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ABSTRACT 
 

Aeroacoustic formulations in time domain are 
frequently used to model the aerodynamic sound of airfoils, the 
time data being more accessible. The formulation 1A developed 
by Farassat, integral solution of the Ffowcs Williams and 
Hawkings equation, holds great interest because of its 
adequacy for surfaces in arbitrary motion. The aim of this work 
is to study the numerical sensitivity of this model to specified 
parameters and the geometry used in the calculation. The 
numerical algorithms, spatial and time discretizations, and 
approximations used for far-field acoustic simulation are 
presented. A parametrical study of the relevant criteria is 
carried out based on the Isom’s and Tam’s test cases.  

A helicopter blade airfoil as defined by Farassat to investigate 
the Isom’s case is used in this work. According to Isom, the 
acoustic response of a dipole source with a constant 
aerodynamic load 2

00cρ  is equal to the thickness noise 
contribution. In practice, this observation is subject to 
numerical errors that are not systematically well controlled.  
Variations of these errors depending on the time step, Mach 
number and the source-observer distance are studied. The 
analysis is then extended to the Tam’s test case. Tam test case 
has the advantage of providing an analytical solution for the 
first harmonic.  
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NOMENCLATURE 
 

0c  ambient sound speed  
dS element of the control surface 
D(θ)  Tam’s directivity in spherical coordinates 

0=f   function that describes the source surface 

ϕFFF rx ,,  Tam’s forces in cylindrical coordinates 
)( fH  Heaviside function 

Jm(  ) the mth-order Bessel function 
iL  components of local force intensity that acts on the 

fluid, [ ] jjjiijiji nvuuppL )()( 0 −+−−= ρτδ  

rL&  
r
rL ii

τ∂
∂

 

M local Mach number vector of source with respect to a 
frame fixed to the undisturbed medium, with 
components Mi 

M&  
τ∂

∂ iM
 

Mn Mach number in direction normal to the surface, Mini 

Mr Mach number of source in radiation direction, ii rM ˆ  

rM&  ii rM ˆ&  

mtr  number of time steps per period 
n̂  unit outward normal vector to the surface, with 

components in̂  
1 Copyright © 2007 by ASME 

of Use: http://www.asme.org/about-asme/terms-of-use



D

p~  far-field acoustic pressure  

Lp~  loading noise component 

Tp~  thickness noise component 

ijP  compressive stress tensor 

r  source–observer distance, yxr −=  

r̂  unit vector in the radiation direction, with components 
ir̂  

t observer time 
tn nth time step 
T blade passage time 

ijT  Lightill stress tensor, ijijji cPuu δρρ ′−+ 2  

iu  components of local fluid velocity 

nv  local normal velocity of source surface 

nv &  iinv &̂  

nv&  iinv ˆ&  
x  observer position vector, with components ix  

),,( ϕrx  cylindrical coordinates for Tam’s test case 
y  source position vector, with components iy  

)( fδ  Dirac function 

ijδ  Kronecker delta 
λmN  the Nth root of J’m, that means J’m (λmN) = 0 
θ  the angle defined by the rotation axis and the source-

observer direction 
Ω  rotor angular velocity 

0ρ  density of the medium at rest 
τ  source time (retarded time). 
Indices: 
•
[]  the over dotted variables denote retarded temporal 

derivatives 
[]r  index denotes projection onto the source-observer 

direction 
[]M  index denotes projection on the Mach number vector.  
 

 
INTRODUCTION 

 
 Noise reduction is one of the challenges that 
transportation industry has to face because of the clients 
demands as well as the increasing legal restrictions. The aim is 
to take into account noise constraints during the design process. 
For this, Direct Numerical Simulations allow an accurate noise 
prediction. However, such approach is still underdevelopment 
for simple geometries, flow around cavity and cylinder, and 
could not be used in an industrial design process or even 
applied to a realistic rotating machine because of their high 
computations resources requirements. An alternative technique 
consists of coupling accurate aerodynamic calculations, such as 
Large Eddy Simulation or Detached Eddy Simulation, and 
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aeroacoustic analogy. The numerical simulation has to 
determine accurately the unsteady loading on the blades, which 
are to be fed into Ffowcs Williams and Hawkings integral 
formulations. Noise sources are only computed around the 
surface. Then, far field acoustic pressure can be calculated by 
the evaluation of integrals.  
 Significant theoretical and computational 
advancements have been achieved with developments of the 
time domain integral formulations. Today, almost all 
deterministic rotor noise predictions are based on time-domain 
integral formulations of the FW&H equation. The formulation 
1A developed by Farassat [1], integral solution of the FW&H 
equation, holds great interest because of its adequacy for 
surfaces in arbitrary motion. Di Francescantonio [2] proposed a 
new boundary integral formulation, which does not require the 
non-penetration condition neither the calculation of the surface 
pressure normal derivative. Casalino [3] introduced the 
advanced time approach in the retarded time formulation 1A of 
Farassat. Then, algorithms gain in efficiency because no 
iterative solutions of the retarded time equation need to be 
performed. Ghorbaniasl and Hirsch [4] presented a series of 
validation test cases for Farassat’s formulation.  
 The results are very sensitive to the algorithms, spatial 
and time discretizations, and approximations used for far-field 
acoustic simulation. A look forward in evaluation of the 
numerical errors resulting from implementation of formulation 
1A is essential. In practical situations, computation codes have 
to be verified and validated by means of well-known test cases. 
The verification can be ideally carried by comparing the 
computations to analytical solutions; the numerical errors are 
calculated through the discrepancies between the numerical and 
analytical solutions.  
 In this paper, a parametrical study of the relevant 
criteria in numerical implementation of Farassat’s formulation 
1A is carried out based on two efficient test cases: the Isom’s 
test [5] and the Tam’s test BenchMark [6, 7]. According to 
Isom, the acoustic response of a moving dipole source with a 
constant aerodynamic load 2

00cρ  is equal to the thickness noise 
contribution. Hence, Isom gave a consistency test to validate 
aeroacoustic calculation codes. In practice, this observation is 
subject to numerical errors that are not systematically well 
controlled. Variations of these errors depending on the time 
step, Mach number and the source-observer distance are 
studied.  

Tam test case has the advantage of providing an 
analytical solution for the first harmonic of the produced by a 
specific distribution of forces. The analysis is then completed 
with the Tam’s test case. The numerical errors of integral 
extension from the near-field aerodynamic data to the acoustic 
far-field are mainly the so-called spatial and temporal 
discretization errors, which should be convergent to zero if the 
spatial and temporal resolutions are sufficiently refined. These 
two kinds of errors are confirmed in the present verification 
through the following procedures. 
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FORMULATION 1A : NUMERICAL IMPLEMENTATION  
 

 In this part, development of the J.E. Ffowcs Williams 
and D.L. Hawkings analogy [8] is carried out. The acoustic 
solver is based on the integral retarded time FW&H 
formulation 1A with permeable surfaces of Di Francescantonio 
[9] and Brentner & Farassat [10, 11]. The interest of this 
formulation lies in the fact that time derivative of the integral 
terms of FW&H has been eliminated. Moreover, the evaluation 
of the noise can be done even if the observer is moving. The 
thickness and the loading noise of a surface in arbitrary motion 
is given as: 
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p~ is the acoustic pressure, xr  being the observer position and 

yr  the source position so yxr rr
−=  is the source-observer 

distance, rMD −=1  the Doppler factor, L the aerodynamic 
pressure force [ ] jjjiijiji nvuuppL )()( 0 −+−−= ρτδ , ijτ  : 

the viscosity stress tensor and δij : Kronecker symbol. ρ0 and c0 
are respectively the density of the fluid and the sound speed in 
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represents the fluid velocity so i
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When the control surface is solid, the relative 
velocity 0)( =− jj vu .  

 It is important to point out that the terms between the 
brackets of equations (3-7) are evaluated at delayed time. The 
retarded-time integrals are approximated by mid-panel-
quadrature algorithm. Values of physical variables Q are 
approximated at panel centroids yj as : 
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their evaluations are carried out with the source time regarded 
as the primary time (i.e., dominant). The source time for a 
panel is chosen and determines when the signal will reach the 
observer. The second then the fourth order Runge-Kutta 
equidistant derivation are used in this work for the calculation 
of iL&  based on the inputs of p(t).  
If the observer is static,τ being the emission time, then the 
expression of time reception is basically : 
 

                    
c

rt )(ττ +=                                       (9) 

 
The signal is the summation of all computed values of 
disturbances emitted by the sources at different retarded times 
and reaching the observer at a unique observer time. Thus, an 
interpolation of the acoustic pressure at reception time is 
performed with spline algorithm so that the contributions from 
all source panels can be summed at the same observer times. 
For a moving observer an expression of the advanced time has 
been given by Casalino [3].  

ISOM TEST-CASE 
 

 Firstly, the Isom [5] test is reviewed. It has been 
shown that if a constant aerodynamic load 2

00cρ  is applied over 
a moving surface, then generated thickness noise and loading 
noise could be equal. This assumption can be demonstrated 
applying the wave operator at the generalized function 

[ ])(12
00 fHc −ρ  that is always equal to zero out of the surface 

defined by 0=f . Then, 
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the mathematical form of thickness noise, left side, and loading 
noise, right side, are recognized. A more complete 
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demonstration can be found in [5, 12]. This analytical result is 
not always exact when applied numerically due to the 
differences of robustness in the integration of the two noises. 
This difference is affected by several geometrical and physical 
parameters of which the influence is not well studied.  

A conventional rotor has been defined for the Isom’s 
test case. The same helicopter rotor as defined by Farassat to 
study the Isom’s case is used in this work. It is composed of 2 
blades, Figure 1, of 4 m spanwise length for an external 
diameter of 10 m. The blades are symmetrical biconvex airfoil 
with a 10% thickness ratio (a NACA0010 profile is used in this 
work). The main chord is equal to 0.4 m.  

 

 
a) 

 
b)  

Fig. 1: a) Used blade geometry b) Zoom on the tip, the 
thickness ratio is decreasing at the extremities of the blade.  

 
In their first calculations, Farassat et al. [13] did not 

take into account the tips and the inner faces and the results did 
not agree with the theory. Then, they found that blade tip is an 
effective noise generation area when Isom’s thickness noise 
formulae was studied [14]. This being corrected, a non 
negligible discrepancy remained especially at low tip Mach 
numbers. Their first idea was to refine the grid at the inner and 
outer radii of the blade. Thus, the quality of the results is 
improved. Last amelioration consists in decreasing the 
thickness ratio at the extremities of the blade, as shown in 
Figure 1. Once these ameliorations done, the result is excellent. 
Here appears the need of studying effect of these criteria. They 
will depend on the accuracy of the program computing the 
formulation F1A and are not unique. They will traduce the 
robustness of the program. Firstly, the results obtained for 0.4 
and 0.8 tip Mach number with the code developed during this 
study for the blade shown in figure 1. are presented in figure 2. 
The observer is located in the rotation plane at 50 m away from 
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som and monopole noise. 
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Fig. 2 : Acoustic pressure signatures for a two-bladed rotor, a) 
Tip Mach number 0.4 b) Tip Mach number 0.8 . 

EFINITION OF THE ERROR 
 

In order to compare the results obtained when 
arameters are varied, an accurate definition of the error is 
equired. This definition must allow for studying the Mach 
umber, the time step, and the source-observer distance effects. 
or Isom’s test case, two sets of values must be compared Lp~  
nd Tp~  whereas, for Tam’s benchmark, the comparison is 
arried out between analytical and numerical solutions. The 
elative error Er takes into account the differences of scales 
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(magnitude), its definition for the comparison of loading and 
thickness noises at each time step is: 
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In order to evaluate the discrepancy between two curves, the 
error considered is the arithmetical mean of the time relative 
errors: 
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TIME STEP AND ORDER OF THE DERIVATION 
 

 The first parameter studied is the number of time steps 
per one rotation period. Figure 3. presents the mean relative 
error depending on the number of time steps used in the 
computation. The previous geometry is kept with the same 
mesh grid, the observer is in the rotation plane, and only the 
number of time steps per one rotation period is varied. Two 
differentiation algorithms used in the computation of L&  are 
compared: second order (RK 2) and fourth order Runge Kutta 
equidistant derivation scheme (RK 4), the tip Mach number is 
fixed here to 0.8.  
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Fig. 3: Time step and order of the derivation. 

 
The error is decreasing when the number of time steps per one 
rotation period is increasing. For the presented configuration, 
512 time steps are sufficient to give a minimal error. This value 
is used for all the following computations. Although the order 
of the scheme used is not relevant in this case, the fourth order 
Runge Kutta equidistant derivation scheme is kept for the rest 
of computations. For practical configurations, carrying out this 
test should give the minima of the number of time steps needed 
to have a possible accurate acoustic solution. 
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OURCE-OBSERVER DISTANCE 
 

The parameter considered here is the source-observer 
stance. Even if theoretically the formulation F1A is adequate 
 predict aeroacoustic noise in near-field domain, as noticed in 
rassat [10], the numerical results are sensitive to source-
server distance.  
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Fig. 4: Absolute error function of the source-observer 

distance. 

 
In figure 4, the absolute error depending on the source 

server distance is presented. The discrepancies decrease 
hen the observer is in the far field. When the mean relative 
ror rE  is considered, figure 5, although a minimum is 
ticed around 250 m, the discrepancy between loading noise 
d thickness noise is nearly not varying in relative value 

aying between 0.54 and 0.57%.  
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Fig. 5: Relative error rE  over the source observer distance. 
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In other terms, the integrals in 1/r (far field domain) and 1/r² 
(near field domain) are estimated with the same accuracy. 
Source-observer distance is not a source of error and presented 
numerical scheme describes far field domain noise generation 
as well as near field confirming the adequacy to predict the 
aeroacoustic noise in near-field domain. 

DIRECTIVITY 
 

 In order to study the directivity, the observer is located 
at 50 m away from the rotation centre and the angle defined by 
observer position vector and the rotation plane is varied, 0° 
angle corresponds to observer position at the rotation plane. 
The tip Mach number is fixed to 0.8. The number of time steps 
per rotation period is 512. Figure 6. a) shows the maximum of 

Tp~   and Lp~  over one period depending on the rotation angle. 
The directivity feature shows a dipolar character.  
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Fig. 6: Directivity of the maximum of isom and thickness 
noise Tp~  and Lp~  over one period a) [Pa] b) dB, pref=2 10-5 Pa 
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Acoustic pressures found are maxima in the rotation 
ane. On other hand, the acoustic pressure is minima along the 
tation axis. In the rotation axis, the tangential aerodynamics 
rces are not responsible on noise emission in the axis. Only 
e axial forces can generate noise in the rotation axis. 

The look at the relative error depending on the angle 
ir, figure 7, brings out that the regions with maximum relative 
ror are those with the minimum acoustic pressures. For some 
lues of θdir, Er  is nearly equal to 1, that means near the 
tation axis, the error is significant. One could think that the 
rge error shown in figure 7 at rotation axis has no real 
gnificance in that the acoustic pressures at these locations are 
arly zero, figure 6 a). However, the look at acoustic pressure 
vels, figure 6 b), illustrate that these errors are physically 
nsistent; the range of the pressure levels are important. 
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Fig. 7: Directivity of the mean relative error rE . 

ACH NUMBER 
 

As noticed by Farassat [10], for subsonic motions, the 
screpancy between Isom’s noise and thickness noise 
creases when Mach number is decreasing. A good illustration 
 given on figure 8 for 0.2 tip Mach number. The used 
rameters are the same as those in computing of the results for 
4 and 0.8 Mach numbers (figure 2). 
of Use: http://www.asme.org/about-asme/terms-of-use
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Fig. 8: Acoustic pressure signatures for a two-bladed rotor, tip 

Mach number 0.2 . 

 The evolution of the relative error depending on the 
Mach number is represented in figure 9,. The mean relative 
error decreases when the Mach number is increasing. This 
result suggests that the mesh grid has to be refined near the 
regions moving at low Mach number, i-e near the inner radius. 
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Fig. 9: Mean relative error rE  over tip Mach number. 

 
 
TAM TEST CASE 

 
 The second test case studied in this work has been 
provided by Tam [6]. It is the exact solution of the linearized 
Euler equations for the first harmonic of the noise produced by 
a specific distribution of forces. This test has been described in 
the third CAA benchmark problems workshop [7]. The 
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ometrical configuration is shown in figure 10: the rotor is 
m long and its radius is 1m.  

 
 

Fig. 10: Tam’s open rotor. 
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where 
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    (16) 
and θcosΩ= mks .  
It is to highlight that in equation (13) from reference [5], 
giving )( SkA , there is an error certainly typographical: instead 
of θsinΩm  it is written as θsinmR . The directivity D(θ) in 
spherical coordinates is defined as : 
 

( )SR
kAtRpR 222 2,,~ lim  )D( =),(=

∞→
ϕθθ  (17) 

The over-bar denotes the time average. In order to test the code 
based on the FWH equation, Tam’s benchmark problem was 
adapted by Hirsch et al [4, 15] by removing the harmonic 
exponential dependence of the blade force. A new blade force 
was defined as : 
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ϕϕ
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ϕ

 (18) 

The aerodynamic forces defined in equation (18) are 
substituted in the loading noise sources of formulation 1A. The 
first harmonic of the computed solution should be identical to 
Tam’s analytical solution. Firstly, the results given by Tam [6] 
are reproduced by the acoustic solver developed in this work. 
As the problem is axisymmetric about the x axis the 
computational domain is defined in the r-x plane as -0.8 ≤ x  ≤ 
0.8 and 0 ≤ r ≤ 1. The blade surface is discretized into equally 
spaced points (40 points along x axis × 25 points along r axis). 
Figure 11. shows the results obtained for Ω = 0.85 at R = 100 
m. On figure 11. a) is represented the computed dipole far-field 
acoustic pressure with F1A at (θ = 90° and R = 100 m, Ω = 
0.85). 
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g. 11: Results for Ω = 0.85: a) Computed dipole acoustic 
ssure with F1A, b) Computed first harmonic signal with 
A compared to Tam’s analytical solution, equation (15). c) 
mputed first harmonic directivity with F1A compared to 
m’s analytical solution, equation (17). 

e first harmonic of this signal is compared to Tam’s 
alytical solution on figure 11 b). The computed directivity of 
 first harmonic is presented on figure 11 c). The results are 

reeing perfectly. This suggests that the numerical method 
dicts the dipole noise accurately at Ω = 0.85. 

The same results are presented in figure 12. 
6.0=Ω . Some discrepancies are noticed and the 

ncordance is less significant. These results reinforce those 
tained in studying the Mach number effect for Isom’s test 
se. 
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c)           
Fig. 12: Results for 6.0=Ω : a) Computed dipole 
acoustic pressure with F1A, b) Computed first harmonic 
signal with F1A compared to Tam’s analytical solution. 
c) Computed first harmonic directivity with F1A 
compared to Tam’s analytical solution 
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CONCLUSION :  
 
Development of the J.E. Ffowcs Williams and D.L. Hawkings 
analogy is carried out. The acoustic solver is based on the 
integral retarded time of Formulation 1A developed by 
Brentner and Farassat. The retarded-time integrals are 
approximated by mid-panel-quadrature algorithm. They are 
calculated with the source time regarded as the primary time 
(i.e., dominant). The second then the fourth order Runge-Kutta 
equidistant derivation are used for the evaluation of 
aerodynamic loadings. An interpolation of the acoustic pressure 
at the reception time is performed with spline algorithm so that 
the contributions from all source panels are summed at the 
same observer times. 
A parametrical study of the relevant criteria is carried out based 
on the Isom’s and Tam’s test cases. In order to compare the 
results obtained when parameters are varied, a relative average 
error definition is introduced. This definition allowed for 
studying the effects of Mach number, the time step, and the 
source-observer distance. For Isom’s test case, thickness noise 
is compared to loading noise whereas, for Tam’s benchmark, 
the comparison is performed between analytical and numerical 
solutions.  
The same helicopter rotor as defined by Farassat to study the 
Isom’s case is used. The obtained results show that the error is 
decreasing when the number of time steps per one rotation 
period is increasing. For the presented configuration, 512 time 
steps are sufficient to give a minimal error for 0.8 tip Mach 
number. For practical configurations, carrying out this test 
should give the minima of the number of time steps needed to 
have a possible accurate acoustic solution. 
Even if theoretically the formulation F1A is adequate to predict 
the near-field aerodynamic noise, the numerical results are 
sensitive to source-observer distance. The absolute error 
decrease when the observer is in the far field. However, the 
discrepancy between loading noise and thickness noise is 
nearly not varying in relative values. In other terms, the 
integrals in 1/r (far field domain) and 1/r² (near field domain) 
are estimated with the same accuracy. 
The directivity feature shows a dipolar character. Acoustic 
pressures found are maximum in the rotation plane. On other 
hand, the acoustic pressure is minima along the rotation axis. In 
the rotation axis, the tangential aerodynamics forces are not 
responsible on noise emission in the axis. Only the axial forces 
can generate noise in the rotation axis. 
The mean relative error decreases when the Mach number is 
increasing. This result suggests that the meshgrid has to be 
refined near the regions moving at low Mach number. 
The analysis is then extended to the Tam’s test case. The results 
are agreeing perfectly in case of Ω = 0.85. Whereas, for Ω = 
0.6, some discrepancies are noticed confirming that the errors 
increase when tip Mach number is decreasing. 
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