Q? cos’® &

J (A )3 (MQsin 9)97 400102

Tam's analytical solution
Computed, F1A
9 =90° R=100m, (O = 0.85

Alky)=>

4

1
7 )2 m*(1+Qcosh)Qsin d
100In2) 22, -m’Q%sin’ @

(16)
andk, =mQcosé. 4r
It is to highlight that in equation (13) from reference [5],
giving A(kg) , there is an error certainly typographical: instead
of mQsin @ it is written as mRsin@ . The directivity D(0) in
spherical coordinates is defined as :

Acoustic Pressure [Pa]
o
:

D(6) = lim R* (R, 60, ¢,t) = 2A (k) 17)
The over-bar denotes the time average. In order to test the code

based on the FWH equation, Tam’s benchmark problem was 8 )
adapted by Hirsch et al [4, 15] by removing the harmonic 10 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
exponential dependence of the blade force. A new blade force c o1 0z 03 04 05 06 07 08 09 1
i . t/T, T=0.00269 s
was defined as : b)
F, (r, @, x,1) 0 X 10°
Fgo (r, O, X, t) =Re F(p (r, X) (18) Tam's analytical solution
F(rp.x.1) Fe(r, %) 6F < ?Tﬁlgg(:éilf: 0.85
The aerodynamic forces defined in equation (18) are
substituted in the loading noise sources of formulation 1A. The 5 8
first harmonic of the computed solution should be identical to
Tam’s analytical solution. Firstly, the results given by Tam [6] al i
are reproduced by the acoustic solver developed in this work. )
As the problem is axisymmetric about the x axis the e 3l |
computational domain is defined in the r-x plane as -0.8 <x <
0.8 and 0 < r < 1. The blade surface is discretized into equally
spaced points (40 points along x axis x 25 points along r axis). 2r i
Figure 11. shows the results obtained for Q = 0.85 at R = 100
m. On figure 11. a) is represented the computed dipole far-field ir 1
acoustic pressure with F1A at (6 = 90° and R = 100 m, Q =
0.85). 00 - ‘ ‘ ] - >060
0 20 40 60 80 100 120 140 160 180
5 ‘ ‘ ‘ ‘ 0[]
‘ Computed, § = 90°, R = 100 m ‘ c)
20 ] Fig. 11: Results for Q = 0.85: a) Computed dipole acoustic
15 | pressure with F1A, b) Computed first harmonic signal with
F1A compared to Tam’s analytical solution, equation (15). c)
= 10 1 Computed first harmonic directivity with F1A compared to
% 5 | Tam’s analytical solution, equation (17).
g 0 : The first harmonic of this signal is compared to Tam’s
g 5 | analytical solution on figure 11 b). The computed directivity of
3 the first harmonic is presented on figure 11 c). The results are
< 10 . agreeing perfectly. This suggests that the numerical method
15 | predicts the dipole noise accurately at Q = 0.85.
The same results are presented in figure 12.
-20 . forQ=0.6. Some discrepancies are noticed and the
- ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ concordance is less significant. These results reinforce those
0 01 02 03 04 05 06 07 08 09 1 obtained in studying the Mach number effect for Isom’s test
uT case.
a)
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Acoustic Pressure, |Pa]

Acoustic Pressure [Pa]

D[]

15 T

Computed, §=90°, R=100m, ) = 0.6

15 L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
a) t/T, T=0.00382 s
15 T T T
Tam's analytical solution
Computed, F1A
1/ 6=90°,R=100m, Q =06 |
0.5+
O+
-0.5F
1k
_15 Il L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
b) t/T, T=0.00382 s
x 10°
8 T T i
Tam's analytical solution
a o Computed, F1A 4
R=100m, Q = 0.6
6L 4
5 L ,
4t i
3L 4
2 L ,
1k 4
22000000 ‘ \ \ \ 20000Q00°
0 20 40 60 80 100 120 140 160 18(
C) ol

Fig. 12: Results forQQ=0.6: a) Computed dipole
acoustic pressure with F1A, b) Computed first harmonic
signal with F1A compared to Tam’s analytical solution.
¢) Computed first harmonic directivity with F1A
compared to Tam’s analytical solution

CONCLUSION :

Development of the J.E. Ffowcs Williams and D.L. Hawkings
analogy is carried out. The acoustic solver is based on the
integral retarded time of Formulation 1A developed by
Brentner and Farassat. The retarded-time integrals are
approximated by mid-panel-quadrature algorithm. They are
calculated with the source time regarded as the primary time
(i.e., dominant). The second then the fourth order Runge-Kutta
equidistant derivation are used for the evaluation of
aerodynamic loadings. An interpolation of the acoustic pressure
at the reception time is performed with spline algorithm so that
the contributions from all source panels are summed at the
same observer times.

A parametrical study of the relevant criteria is carried out based
on the Isom’s and Tam’s test cases. In order to compare the
results obtained when parameters are varied, a relative average
error definition is introduced. This definition allowed for
studying the effects of Mach number, the time step, and the
source-observer distance. For Isom’s test case, thickness noise
is compared to loading noise whereas, for Tam’s benchmark,
the comparison is performed between analytical and numerical
solutions.

The same helicopter rotor as defined by Farassat to study the
Isom’s case is used. The obtained results show that the error is
decreasing when the number of time steps per one rotation
period is increasing. For the presented configuration, 512 time
steps are sufficient to give a minimal error for 0.8 tip Mach
number. For practical configurations, carrying out this test
should give the minima of the number of time steps needed to
have a possible accurate acoustic solution.

Even if theoretically the formulation F1A is adequate to predict
the near-field aerodynamic noise, the numerical results are
sensitive to source-observer distance. The absolute error
decrease when the observer is in the far field. However, the
discrepancy between loading noise and thickness noise is
nearly not varying in relative values. In other terms, the
integrals in 1/r (far field domain) and 1/r2 (near field domain)
are estimated with the same accuracy.

The directivity feature shows a dipolar character. Acoustic
pressures found are maximum in the rotation plane. On other
hand, the acoustic pressure is minima along the rotation axis. In
the rotation axis, the tangential aerodynamics forces are not
responsible on noise emission in the axis. Only the axial forces
can generate noise in the rotation axis.

The mean relative error decreases when the Mach number is
increasing. This result suggests that the meshgrid has to be
refined near the regions moving at low Mach number.

The analysis is then extended to the Tam’s test case. The results
are agreeing perfectly in case of Q = 0.85. Whereas, for Q =
0.6, some discrepancies are noticed confirming that the errors
increase when tip Mach number is decreasing.
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