
LLNL-CONF-421451

Link Homophily in Application
Layer and its Usage in Traffic
Classification

B. Gallagher, M. Iliofotou, T. Eliassi-Rad, M.
Faloutsos

December 15, 2009

2010 IEEE INFOCOM Conference
San Diego, CA, United States
March 15, 2009 through March 19, 2009

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Link Homophily in the Application Layer and its
Usage in Traffic Classification

Brian Gallagher∗ Marios Iliofotou† Tina Eliassi-Rad∗ Michalis Faloutsos†
∗Lawrence Livermore National Laboratory †University of California Riverside

{bgallagher, eliassi}@llnl.gov {marios, michalis}@cs.ucr.edu

Abstract—This paper addresses the following questions. Is
there link homophily in the application layer traffic? If so, can
it be used to accurately classify traffic in network trace data
without relying on payloads or properties at the flow level? Our
research shows that the answers to both of these questions are
affirmative in real network trace data. Specifically, we define
link homophily to be the tendency for flows with common IP
hosts to have the same application (P2P, Web, etc.) compared
to randomly selected flows. The presence of link homophily in
trace data provides us with statistical dependencies between flows
that share common IP hosts. We utilize these dependencies to
classify application layer traffic without relying on payloads or
properties at the flow level. In particular, we introduce a new
statistical relational learning algorithm, called Neighboring Link
Classifier with Relaxation Labeling (NLC+RL). Our algorithm has
no training phase and does not require features to be constructed.
All that it needs to start the classification process is traffic
information on a small portion of the initial flows, which we
refer to as seeds. In all our traces, NLC+RL achieves above
90% accuracy with less than 5% seed size; it is robust to errors
in the seeds and various seed-selection biases; and it is able to
accurately classify challenging traffic such as P2P with over 90%
Precision and Recall.

I. INTRODUCTION

Homophily, a concept from social sciences, asserts that
similar entities tend to be related to one another. This work
investigates the existence of homophily in application-layer
traffic and its use in traffic classification. Specifically, we
define link homophily to be the tendency for flows with
common IP hosts to have the same application compared to
randomly selected flows; and measure it on a network-wide
trace graph. Given a network trace, we create a graph by
representing individual IP hosts as nodes and communication
flows between hosts as links. The application of a particular
flow (e.g., P2P, SSH, Web, etc.) is then represented as a
label on that link in the graph. Figure 1 depicts a pictorial
representation of a partially labeled trace graph. Given such
a graph, we measure link homophily by iterating over the
set of links with known labels and computing the proportion
of neighboring links that have the same application. In our
experiments, we observe that link homophily exists in a variety
of real network traces. Armed with this knowledge, we utilize
the statistical dependencies between flows that share common
IP hosts to classify application layer traffic without relying
on payloads or properties at the flow level. This relational
view of traffic classification treats the problem as information
dissemination over the network-wide trace graph.

A

?
?

?

P2P

?

Web

Web

P2P
P2P

Web

?

?
?

x

y

Fig. 1: Relational view of application classification. Nodes in the
trace graph represent IP hosts and links represent network flows
between hosts. The application class of some flows are initially known
(these are the seeds), while others are unknown. Our goal is to use
the initial seeds in order to infer the labels of all unknown links in
the graph.

We propose a relational classifier, called Neighboring Link
Classifier with Relaxation Labeling (NLC+RL), that takes
as input a partially labeled trace graph (see Figure 1) and
accurately identifies applications for all the unknown flows.
We can obtain partial labels (a.k.a. seed information) in a
variety of ways. Section V details different ways of obtaining
seed information. NLC+RL is robust to small quantities of
seeds and to errors and biases in seed labels (see Section IV-B).

The main contributions of our work are as follows. (1) We
define link homophily on network-wide trace graphs, where
(on average) links with a common endpoint tend to have the
same application classes compared to randomly selected links;
and show that real trace graphs exhibit link homophily. (2) We
propose a new algorithm, NLC+RL, for traffic classification,
based on techniques from the field of statistical relational
learning. (3) We demonstrate the effectiveness of NLC+RL on
both backbone and access-link traces. Our method achieves
over 90% accuracy with fewer than 5% of flows initially
labeled; and can classify P2P traffic (a challenging task) with
over 90% Precision and Recall. (4) We show that our method
is robust to: (a) errors introduced by the initial seed flows,
achieving 80% accuracy with a seed error rate of 50% and (b)
seeding biases at the host- and application-level.

Our work in perspective. By posing the traffic classification
problem as a relational learning task on a trace graph, we
open the door for powerful tools from statistical relational
learning and graph mining, to be used for this problem.
Exploiting relational dependencies among IP hosts (such as
link homophily) enables us to overcome traffic obfuscation
and not rely on payloads or properties at flow level.

2

A

D

B

X

C

E

Fig. 2: Neighboring links of X are A, B, C, D, and E because they
share a common endpoint.

II. LINK HOMOPHILY IN APPLICATION LAYER TRAFFIC

Before defining link homophily, we need to define the term
neighboring links. We consider two links (i.e. flows) to be
neighbors if and only if they share a common node (i.e. IP
host). Figure 2 provides a pictorial view of neighboring links.

A. What is link homophily?

The term homophily (love of the same) was coined in
the 1950s by sociologists. In the context of application layer
traffic, we define link homophily as the tendency for neigh-
boring links to have (on average) the same labels compared to
randomly selected links. In other words, link homophily states
the following:

P (label(l1) ≡ label(l2) | neighboring links(l1, l2)) >
P (label(l1) ≡ label(l2) | random selection(l1, l2))

We measure link homophily by iterating over the set of links
with known applications in a trace graph and computing what
proportion of neighboring links have the same application.
Table I reports the pseudo-code for computing link homophily
per application on a graph.

LinkHomophily(G):
/∗ initialize homopilyPerClass array ∗/
for each application class c ∈ C do

homophilyPerClass[c] = 0;
end for
/∗ compute link homophily ∗/
L = G.labeledLinks;
for each labeled link l ∈ L do

N = l.neighboringLinks;
homophily[l] = count(∀n∈N :label(l)≡label(n))

|N| ;
homophilyPerClass[label(l)]+ = homopily[l];

end for
/∗ normalize link homophily per application class ∗/
for each application class c ∈ C do

homophilyPerClass[c] = homophilyPerClass[c]
count(∀l∈L:label(l)≡c)

;

end for

TABLE I: Pseudo-code for computing link homophily on a trace
graph, G.

B. Do trace graphs exhibit link homophily with respect to
application layer traffic?

To check whether real trace graphs exhibit link homophily,
we examined two internet backbone traces and two access-link
traces. The backbone traces are: (1) from a Tier-1 ISP link

Application App PAIX WIDE ENTP KEIO
P2P 1 1 0.83 0.87
Web 0.98 0.98 0.83 0.91
DNS 0.97 0.97 0.97 0.96
Chat 0.91 0.91 0.40 0.59
Mail 0.86 0.86 0.35 0.60

SNMP 0.85 0.85 0.76 0.89
FTP 0.75 0.72 0.52 0.79
SSH 0.21 0.26 0.35 0.66

TABLE II: Link homophily per application type: Probability of a
random App link having a neighboring link of type App

Application App PAIX WIDE ENTP KEIO
P2P 0.31 0.01 0.02 0
Web 0.25 0.05 0.33 0.20
DNS 0.16 0.33 0.22 0.47
Chat 0.02 0 0.01 0
Mail 0.03 0.03 0 0.08

SNMP 0 0 0.04 0
FTP 0 0 0 0
SSH 0 0 0 0

TABLE III: Prior probability per application type: Probability of a
random link of any type having a neighboring link of type App

(PAIX) and (2) from a transpacific link (WIDE). The access-
link traces are: (1) from the border router of an enterprise
network (ENTP) and (2) from a University in Korea (KEIO).
These traces represent a diverse set of network environments,
collected at different geographic locations and times. Sec-
tion IV-A1 describes these traces in details.

Tables II and III, respectively, report link homophily per
application type and prior probability per application type for
all four traces. In all traces (whether backbone or access-link)
and for all eight of our application types, link homophily is
much higher than prior probability. For example, in the PAIX
backbone trace the probability of a randomly selected Chat
link having a neighboring link of type Chat is 0.91, while
the probability of a randomly selected link of any traffic type
having a neighboring link of type Chat is 0.02.

C. What are the origins of link homophily in application layer
traffic?

We discuss the origins of link homophily by dividing the
applications into two significant types: (a) client-server and (b)
collaborative. In client-server applications, we expect to see
“stars” in the graph: a server surrounded by clients. Clearly,
these flows share a node and are of the same application, thus
contributing to link homophily. In collaborative applications
(such as P2P), nodes connect with multiple collaborators since
the power of these applications rely on rich connectivity.
This behavior also supports the observed link homophily.
In addition to P2P, the same argument holds for distributed
communities, some online games, and semi-structured and
hierarchical applications such as DNS. We observed link
homophily even in hosts with many different applications.
Moreover, link homophily is often asymmetric, where one end-

3

point exhibits higher link homophily than the other endpoint.

III. USING LINK HOMOPHILY IN TRAFFIC
CLASSIFICATION

The presence of link homophily in trace data provides us
with statistical dependencies between flows that share common
IP hosts. We propose a new statistical relational learning algo-
rithm, called Neighboring Link Classifier with Relaxation
Labeling (NLC+RL), which utilizes these dependencies to
classify application layer traffic without relying on payloads
or properties at the flow level. Specifically, NLC+RL takes
as input a partially labeled trace graph and infers labels for
the unlabeled links by exploiting link homophily. NLC+RL is
an adaption of the simplest and fastest available node-based
relational classifiers [1] for the task of link classification.

The Neighboring Link Classifier (NLC) in NLC+RL
assigns a label to each unlabeled link, u, based on the class
frequencies observed in the set of u’s neighboring links.
To prevent unduly favoring nodes with many links, NLC
calculates the neighboring class frequency for each of u’s
endpoint nodes separately and then averages the two.

When an unlabeled link u has no neighboring links that
are labeled, NLC will end up with no label for u (because
P (label(u) ≡ c|u) = 0 for all applications c). In such cases,
we use the prior probability distribution observed in the initial
set of labeled links to assign application probabilities to u –
i.e., P (label(u) ≡ c|u) = Pprior(c| initial set of labeled links)
for all applications c. We then select the label with the highest
probability.

Table IV outlines the pseudo-code for NLC. For each
unlabeled link, the output of NLC is a probability distribution
over the application classes – i.e., ∀u ∈ U & ∀c ∈ C :
P (label(u) ≡ c|u), where U is the set of unlabeled links
in the trace graph and C is the set of application classes
that we want to classify (e.g., C = {P2P, DNS, Web, Chat,
SNMP, FTP, SSH, Mail}). To obtain a classification for an
unlabeled link, we select the application with the highest
probability on that unlabeled link: ∀u ∈ U : label(u) =
argmaxc∈C(P (label(u) ≡ c|u)).

NLC+RL is essentially a systematic method to repeat NLC
multiple times in order to improve classification performance
when seed information is scarce. In particular, NLC+RL
augments NLC with linked-based collective classification by
using the relaxation labeling (RL) algorithm [2].Linked-based
collective classification refers to the combined classification
(i.e., simultaneous inference) of a set of neighboring links.
Two types of information are utilized in linked-based collective
classification: (1) correlations between the label of link l and
the known labels of its neighboring links, and (2) correlations
between the label of link l and the unknown labels of its
neighboring links.

For each unlabeled link in the partially labeled trace graph,
RL maintains a current estimate of the probability distribution
over the set of application classes C that we are interested
in. Initial probability estimates are assigned as follows. For
each labeled link, RL assigns a probability of 1.0 for the

NLC(G):
L = G.labeledLinks; /∗ | L |> 0 ∗/
U = G.unlabeledLinks;
for each unlabeled link u ∈ U do

N = u.labeledNeighboringLinks;
Ns = u.labeledNeighboringLinksFromSrc;
Nd = u.labeledNeighboringLinksFromDst;
if (| N ′ |> 0) then

ps = count(∀n∈Ns&∀c∈C:label(n)≡c)
|Ns| ;

pd = count(∀n∈Nd&∀c∈C:label(n)≡c)
|Nd|

;
P (c|u) = 1

2
(ps + pd);

else
P (c|u) = count(∀l∈L&∀c∈C:label(l)≡c)

|L| ;
end if

end for

TABLE IV: Pseudo-code for Neighboring Link Classifier (NLC).
Here ep(u) is the set of endpoint nodes of link u.

NLC+RL(G):
L = G.labeledLinks;
U = G.uniqueUnlabeledLinks;

/∗ initialize probability estimate for labeled links ∗/
for each labeled link l ∈ L do

P0(c|l) = 1 if label(l) ≡ c;
P0(c|l) = 0 otherwise;

end for

/∗ initialize probability estimate for unlabeled links ∗/
for each unlabeled link u ∈ U do

P0(c|u) = count(∀l∈L&∀c∈C:label(l)≡c)
|L| ;

end for

/∗ update probability distributions of unlabeled links ∗/
repeat

for each unlabeled link u ∈ U do
∀c ∈ C :
Pt+1(c|u) =

βt+1 ·NLC〈t,u,c〉(G) + (1− βt+1) · Pt(c|u)
end for

until (t ≡ 99)

TABLE V: Pseudo-code for Neighboring Link Classifier with Re-
laxation Labeling (NLC+RL). NLC〈t,u,c〉(G) outputs the probability
P (label(u) ≡ c|u) computed by NLC after iteration t’s updates on
the graph G. The simulated annealing parameters are: β0 ∈ [0, 1];
βt+1 = βt · α; and α is a decay constant. For our experiments, we
used the standard values of α = 0.99 and β0 = 1; and found t = 99
iterations sufficient for convergence.

link’s (application) label and a probability of 0.0 for all
other (application) labels. For each uniqueunlabeled link, RL
assigns the prior probability distribution observed in the initial
set of labeled links. Then, each unlabeled link’s probability
distribution is updated t times. On each iteration, NLC is used
to update the probability distributions of links, based on the
current assignments of their neighboring links. In other words,
RL stores probability estimates at iteration t and updates
estimates for all links at iteration t+1. Since each link in the
graph has an associated probability distribution over the set of

4

applications C (instead of a hard label assignment), NLC will
sum the probabilities of each application for each neighboring
link instead of simply counting labels of each application. To
catalyze convergence, we perform simulated annealing [1].
Table V outlines the pseudo-code for NLC+RL. Like NLC,
we obtain a classification for an unlabeled link by selecting
the application with the highest probability on that unlabeled
link: ∀u ∈ U : label(u) = argmaxc∈C(P (label(u) ≡ c|u)).

IV. EXPERIMENTS ON TRAFFIC CLASSIFICATION

A. Experimental Design

1) Data Sets: We evaluate NLC+RL on four real-world
traces. Two traces are collected at the internet backbone,
from a Tier-1 ISP link (PAIX) and from a transpacific link
(WIDE). The access-link traces are collected at the border
router of an enterprise network (ENTP) and from a University
in Korea (KEIO). These traces represent a diverse set of
network environments (backbone and access-link), collected
at different geographic locations and points in time.

Table VI lists the distribution of flow-types for each of
the four traces. We define a flow using the well-known 5-
tuple 〈srcIP, srcPort, dstIP, dstPort,protocol〉.
Bidirectional flows are represented as undirected links in the
trace graph and are reported as single flows in Table VI. All
our traces contain payload information, thereby enabling us to
label the flows using signature-matching techniques described
in [3] and later enhanced in [4]. For each traces, we classify
traffic into approximately 15 traffic categories. In Table VI, we
report detailed statistics for the following eight main classes:
DNS, Chat, FTP, Mail, P2P, SNMP, SSH, and Web. These
8 classes represent the majority of the known traffic as we
show in Table VI. The remaining classes (reported as Rest
in Table VI) include network games and other applications
that contribute less to the overall traffic. In our evaluation,
we include all classes in the trace graph. From our analysis
we removed all flows that did not carry any payload. Such
flows represent worm scanning activity and other failed TCP
connections [3], [4].

a) Backbone Traces: PAIX: This data set was collected
from an OC48 link of a commercial US Tier-1 ISP at the
Palo Alto Internet eXchange (PAIX), connecting San-Jose with
Seattle. For the experiments shown here, we used a temporal
30-second sample collected from 18:00 to 18:00’30 during
April 21st 2004. We also tested our methods with other 30-
second samples, which produced similar classification results.
More details regarding the sample duration are provided in
Section V. The monitor captured traffic from both directions
of the traffic link. In addition, the data set contains up to
16 bytes of payload from each packet. WIDE: This trace
is collected from a transpacific backbone link connecting the
US with Japan and carries commodity traffic of the WIDE
member organization. For the experiments show here we used
a temporal 5-minute sample collected from 22:45 to 22:50
on the March 3rd 2006. The trace contains traffic from both
directions of the link. For each packet, it contains full packet
header and 40 bytes of payload.

Backbone Traces Access Link Traces
PAIX WIDE ENTP KEIO

Application Traffic Mix
P2P 76055 893 3780 79

(31%) (1%) (2%) (0%)
Web 62860 5877 88883 6868

(25%) (5%) (33%) (20%)
DNS 39387 39532 58158 16498

(16%) (33%) (22%) (47%)
Chat 4794 734 1953 140

(2%) (0%) (1%) (0%)
Mail 6987 2973 1307 2958

(3%) (3%) (0%) (8%)
SNMP 94 9 10485 52

(0%) (0%) (4%) (0%)
FTP 152 46 864 2

(0%) (0%) (0%) (0%)
SSH 18 2 509 7

(0%) (0%) (0%) (0%)
Rest 9215 543 1942 352

(4%) (0%) (1%) (1%)
Unknown 47442 68946 99954 8372

(19%) (58%) (37%) (24%)
Trace Graph Information

Year 2004 2006 2007 2006
#Nodes 171641 101264 57285 24994
#Links 247004 119553 266878 35328

% in LCC 87% 90% 99% 91%
Duration 30 seconds 5 minutes 1 hour 5 minutes

TABLE VI: Summary of our backbone and access-link traces.

b) Access-Link Traces: ENTP: This data was collected
at the perimeter of an access-link network over a five-day
period in 2007. For our experiments, we use a temporal sample
of the data, collected between 10 AM and 11 AM on the third
day of the capture. This hour was one of the busiest during the
five-day period. KEIO: This trace was collected from a link
inside Keio University Shonan-Fujisawa campus during 2006.
For our experiments, we use a temporal 5-minute sample of
the data, collected on August 10th from 1:20AM to 1:25AM.
This trace also contains detailed packet header information as
well as the first 40 bytes from each packet.

For all four of our traces (PAIX, WIDE, ENTP, and KEIO),
we tested NLC+RL with other temporal samples. The outcome
in terms of classification performance were similar.

2) Trace Graphs: For each data set, we create a trace
graph with nodes representing hosts (IP addresses) and links
representing communications (flows) between hosts, as shown
in Figure 1. Our trace graphs allow multiple links between two
nodes (see Figure 2) given that each link represent a different
flow (i.e., uses different port numbers or protocol).

The graph sizes are listed in Table VI as number of nodes
and links. The size of the Largest Connected Component
(LCC) in the graph is reported as the percentage of flows
that belong to it. From Table VI, we see that there is one
large connected component that contains the majority of links
(> 87%) in the graph. All connected components of the graph

5

contain a diverse mix of links from various applications.
Since NLC+RL is not applicable to communications in

isolation, we remove such links from the trace graph. Isolated
communication-links do not have any neighboring links during
the observation interval (i.e., both of their end-hosts do not
communicate with any other hosts). These isolated links are a
very small portion of the entire graph (< 1% for all traces).
Section V provides more details on these links.

3) Obtaining Seed Information: To start the classification
process, our method requires a small amount of seed informa-
tion (which is common in supervised learning approaches). In
order to obtain seed labels for our experiments, we emulate the
existence of a seed provider, using a payload-based signature-
matching method similar to previous works [5], [3], [6]. It
compares the payload of each packet to a predefined set
of signatures for application-layer traffic such as P2P, DNS,
Games, Chat, Web, Mail, etc. Traffic that does not match the
predefined set of signatures is labeled “unknown.”

It is important to note that our approach is not tied to
any particular seed provider (see Section V for details). In
Sections IV-B2 and IV-B3, we present results that show the
robustness of NLC+RL to biases and errors in seed labels.

4) Experimental Methodology: For all of our results, the
basic experimental setup is the same: we run 10 trials and re-
port the average performance. The details of our experimental
methodology are as follows.

For evaluation purposes only, we need ground-truth on the
flows in our trace data, which we obtain using the payload-
based signature-matching method described in Section IV-A3.
We assume this method informs us of the “true” application
of a flow. However, since it is signature-based, the payload
classifier is unable to classify every flow in a trace graph.
Flows with unknown applications are still included in the
trace graph, allowing them to propagate traffic information,
and NLC+RL will provide labels for all flows in a network.
However, we can only evaluate the performance of NLC+RL
on the known portion of the traffic.

To test NLC+RL, we vary the number of labeled links
(i.e., the initial seed). Specifically, we vary the proportion
of links that have seed labels from 1% to 90% of the total
number of links in the trace graph. Only these links retain
their labels. All remaining links have their labels stripped and
are used to evaluate the classifiers’ performances. We refer to
the proportion of links that have seed labels as Seed Size, s.

For each seed size, we run 10 trials and report the average
performance. For each trial and seed size, we choose a class-
stratified random sample containing s% of the total links in
the graph. These links retain their labels. All other labels are
removed. We then evaluate on all unlabeled links for which
ground truth is available. To be fair across classifiers, we use
identical labeled- and unlabeled-link splits for each classifier.
We evaluate classifier performance using the standard metrics
of Accuracy (ACC), Precision (P), Recall (R), and F1-score
(the harmonic mean of Precision and Recall).

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0.01 0.05 0.1 0.25

A
cc

ur
ac

y

Seed Size

PAIX WIDE ENTP KEIO

Fig. 3: Accuracy of NLC+RL over all 4 traces.

B. Experimental Results

Here, we present experiments that answer these questions:
• Q1: Can NLC+RL perform well even with limited seed

information? Answer: Yes, even with only 5% of links
labeled, NLC+RL achieves over 90% accuracy.

• Q2: How is the per-class performance of NLC+RL?
Answer: NLC+RL performs very well over a large range
of application classes. Even for challenging applications,
such as P2P, it can achieve over 95% F1-score with 20%
initial seed over all four traces.

• Q3: How sensitive is NLC+RL to errors made by the seed
provider? Answer: Even with 50% erroneous seed links,
NLC+RL can still achieve 80% classification accuracy
over the remaining links.

• Q4: How sensitive is NLC+RL to biases in the selection
of initial seed when: (a) we know nothing for some hosts
and everything about others (host-biased seeding), and
(b) we know all the flows for some applications, e.g.,
DNS, but have only a limited knowledge for others, e.g.,
P2P (application-biased seeding)? Answer: NLC+RL’s
performance is robust to both types of seeding biases.

• Q5: Can NLC+RL accurately classify traffic of hosts with
multiple applications? Answer: Yes. NLC+RL represents
associations at the flow-level and not at the host-level.
This allows different flows of a single host to have
different neighborhoods and therefore be associated with
different applications.

We report results on NLC+RL and a Default classifier.
The Default method classifies flows by only using the prior
probability distribution on traffic mix obtained from the seed
labels. For example, by looking at Table VI, we observe that
the prior probability of a traffic being P2P in PAIX is 31%.
Intuitively, the Default method shows how easy or hard is
the classification task at hand. For example, if 99% of the
flows are Web, by just predicting Web for all flows we achieve
0.99 accuracy. We also report comparative results with BLINC,
CoralReef, and a SVM flow-based classifier.

1) Classification Performance with Limited Seed Data and
per Application: Figure 3 depicts the accuracy of NLC+RL for

6

all four traces. NLC+RL performs very well given modest
seed sizes – e.g., its accuracy is above 90% when seed size
is greater than or equal to 5%.

NLC+RL performs well across the range of application
classes examined in our data sets. This is particularly
important for applications such as P2P, which can be more
challenging [7], especially at the backbone [4]. Figure 4
summarizes our results. For brevity we will report only one
example of each category (backbone and access-link) given
that the other results are qualitatively similar. We will refer to
individual traces to highlight any differences.

For the PAIX trace, Figure 4a reports F1 scores for
NLC+RL. We observe that even with a small seed size,
NLC+RL has a very good classification performance for the
dominant applications in our traces: P2P, Web, and DNS. The
F1 score of all three dominant applications is over 0.9 even
with 10% seed size. The exception is NLC+RL’s performance
on SSH, which can be attributed to the extremely small number
of SSH flows (18 flows) in this backbone trace (<0.01% of
the total flows).

For the ENTP trace, Figure 4b reports F1 scores for
NLC+RL. It is interesting to observe that the traffic types
appear to divide naturally into two sets: a higher performance
set (HP), made up of P2P, DNS, FTP, SNMP, and Web traffic,
and a lower performance set (LP), comprised of Mail, SSH,
and Chat traffic. NLC+RL achieves better F1 scores across the
board on the HP set than the LP set. Furthermore, as the seed
size drops, the gap in performance between HP and LP grows.
Note that this difference in performance is due to differences
in both Precision and Recall, although the differences in Recall
are larger overall. So, when NLC+RL makes mistakes, it tends
to be misclassifications of Mail, SSH, and Chat traffic, which
have the most class heterogeneity among their neighboring
links. For these classes, we may benefit from more sophisti-
cated algorithms, which learn statistical dependencies between
neighbors instead of simply relying on link-homophily [8].

In both traces, NLC+RL gives very good results for chal-
lenging application such as P2P and games. With only 5% seed
size, NLC+RL achieves above 95% Precision and Recall in
identifying the 3,500 flows of the HalfLife online game present
in the PAIX trace. Using 5% seed size, NLC+RL also classifies
P2P flows with above 91% Precision and 98% Recall. Kim et
al. [4] reported that BLINC achieved less than 5% Recall on
identifying HalfLife, and 78% Precision with 83% Recall in
identifying P2P on the same backbone trace.

2) Robustness to Seed Provider Errors: To test the robust-
ness of NLC+RL to errors made in the seed labels, we run
the following procedure. We take the seed labels provided
by payload-based signature-matching method and alter them
separately for each of the 10 trial runs. The reported seed
provider’s accuracy is 1.0 − p, where p is the probability of
alteration for each known label. Each link has a probability
p of being altered on a given trial run. If a label is selected
for alteration, its original value is removed and a new value is
assigned at random, based on the frequency of occurrence of
each label in the original set of seed labels. So, more frequent

labels are more likely to be assigned to an altered label, but the
process is stochastic. (The original label is never re-assigned
to an altered label. Otherwise, this would not be an error.)

NLC+RL is robust to errors in seed information, even
when those errors are up to 50%. Figure 5a shows the
performance of NLC and NLC+RL on the PAIX trace when
there are errors in the underlying seed provider. Results for
the ENTP trace are shown in Figure 5b. We observe that both
relational classifiers are quite robust to seed provider’s errors.
Also, the accuracy of both classifiers falls off more slowly
than the accuracy of the seed provider. Even when the seed
provider makes an incorrect classification as often as it makes
a correct classification (i.e., 50% accuracy), NLC+RL achieves
80% accuracy over all four traces. So, NLC+RL is able to
make good use of the imperfect information that the seed
provider is providing. Also, recall that NLC+RL is making
predictions on flows that the seed provider is unable to classify.
So, NLC+RL is actually able to obtain higher accuracy than
the seed provider, while classifying links that the seed provider
was unable to classify.

3) Robustness to Bias in Provided Seeds:
a) Host-biased Seeding: We study the behavior of

NLC+RL when seed labels are withheld preferentially by
host, rather than uniformly at random. This demonstrates
the robustness of NLC+RL in the face of (1) intentional
attempts by certain hosts to obfuscate their traffic and (2) seed
provider classifiers that are prone to such biases (e.g., host-
based methods such as BLINC [3]).

Our procedure for host-biased seeding is as follows. Instead
of choosing links at random to unlabel, we choose a host H at
random and then unlabel a specified percent P of H’s flows.
We repeat this process until only the specified number seed
labels remain in the overall network.

In Figure 6, we show the performance of NLC+RL over
all traces for P = 100%. As it can be seen from the figure,
NLC+RL performs extremely well on all data sets down to
50% seed size, even with hosts obfuscating 100% of their
traffic. Note that this task is especially difficult since the
flows we evaluate on belong to hosts that we know essentially
nothing about (since they have no labeled flows to begin with).
While performance does decline as more hosts begin to hide
their traffic, the level of performance remains impressive down
to 5% seed size for the majority of data sets. By allowing a
small fraction of a host’s flows to be labeled (P = 99%), we
achieved even better results. For example, using 5% seed size
the accuracy on the ENTP trace increased from 59% (with
P=100%) to 75% (with P=99%). This suggests that NLC+RL
can capitalize on a small fraction of known flows for a host
to improve classification performance.

b) Application-biased Seeding: Here, we study the ef-
fects of application-biased seeding on the performance of
NLC+RL. We want to simulate the real-world situation where
certain classes of application traffic (e.g., P2P) are more
frequently obfuscated than others. For this experiment, we
assume that all flows for non-P2P applications (e.g., Web,
DNS, Mail) are successfully labeled by a seed classifier, while

7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

F1
 S

co
re

Seed Size

P2P
DNS

FTP
SNMP

WEB
MAIL

SSH
CHAT

(a) NLC+RL on PAIX trace: F1 scores plot.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

F1
 S

co
re

Seed Size

P2P
DNS

FTP
SNMP

WEB
MAIL

SSH
CHAT

(b) NLC+RL on ENTP trace: F1 scores plot.

Fig. 4: Detailed results by class with varying seed sizes.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

GB
A

Ac
cu

ra
cy

Seed Classifier Accuracy

Default NLC NLC+RL

(a) Backbone trace (PAIX).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

GB
A

Ac
cu

ra
cy

Seed Classifier Accuracy

Default NLC NLC+RL

(b) Enterprise trace (ENTP).

Fig. 5: Accuracy of NLC and NLC+RL with 50% seed size and varying error rates in the seed information.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ac
cu

ra
cy

Seed Size

PAIX WIDE ENTP KEIO

Fig. 6: The effect of host-biased selection on NLC+RL’s accuracy
as seed size varies.

the proportion of available P2P seed labels is varied. This
creates a strong bias in the proportion of P2P seeds available
relative to the seeds available for other classes. Note that the
test set contains only P2P traffic and the training set contains
very little P2P traffic. This creates an extremely difficult
classification task, where the distribution of classes in the
labeled training set differs widely from the class distribution
in the unlabeled test set.

Figure 7 shows Recall of P2P traffic over all four traces
for NLC+RL over all 4 traces. Note that Precision is fixed
at 1.0 since all test instances are P2P. With less than 10%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P2
P

Re
ca

ll

Seed-P2P/Total-P2P

PAIX WIDE ENTP KEIO

Fig. 7: The effect of P2P application-biased selection on NLC+RL’s
accuracy as seed size varies

of P2P traffic known, we can correctly identify above 75%
of P2P traffic in all traces, except for WIDE where Recall is
approximately 60%.

We observed similar performance when selectively obfus-
cating other traffic types (e.g., DNS, Web, etc). We omitted
those results due to space limitations. Application classes with
very few flows (such as SSH in PAIX and SNMP/FTP/SSH on
WIDE) have lower performance than others. This is expected
since these classes represent a really small fraction of the entire
traffic. Our overall results are very promising showing that
NLC+RL is robust to seeding biases that can potentially be

8

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

BLINC CoralReef GBA SVM

Ac
cu

ra
cy

PAIX WIDE KEIO

NLC+RL

Fig. 8: Comparing NLC+RL with 5% seed size to CoralReef,
BLINC, and SVM on the same traces. CoralReef and SVM rely heav-
ily on port numbers and flow-level data (which can be obfuscated),
while NLC+RL does not require such information.

observed in real-life situations.
4) Comparison with Other Methods: To establish a refer-

ence point to the performance of NLC+RL, we compare it
with three other methods that operate at the: (a) port-level,
CoralReef [9], (b) host-level, BLINC [3], and (c) flow-level
(e.g., packet sizes), using the Support Vector Machines (SVM)
learning algorithm [4]. The results from CoralReef, BLINC,
and SVM are as reported by Kim et al. [4] on our common
set of traces, namely: PAIX, WIDE, and KEIO. For tuning
BLINC [4], they have manually adjusted the 28 parameters of
BLINC so that the overall accuracy will be the highest. During
their training phase, all parameters were selected after several
trial-error efforts over the entire trace.

Figure 8 shows the comparison results. We ran NLC+RL
with 5% initially labeled links. As we observe from Figure 8,
our approach has better accuracy than BLINC over all our
traces. Our performance is also better than CoralReef on all
traces with KEIO being a notable exception. Note that Coral-
Reef in this case outperforms the more sophisticated SVM
algorithm as well. The authors in [4] attribute this behavior to
the fact that the majority of flows in KEIO belong to legacy
applications that consistently use their default port number.
The accuracy of port numbers is a strong assumption which
might not hold in the future even for the KEIO link. Note also
that SVM capitalizes on flow features, such as packet size that
can also be easily obfuscated (see Section VI). The results on
SVM here uses 3% training sample size and its feature set
includes port-numbers. When SVM was trained without using
port-numbers, its overall accuracy dropped to 70%. Taking into
account how simple our approach is compared to BLINC and
SVMs, we can see the potential for NLC+RL in application
classification and potentially other network monitoring tasks.

5) Classification Performance on Hosts with Multiple Ap-
plications: NLC+RL represents associations at the link-level
and not at the host-level. This allows different links (flows)
of a single host to have different neighborhoods and therefore
be associated with different applications. An example of this
behavior is illustrated in Figure 1 (host A).

In Table VII, we report the percentage of hosts in all four

PAIX WIDE ENTP KEIO
%True %Pred. %True %Pred. %True %Pred. %True %Pred.

Sing. 98.08 98.03 98.19 98.38 88.23 88.94 97.27 97.57
Mult. 1.92 1.97 1. 81 1.62 11.77 11.06 2.73 2.43

TABLE VII: The performance of NLC+RL on hosts with multiple
applications.

traces that appear to have flows from: (1) a single application
(Sing.), or (2) from multiple applications (Mult.). These results
correspond to only the test subset of the trace graphs, which
is the portion of the graph that NLC+RL will try to predict
labels for. Here, we used NLC+RL with 10% initial seed (and
got similar results using other configurations). For comparison,
we report the percentages of Sing. and Mult. hosts using the
ground-truth (True) and NLC+RL’s predictions for labels of
the trace graph. The results show that NLC+RL can predict
each individual flow while preserving the diversity in the
applications used by hosts.

V. DISCUSSION

Selecting the time interval of observation. In our study,
we divided the initial traces into smaller time intervals and
created a graph for each interval. The appropriate duration for
these time intervals depends on the intensity of the traffic.
For example, for the ENTP trace we used a one-hour interval,
which led to a graph of roughly 57K nodes and 266K edges.
For the PAIX backbone trace, we experimented with multiple
intervals of 30 seconds, which led to graphs of approximately
170K nodes and 250K edges. We also experimented with
10-second, 20-second, 60-second, and 5-minute intervals on
the backbone trace. As expected, NLC+RL produced better
performance on intervals with higher traffic intensity; these
intervals are typically longer than 20 seconds for PAIX.

Seed Provider: possibilities and limitations. NLC+RL
does not depend on any specific source for its initial seed
information and can overcome errors in the initial seeds. In
practice, the seed information can come from a plethora of
possible avenues. (a) We can use external knowledge sources
such as information from sys-admin, legacy IPs, and well-
known servers. (b) We can use any other standalone traffic
classifiers in the literature. In this case, we could even see
our method as a last step for improving classification results.
Also, if we have multiple classifiers, we could use them all
by employing a critical synthesis. For example, in the case
of classification conflicts, we could incorporate the classifier
with the better accuracy or precision, especially since some
methods are better for different applications. (c) We can query
search engines for IP addresses that we want to classify, in
essence, “Googling the Internet” [7], thus harnessing the power
of the Web. (d) We can use active and passive measurement
techniques for the seeding process. For example, tools could
periodically join P2P applications and online games to collect
IPs of potential users.

Connectivity obfuscation. Our approach is robust to
packet- and flow-level obfuscation in terms of making the life

9

of the application more difficult in the following ways. (a)
If the application is forced to not communicate as much as
it wanted, we claim success. This reduction can curtail the
annoyance, the speed of spreading, or intensity of communi-
cation. For example, it may turn out that a P2P client may have
to limit its number of neighboring nodes, if it does not want
to be caught. (b) If the application is forced to communicate
with more IP nodes than it did before, we claim success. This
increase in the communication shows up as more flows in
our trace, thus becoming more visible, which could make its
detection easier.

Isolated Links. In our traces, only 1% of the links were
isolated (i.e. a single flow without any neighboring links). We
can further reduce the number of isolated links and create
larger connected components by increasing the interval of
observation. Alternately, NLC+RL can classify these isolated
links by using the prior probability of application classes in
the graph – e.g., with 80% chance it is Web flow, given that
80% of our flows are Web flows.

VI. RELATED WORK

Graphs have been used previously to represent network
traffic for other tasks besides traffic classification. For instance,
Ellis et al. [10] and Xie et al. [11] used graphs to detect
the tree-like pattern of a propagating worm. Tan et al. [12]
used graphs to group similar hosts in enterprise networks.
Others [13], [14], [15] have studied the properties of IP-to-IP
interaction graphs, such as the degree distribution, connected
components, etc. However, none of the previous works
examined homophily, its presence in real-world trace
graphs, and its utilization for traffic classification.

Traffic classification is a well-studied problem with sig-
nificant previous work. According to the level of observa-
tion, traffic classification methods can be divided into four
groups. (a) Packet-level, where methods use well-known port
numbers [9]. (b) Flow-level, where methods utilize flow-level
features to detect applications by first specifying a set of
features such as packet sizing information, packet inter-arrival
times, flow duration, etc; and then using machine learning
methods (either supervised or unsupervised) to automate the
learning and classification processes [16], [4]. (c) Host-level,
where methods first identify the role of a host (e.g., a Web
server) and then label its flows accordingly. These are prone
to applications (such as P2P) that have dynamic behavior in
terms of randomized ports across flows [3], [17], [7]. (d)
Payload-level, where methods rely heavily on using available
documentation, intuition, and manual reverse-engineering of
the protocols to create signatures for various applications [5],
[18], [19]. To our best knowledge, no one has viewed the
traffic classification as a relational learning problem.

VII. CONCLUSIONS

We observe homophily in application-layer traffic of real
trace data, which provide us with statistical dependencies
between flows that share common IP hosts. We utilize these
dependencies in a relational learning algorithm, NLC+RL, to

accurately classify applications of interest in network-wide
trace graphs. NLC+RL is the first method to formulate the
traffic classification problem as a relational learning problem.
It has several attractive features: (a) Resistance to signature,
padding and timing obfuscation techniques. A key design
property is that we do not use any flow level behavior and
properties in our statistical inference. This makes our approach
robust to variations and obfuscation of flow level properties.
(b) Robustness to errors and biases of the initial seed informa-
tion. Although our approach relies on an initial set of classified
flows, it is robust to errors in the initial seed (approximately
80% classification accuracy even with 50% error rate). In
addition, NLC+RL is robust to various biases introduced by
the initial selection of seeds (such as host- and application-
level biases). (c) High accuracy on application classification
in real-world network traces. Our method achieved excellent
classification performance on experiments with real traces
from both the backbone and access-links, achieving above 90%
accuracy in all our traces with less than 5% of flows labeled.

REFERENCES

[1] S. Macskassy and F. Provost, “Classification in networked data: A toolkit
and a univariate case study,” MLJ, vol. 8, pp. 935–983, 2007.

[2] A. Rosenfeld, R. Hummel, and S. Zucker, “Scene labeling by relaxation
operations,” in IEEE Transactions on Systems, Man and Cybernetics,
vol. 6, 1976, pp. 420–433.

[3] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC: Multilevel
traffic classification in the dark,” in ACM SIGCOMM, 2005.

[4] H.-C. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and
K. Lee, “Internet traffic classificatoin demystified: Myths, caveats, and
the best practices,” in ACM CoNEXT, 2008.

[5] T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, and M. Faloutsos,
“Is P2P dying or just hiding?” in IEEE GLOBECOM, 2004.

[6] S. Sen, O. Spatscheck, and D. Wang, “Accurate, scalable in-network
identification of P2P traffic using application signatures,” in WWW,
2004.

[7] I. Trestian, S. Ranjan, A. Kuzmanovic, and A. Nucci, “Unconstrained
endpoint profiling (Googling the Internet),” in ACM SIGCOMM, 2008.

[8] B. Gallagher, H. Tong, T. Eliassi-Rad, and C. Faloutsos, “Using ghost
edges for classification in sparsely labeled networks,” in ACM KDD,
2008.

[9] CAIDA Org., “The CoralReef Project,
http://www.caida.org/tools/measurement/coralreef/.”

[10] D. Ellis, J. Aiken, K. Attwood, and S. Tenarglia, “A behavioral approach
to worm detection,” in ACM CCS WORM, 2004.

[11] Y. Xie, V. Sekar, D. Maltz, M. Reiter, and H. Zhan, “Forensic analysis
of epidemic attacks in federated networks,” in IEEE ICNP, 2006.

[12] G. Tan, M. Poletto, J. Guttag, and F. Kaashoek, “Role classification
of hosts within enterprise networks based on connection patterns,” in
USENIX Annual Technical Conference, 2003.

[13] M. Iliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher, S. Singh,
and G. Varghese, “Network monitoring using traffic dispersion graphs
(TDGs),” in ACM IMC, 2007.

[14] M. Latapy and C. Magnien, “Complex network measurements: Estimat-
ing the relevance of observed properties,” in IEEE INFOCOM, 2008.

[15] M. Meiss, F. Menczer, and A. Vespignani, “On the lack of typical
behavior in the global web traffic network,” in WWW, 2005.

[16] T. T. Nguyen and G. Armitage, “A survey of techniques for internet
traffic classification using machine learning,” IEEE Communications
Surveys & Tutorials, vol. 10, no. 4, pp. 56–76, 2008.

[17] W. John and S. Tafvelin, “Heuristics to classify internet backbone traffic
based on connection patterns,” in ICOIN, 2008.

[18] P. Haffner, S. Sen, O. Spatscheck, and D. Wang, “ACAS: Automated
construction of application signatures,” in ACM MineNet, 2005.

[19] J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. M. Voelker,
“Unexpected means of protocol inference,” in ACM IMC, 2006.

nijhuis2
Text Box
This work performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

