
Heuristic Optimization of Physical Data Bases: Using a Generic and Abstract Design Model

By: Prashant Palvia

Palvia, P. "Heuristic Optimization of Physical Databases; Using a Generic & Abstract Design Model," Decision

Sciences, Summer 1988, Vol. 19, No. 3, pp. 564-579.

Made available courtesy of Wiley-Blackwell: The definitive version is available at

http://www3.interscience.wiley.com/

***Reprinted with permission. No further reproduction is authorized without written permission from

Wiley-Blackwell. This version of the document is not the version of record. Figures and/or pictures

may be missing from this format of the document.***

Abstract:

Designing efficient physical data bases is a complex activity, involving the consideration of a large number of

factors. Mathematical programming-based optimization models for physical design make many simplifying

assumptions; thus, their applicability is limited. In this article, we show that heuristic algorithms can be

successfully used in the development of very good, physical data base designs. Two heuristic optimization

algorithms are proposed in the contest of a genetic and abstract model for physical design. One algorithm is

based on generic principles of heuristic optimization. The other is based on capturing and using problem-

specific information in the heuristics. The goodness of the algorithms is demonstrated over a wide range of

problems and factor values.

Subject Areas: Heuristics, Management Information Systems, and Simulation.

Article:

INTRODUCTION

Data base design is a challenging activity and involves two phases: logical and physical design. Logical design

involves the development of a logical data structure (LDS) for the task domain. Physical design is concerned

with developing structures for placing data on secondary storage, given a specific LDS. While both phases

require significant effort, the physical data base design phase is the focus of this article. The main concern in

physical data base design is the efficiency of the physical design, which can be measured in a number of ways,

such as storage requirement, response time and total system cost.

Prior works have generally dealt with and developed design/optimization models for specific aspects of physical

data base design. These works include index selection [1] [15] [17], file structuring and models of file

organization [19] [31], and record segmentation and structuring [16] [18] [24] [25]. Some of these models are

reviewed in [30]. Jain states:

While the attention to individual design problems results in elegant solutions, it is quite plausible that

those individual solutions will have to be perturbed when the total data base is put together. [20, p. 217]

Thus, the need for comprehensive design models (which deal with the entire data base design problem rather

than parts of it) cannot be overstated. Comprehensive physical design models fall under two categories: (1)

those specific to and (2) those generic and independent of any particular logical data model and/or commercial

DBMS. The first category offers the advantage of direct implementation on a particular DBMS, but is difficult

to convert to another implementation. The second category allows more flexibility at the expense of added

conversion requirements for a particular implementation. Optimization of physical design in the first category is

reported in [29] for the hierarchical data model and in [12], [13], [20], [20], and [32] for the DBTG/CODASYL

environment. For the second category, design models have been proposed in [3], [4], [6], [7], [22], [26], and

[33]; optimization algorithms have been presented in [22] and [26].

http://libres.uncg.edu/ir/uncg/clist.aspx?id=814
http://www3.interscience.wiley.com/

The optimization algorithms presented in the above references use techniques of mathematical programming

such as linear, integer, and goal programming. To use these techniques, the problem formulation must be kept

tractable and several assumptions must be made about the problem characteristics. For example, in [20],

clustering member records near owner is not considered; in [22], all clustered records are assumed to be on one

page and the cost of accessing random files is not considered explicitly; in [26], the problem is formulated only

for sequential access and very large buffers; in [32], sequential placement and clustering near the owner are

excluded. Such assumptions are necessary to obtain clean formulations. However, the data base solution will be

perturbed if these assumptions are relaxed. A solution to this dilemma is the use of heuristic procedures, which

may be used efficiently in pursuit of good physical data base designs.

The primary aim of this article is to demonstrate that heuristic procedures can be successfully used to generate

good, close to optimal, physical data base designs. The general application of heuristic procedures has been

discussed in [11] and [34]; heuristic procedures have also been applied in the file design arena [16] [18]. For

demonstration purposes, the physical data base design model chosen here is an abstraction of a generic model;

thus, the results are applicable to different logical models and commercial DBMSs. Special features and

laborious details have been omitted, but we believe the heuristics presented here can be custom-tailored to

incorporate such features.

In the next section, we briefly discuss the factors that determine physical design. One of these is the physical

design model itself (the abstract model used in this work is described later). The heuristic algorithms depend on

a pairwise analysis of entities at the front end and a simulation program to determine the cost of a physical

design. The essential features of the simulation program and pairwise analysis are next summarized and two

heuristic algorithms are presented for physical data base design. The next section evaluates the algorithms on

various dimensions across several values of the independent variables.

PHYSICAL DATA BASE DESIGN DETERMINANTS

While many goals may be considered when designing the physical data base [20], one that is generally accepted

is minimizing the total operational cost of using the data base [1] [6] [13] [16] [18] [25] [29] [32]. In this work

we consider two costs: the storage costs of the data and the access costs to satisfy query requests. Access costs

are estimated by the total number of page accesses from secondary memory. We concentrate on query requests,

although limited kinds of update requests can be handled by the simulation program and the algorithms. The

results should be applicable to many data base applications with low levels of data maintenance. Further, we

believe the simulation program can be modified and the heuristic algorithms custom-tailored to explicitly

consider updates.

'The costs of using the data base are influenced by four major factors: conceptual logical data structure (LDS),

queries on the data, computer system characteristics, and physical design considerations. The LDS is based on

prior design activity and we assume it to be given to us. The representation of the LDS in this work consists of

entities and relationships between entities. The LDS may be directly obtained using a data structure diagram [2]

or by simple conversion from an entity-relationship diagram [9]. Figure 1 represents the LDS for a personnel

data base, adapted from [6] which we use to describe the heuristics. In Figure 1, there are two relationships

between employee and project: the first assigns employees to projects via the assignment entity and the second

is the direct, project-manager relationship. Other relationships in this LDS should be self-explanatory from this

figure.

The queries on the data base may require selected instances of only one entity (e.g., data about certain

employees) or data across several entities and their instances (e.g., data about certain departments and

employees who work in these departments). The second type of retrieval is more complex and necessitates

"traversing" several entities. The computer characteristics of relevance for this work include page size, pointer

size, buffer size, and storage and access costs per unit.

Finally, many physical factors influence the physical data base design such as the access paths available and the

data access/navigation strategy. Foremost among physical factors is the physical design model itself which

describes the permissible alternative physical designs. Different commercial DBMSs use different physical

design models (which are built into them). The next section describes general principles of physical data base

design and, based on them, develops a generic and abstract physical data base design model. This abstract

model will be used throughout the paper.

PRINCIPLES OF PHYSICAL DATA BASE DESIGN AND AN ABST1RACT MODEL

Generic physical design models for (single) file design have been proposed, in increasing degree of

comprehensiveness, in [19], [31], and [33]. The file design model of [33] was extended in [4] for physical data

base design. In addition, there are some other models which address part(s) of the physical data base design

problem in its own right (that is, without purposely building on the file design models). For example,

aggregation/clustering concepts are discussed in [4], [6], and [30]. An abstract model was proposed in [22]

which described the concepts of "evaluated," "indexed," "clustered," and "well-placed" records. A recent

worthwhile effort is the transformation model (TM) [3], which models storage structures of several commercial

DBMSs. (In our opinion, development of a sound and generic physical data base design model is an important

issue, worthy of research in the data base area.)

In this paper, we use an abstract and generic physical design model based on some recognized principles that

emerge from the current models [3] [4] [22] (24] [29]. These models suggest two fundamental principles for

representing a relationship between two entities. The first principle is well known—indicate a relationship

between two entities by storing appropriate pointers in the entities' instances. The pointers may be in the form of

linked or inverted lists, or a combination of the two. (The pointers may be direct or symbolic.) The second

principle is the concept of clustering/aggregation in which all related instances of one entity that are related to

an instance of a second entity are clustered with or near the second entity instance.

The two concepts yield substantially different physical designs. The present abstract model captures the spirit of

the two concepts; the many variations and details should be incorporated in more comprehensive models. Our

initial experience in building the simulation program and developing the heuristics showed that these details do

not have significant impact on the physical design. Moreover, the simulation program and the heuristic

algorithms can be modified to adapt to the design model. The abstract model allows five ways to represent two

entities, X and Y, and the relationship between them:

1. Create two record types, X and Y; X has pointers to Y.

2. Create two record types, X and Y; Y has pointers to X.

3. Create two record types, X and Y; both point to each other.

4. Create one record type X which will aggregate (cluster) Y instances. Aggregating in the abstract model

is actualized by making the related Y instances part of the X record.

5. Create one record type Y that will aggregate the X instances. (The pointers above may be all symbolic

or all direct.)

This model has strong parallels even in commercial DBMSs. For example, hierarchical and network systems

incorporate the concepts of pointers and aggregations. Aggregation is supported in IMS by permitting

hierarchical segments in the same data set and in network systems by storing MEMBER record types in

OWNER area VIA SET and NEAR OWNER. Relational systems do not allow aggregation at a logical level;

however, substantial efficiencies may be achieved by its use at a physical level as reported in [8] and [14]. In

fact, many relational systems are now beginning to support clustering, such as SQL- and INGRES-based

systems and RBASE.

When the abstract model is used, the total number of physical designs explodes exponentially when the number

of entities and relationships in the LDS gets large. For example, with ten entities in the LDS there could be over

a million design possibilities; with twenty entities, over a trillion design possibilities. Fortunately, we can curtail

many of these options at the front end. In the experiments we conducted with the simulation program, we found

that the optimal design is sensitive to the aggregation and pointer options but not much to a specific pointer

option [27]. Thus, one of the three pointer options can be preselected for each related pair of entities using some

guidelines or analysis. We selected the pointer option by using a pairwise analysis of related entities. The

equations developed for pairwise analysis are described in the next section. (This pairwise analysis is also a

front end to the heuristics described later.) Even with one pointer option (and two aggregation options) for each

entity pair, the problem is still large (a 10-entity LDS may have over 10 thousand physical designs and a 20-

entity LDS may have over 100 million designs).

With one pointer option and two aggregation options, a physical design can be fully specified by indicating the

aggregations alone. A short-form notation can then be used to represent a physical design. In the short form,

only the aggregator or absorber entity (also called physical parent) of each entity is named. A root entity does

not have a physical parent; its parent is numbered 0. Table 1 shows some designs for the six-entity LDS of

Figure 1.

The first design in Table 1 has all entities stored in independent files (with appropriate pointers to indicate

relationships). This is a very common design strategy used by many designers. We call it the flat-file design and

will refer to it from time to time.

SIMULATION PROGRAM AND PAIRWISE ANALYSIS

The two heuristic algorithms (described in the next section) use the simulation program to evaluate the costs of

a physical design. Part of the pairwise analysis is used at the front end of both heuristics for pointer option

determination for each entity pair. The pairwise analysis is also a major contributor to the second algorithm. We

present an overview of the simulation program and the pairwise analysis (see (26] for details).

The simulation program written in ANSI FORTRAN V is comprehensive with the following major features:

Problem Specification. The parameters for the physical design problem are specified in four stages. First, the

computer system characteristics (page size, direct pointer size, storage cost/character/period, and access

cost/page) are defined. Second, the logical data structure is represented using suitable internal data structures.

Third, necessary physical attributes are defined, including choice of symbolic or direct pointers, sequential or

random access path, and provision for very large buffer sizes. Very large buffer sizes can affect the query

processing strategy (discussed later). Finally, the activities (queries and limited updates) on the data base are

entered. We assume that a limited update is one which will make twice the number of accesses than that of a

query. For each query, the following parameters are specified: the frequency per period, the number of entities

addressed by the query, the traversal path over the addressed entities if more than one entity is addressed, and

the pre-selection and post-selection proportions of entity instances at each entity in the traversal path. Pre-

selection refers to accessing only selected instances of an entity; post-selection refers to selecting among the

already accessed instances.

Physical Design Specification. It can be entered either in short form or in long form. In long form, all files,

aggregations, and pointers are explicitly specified. If specified in short form, the program will convert the

specifications into long form by determining the pointer options. The program can either prompt the user to

supply pointer information or invoke the pairwise analysis module to determine pointer options. At this point,

the program also checks for feasibility of the physical design. A design may not be feasible because of data base

consistency reasons (for example, two entities both cannot cluster each other) or because of user-/designer-

supplied reasons.

Storage Cost Determination. For the feasible physical design entered above, the program determines the length

of all record types (including pointers and aggregations), the number of records in a file, the file size, and the

total storage requirement. This is a relatively straightforward task.

Determination of Page Accesses. The number of page accesses is determined for each query. While the

algorithm embedded in the program is quite sophisticated (and complex) to account for different types of

queries, we give an intuitive feel for the computation. (A full description is too lengthy for the scope of this

paper.) First, the file containing the first entity addressed by the query is found. If this entity is rooted in the file,

the number of records needed from this file is simply the number of records in the file multiplied by the pre-

selection proportion. If the entity is not rooted, a formula (described in [26]) is applied to determine the required

number of records from the file. In any case, for random access of the file, the number of page accesses for a

given number of desired records is determined by the formula described in [28]. The required number of records

is multiplied by the post-selection proportion to obtain the number of records finally selected. If the query

addresses more than one entity (say, two), the related, desired instances of the second entity will be retrieved for

each selected record of the first entity. This number is equal to the outdegree of the relationship between the

first and second entity times the pre-selection proportion of the second entity. If the second entity is in the same

file as the first, no new accesses are required (otherwise, more page accesses will be needed on the second file).

The second file will be searched as many times as the selected records from the first file and each search will

require a number of page accesses. If there are more than two entities in the traversal path of the query, this

process will be repeated. It should be clear from the above description that the number of file searches (and

page accesses) multiplies at each step of the traversal path of the query.

The above query processing strategy reflects the current practice (we will call it the normal processing strategy

in future references). We implemented another (special) processing strategy in the simulation program;

however, that requires very large, main memory buffers. With large buffers, no file is searched more than once.

All required records from any given file are obtained in one search (necessitating large buffers). This is done by

assembling all pointers (from the selected instances of the first file to the second file) prior to accessing the

second file.

Obtaining Total Costs. This is a simple step. The storage requirements and page accesses are converted into

costs by multiplying with appropriate cost factors. The total cost is then determined.

We now present essential features of pairwise analysis of entities, referred to in an earlier discussion. The

pairwise analysis aids in early selection of pointer options and, more significantly, in the second heuristic

algorithm. Pairwise analysis simplifies the complexity (at the risk of sacrificing some optimality) in the LDS. In

pairwise analysis, only those entity pairs which are related need to be considered. Thus, when we say an entity

pair, we always mean a related entity pair.

The main bottleneck to pairwise analysis is the handling of queries. If a query focuses on one or two entities, it

fits naturally into the pairwise framework. If not, a query addressing N entities (N > 2) is split into N - 1

pairwise queries. The pre- and post-selection proportions remain the same after the split. Thus, for a pair of

entities (i,j) in the pairwise framework there may be four types of queries: a query focusing simply on entity i,

simply on entity j, traversing from entity i to entity j, or traversing from entity j to entity i. Also, there are five

physical designs for each entity pair (per our abstract design model).

Equations are developed in [26] for the storage requirement of each physical design of the (i,j) pair and for the

number of page accesses for the different combinations of physical design, type of query, and processing

strategy (i.e., 40 combinations). We report a few of these equations below.

Let Ni be the number of instances, li the instance length, and pi the length of primary key of entity i. Ni, lj, and pj

are the same for entity j. Rij is the outdegree from entity i to entity j and Rji is the outdegree from j to i. P is the

direct pointer size, and PG is the page size. Further, let PRi and PSi be the pre- and post-selection proportions of

a query focusing on entity i alone. Let PRj and PSj be the proportions if the query traverses to entity j as well.

Some storage requirement equations are:

In all of the above page access equations, the number of pages in a file are determined by the storage equations

described earlier. Storage equations and access equations were developed in a similar manner for all

combinations. By applying the equations, the cost of each of the five physical design options for each entity pair

is obtained. Of the three pointer options, the least costly option can be selected at this time for each entity pair.

There are three costs associated with each entity pair (i, j): CPij, the cost of the best pointer option; CAij, the cost

of entity i aggregating entity j; and CAji, the cost of entity j aggregating entity i.

We are now ready to present the heuristic algorithms.

THE HEURISTIC ALGORITHMS

While the author developed and evaluated many heuristic algorithms, two of the algorithms are presented that

outperformed the others in terms of optimality and computational requirements. These are the generic greedy,

foward inclusion algorithm (FWI) and the pairwise greedy algorithm (PWG).

The Generic Greedy Algorithm FWI

A greedy heuristic procedure for optimization is to maximize the solution improvement at each stage of the

heuristic [11]. Typically, it works like this: select an arbitrary solution as the starting incumbent solution. Look

at solutions near the incumbent and make the solution with the most improvement the new incumbent. Reiterate

the procedure until the incumbent solution can no longer be improved. Such a heuristic was developed in [16]

for the segmentation of flat files. The FWI algorithm presented below successively includes entities for

aggregation based on the greedy principle. The algorithm has two types of references to the simulation program

described earlier: FEASIBLE (to determine the feasibility of a physical design) and SIMCOST (to determine

the cost of the physical design).

According to the design model, a physical design for an N-entity LDS is represented by an N-tuple: (A1, A2, . . . ,

An), where Ai = 0 if entity i is rooted and Ai = j(j < > i) if entity i is clustered near entity j. Define a set U

containing doubles (Rij,Uij), where Rij is a relationship in the LDS and Uij is a 0-1 binary variable. Uij = 1

indicates a clustering has occurred along the relationship Rij. Also, define a set PCR of triples (P, CIP, Rij),

where P itself is an N-tuple describing a physical design and CIP is cost improvement. The algorithm appears as

follows:

The Pairwise Greedy Algorithm (PWG)

The FWI heuristic, while a good one, requires computations of O(R
2
), R being the number of relationships in

the LDS. This can be prohibitive for very large data base problems (say, with over 50 entities in the LDS). Less

computationally intensive heuristics are derived by breaking down complexity and considering pairs of related

entities. The pairwise information is then used in a greedy manner to develop an efficient algorithm. A similar

strategy was used in [18] for the segmentation of flat files.

Recall that the pairwise analysis described earlier resulted in three costs for each related entity pair: CPij for the

best pointer option, CAij for i aggregating j and CAji, for j aggregating i. This information is utilized by

computing two clustering benefits for each entity pair (i,j): CBij =CPij —CAij, and CBji = CPij — CAji. Only

positive clustering benefits are retained in a set SCB. The set SCB contains triples (Cij,CB, Uij), where Cij

indicates the clustering of entity j near entity i, corresponding to a positive clustering benefit CB. Uij is a 0-1

variable, where Uij = 1 indicates that entity j is clustered near entity i in the final physical design. The set SCB

may have up to two triples for an entity pair (i, j): one for Cij and one for Cji.

As before, a physical design is represented by an N-tuple, (A1, A2, ..., An). Another set PCC is defined with

triples (P, CIP, Cij), where P is the N-tuple for a physical design, CIP shows cost improvement, and Cij shows

the clustering considered. The algorithm is:

A. Preselect pointer options for all related entity pairs using pairwise analysis.

B. Starting incumbent physical design is flat-file:

 PI=(0, 0, . .0), that is, Ai = 0, for i = 1, ..., N.

C. Incumbent physical design cost PCI=SIMCOST(P/).

D. Make Uij = 0 in all tuples in set SCB (i.e., no initial clustering).

E. Define best cost improvement = + .

F. DO WHILE (BCI > 0 AND any Uij in SCB =0)

Make set PCC= null set.

 F. 1 FOR each triple in SCB with Uij = 0, DO

 Make P=PI with Aj =i

F.1 .1 IF (FEASIBLE(P)) THEN

PC= SIMCOST(P)

CIP=PCI — PC

PCC=PCC U(P, CIP, Cij)

 ENDIF

 ENDFOR

F. 2 Search PCC(BEST) triple in PCC set, so that

CI of PCC(BEST)= Max (over C/ in all PCC triples)

F. 3 BCI =CI of PCC(BEST)

F. 4 IF (BCI > 0) THEN

Make Uij of SCB set corresponding to Cij of PCC(BEST)= I.

PI=P of PCC(BEST)

PCI=SIMCOST(PI)

 ENDIF

 ENDWHILE

G. HEUR_BEST_SOLN =PI

 HEUR_SOLN_COST=PCI

H. END

HEURISTICS EVALUATION

As we remarked in the introduction, the optimal physical design depends on independent factors related to the

logical data structure, the computer system, the queries, and the physical design model. A heuristic is good only

if it can perform consistently well over a wide range of factor values. In order to evaluate the heuristics, a total

of twelve factors were developed (shown in Table 2). Also shown in Table 2 are the number of factor levels and

value of each level.

Some factors need explanation. The proportion of entity instances addressed by a query depends on the

operating environment. For example, a production/batch environment requires a large proportion of entity

instances while an executive environment needs only a few selected instances. The distribution of queries refers

to the degree of concentration on a few entities in the LDS. In addition, we developed a factor, conflict between

queries, which may be one of the main reasons the design problem is difficult. There is a conflict between two

queries when one traverses in one direction in the LDS and the other traverses in exactly the opposite direction.

We do not separately include the frequency of queries as a factor; its effect is manifested in the other query

factors. Finally, the large buffers allow the special query processing strategy described earlier.

An experimental design is needed to evaluate the effects of the above factors. Since a full-factorial design is

impractical, a reasonable base case was defined by setting each quantitative factor at the middle value; each

qualitative factor was set to reflect the current practice in data base design. The evaluation of the heuristic

algorithms and the sensitivity analysis of the physical design were conducted by ranging each factor

individually around the base case. If a factor was extremely sensitive, another base case was created at the new

value of the factor and the process repeated. Two base cases were created for the two levels of buffer sizes and

twenty problems were generated for each base case, a total of forty cases. The factor values for the base cases

are shown in Table 2.

The algorithms' performance must be evaluated based on two criteria: their computational requirements and

their ability to produce good, physical data base designs. The second criterion is measured by comparing the

heuristic design to the optimal design and to commonly used designs.

COMPUTATIONAL REQUIREMENTS

The major computation made by each algorithm is when it invokes the simulation program to determine the cost

of a physical design. Generally, the number of queries and their complexity is of the order of the LDS size (i.e.,

the number of entities (N) and relationships (R) in the LDS). Thus, it can be argued that the computation of the

simulator is O(R). Since any algorithm will invoke the simulator, we will use the number of physical designs

evaluated using the simulator as a measure of the computational requirements of the algorithm. (The

computational burden for exhaustive enumeration is exponential.)

Lemma 1: The number of physical designs evaluated by the FWI algorithm is O(R
2
).

FWI first evaluates the flat-file design. For each of the R relationships, it generates two designs by clustering

each of the two entities ill the relationships, generating 2R designs. Next, FWI repeats the process for the

remaining R-1 relationships. In the worst case, the process continues to the end; usually, it terminates earlier.

Thus, worst case designs generated =1+2R + 2(R— 1) + ... +2(1) = O(R). The average will be about half of that,

so FWI =O(R
2
).

Lemma 2: The number of physical designs evaluated by the PWG heuristic is O(R
2
) in the worst case and O(R)

on the average.

The key to designs evaluated by PWG is the number of elements in the clustering benefits set SCB. At worst

there are 2R elements in SCB, two for each relationship. However, at least half of these will conflict with the

other half; thus, useful elements in SCB are at the most R. Empirically, the author has evidence that the useful

elements average about O(R
.5

). If there are K entries in set SCB, the first iteration evaluates K designs in search

of the best clustering. The next step evaluates K-1 designs. In the worst case:

In the worst case, K = O(R) and PWG= O(R

2
); generally, K = O(R

.5
) and PWG = O(R). In any case, the

magnitude of computation in PWG is far less than in FW I. The computation effort of the two algorithms for the

forty experimental cases is shown in Figure 2 by the CER ratio, which is the ratio of the number of designs

evaluated using the algorithm to the total number of feasible designs. The first twenty cases use the normal

processing strategy and the last twenty use the special processing strategy (with very large buffers). Cases 2 and

22 are for 4-entity LDS, cases 3 and 23 are for 8-entity LDS, cases 4 and 24 are for 10-entity LDS, and the

remaining cases are for 6-entity LDS. Some observations drawn from Figure 2 are worth mentioning. Both

algorithms examined are computationally efficient, with PWG outperforming FWI. The relative computational

effort decreases with increasing LDS size. Finally, it appears that slightly more computation effort is required

for the normal processing strategy.

COMPARING WITH OPTIMAL SOLUTIONS

Optimal physical design can be obtained by exhaustive enumeration of feasible designs and cost-determination

by the simulator. Because of a very large computational burden, this approach may be used only for small

problems. (We could barely do this for a 10-entity LDS on a CDC Cyber-175; beyond that, it took hours.) The

ratios OCR of optimal design cost to the heuristic design cost are reported in Figure 3. While both algorithms do

very well, FWI is more consistent in producing more cost-effective designs. For the first 20 cases of normal

processing strategy, the FWI algorithm produced the optimal design in 17 cases. In the other 3 cases, the cost

differences from the optimal designs were only 4, 4, and 17 percent. The PWG algorithm obtained the optimal

design in 16 of the 20 cases; the other 4 cases differed from the optimal design cost by 4, 7, 17, and 23 percent.

COMPARING WITH OTHER DESIGNS

Another manner of evaluating the heuristic designs is by comparing them with those designs used in the real

world and developed by other designers/researchers. Many designers and DBMSs do not use any explicit

clustering (or repeating groups) in their physical data base designs, selecting instead the flat-file design.

Therefore, the ratio FCR of the heuristic design cost to the flat-file cost is shown in Figure 4. It is apparent from

the plots that the flat-file is a poor design choice for the normal processing strategy and the heuristic designs

offer substantial improvement. (The flat-file is reasonably good for the special processing strategy, but that

happens rarely in practice.) With FWI the average cost improvement in the first 20 cases was 68 percent and 66

percent with PWG.

Comparing our results with prior research efforts is difficult due to the lack of compatability of the various

models and their assumptions. A limited comparison can be made to the work reported in [6], where guidelines

were made for physical data base design based on LDS characteristics. These guidelines suggest the same set of

designs (based on LDS guidelines) for all experimental cases. However, we found that different designs will be

cost-effective, depending on the query characteristics. In several of the first 20 cases, different designs were

more cost-effective and identified by both algorithms.

We have demonstrated that both generic and pairwise information-based heuristics can be used successfully to

design the physical data base for a wide variety of problem types. The pairwise information-based algorithm

requires less computational effort, at the expense of slightly reduced optimality. In the present context, we

recommend using the FWI heuristic for small to medium problems (with less than 30 entities) and use the PWG

heuristic for very large problems (greater than 30 entities, and especially in the range of 50 and over).

SUMMARY

Physical data base design can be a very complex and demanding activity. Mathematical programming

approaches have had only limited success in this area. This paper, therefore, emphasizes the need for efficient

heuristic algorithms to aid in the physical data base design process. Two heuristic algorithms are described in

the contact of a generic and abstract design model: one is based on general principles of heuristic optimization

and the other on problem-specific information. These algorithms provide good performance over a wide range

of problems.

The physical data base designs generated using the abstract design model and the heuristic algorithms may be

implemented on many commercial DBMSs. Hierarchical systems and network (DBTG) systems generally

include the concepts of pointers and clustering, as reported in detail in [5], [10], and [23]. Examples of

implementing the physical designs (generated using this work) on hierarchical and network systems are

contained in [26]. Finally, the methods of this paper may be used in the initial creation of the physical data base,

as well as its reorganization.

REFERENCES

[1] Anderson, H. D.. & Berra, P. B. Minimum cosi selection of secondary indexes for formatted files. ACM

Transactions on Database Systems, 1977, 2, 68-90.

[2] Bachman, C. W. Data structure diagrams. Data Base, 1969, 1, 4-10.

[3] Batory, D. S. Modeling the storage architectures of commercial database systems. ACM Transactions on

Database Systems, 1985, 10, 463-528.

[4] Batory, D. S., & Gotlieb, C. C. A unifying model of physical databases. ACM Transactions on Database

Systems, 1982, 7. 509-539.

[5] BCS/CODASYL DDLC Data Base Administration Working Group. Draft specification of data storage

description language Appendix. New York: ACM, 19'78.

[6] Carlis, J. V. Investigation in the modeling and design of large, logically complex, multi-user database.

Unpublished doctoral dissertation, University of Minnesota, 1980.

[7] Carlis, J. V., & March. S. T. Computer-aided physical database design methodology. Computer

Performance, 1983, 4, 198-214.

[8] Chamberlin, D. D., Astrahan, M. M., Blasgen, M. W., Gray, J. N., King, W. F., Lindsay, B. G., Lorie, R. A.,

Mehl, G. W., Price, D. G., Putzolu. F, Schkolnik, M., Selinger, P. G., Stutz, D. R., Raiger, I. L., Wade, B. W., &

Yost, R. A. A history and evaluation of system R. Communications of the ACM, 1981, 24, 632-646.

[9] Chen, P. P. S. The entity-relationship model—towards a unified view of data. ACM Transactions on

Database Systems, 1976, 1, 9-36.

[10] Date, C. J. An introduction to database systems (4th ed., Vol. 1). Reading, MA: Addison-Wesley, 1985.

[11] Evans, J. R. “Toward a framework for heuristic optimization. In Proceedings of the 1979 AIM Conference.

Norcross, GA: AIIE, 1979.

[12] Gambino, T. J., & Gerritsen, R. A data base design decision support system. In Proceedings of the 3rri

International Conference on Very Large Databases. New York: ACM, 1977.

[13] Gerritsen. R. 7bols for the automation of database design. In Proceedings of the New York Symposium on

Database Design. New York: Springer-Verlag, 1978.

[14] Guttman, A., & Stonebroker, M. Using a relational database management system for computer aided

design data. Quarterly Bulletin of the IEEE Computer Society Technical Committee on Database Engineering,

1982, 5, 21-28.

[15] Hsunmer, M., & Chan, A. Index selection in a self-adaptive data base management system. In Proceedings

of the ACM Special Interest Group on Management of Data. New York: ACM, 1976.

[16] Hammer. M., & Niamir, B. A heuristic approach to attribute partitioning. In Proceedings of the

ACM Special Interest Group on Management of Data. New York: ACM, 1979.

[17] Hoffer, J. A., & Kovacevic, A. Optimal performance of inverted files. Operations Research, 1982,

30, 336-354.

[18] Hoffer, J. A., & Severance, D. G. The use of cluster analysis in physical database design. In Proceedings of

the 1st International Conference on Very Large Databases. New York: ACM, 1975. [19) Hsiao, D., & Harary,

F. A formal system for information retrieval from files. Communications of the ACM, 1973, 13, 67-73.

[20] Jain, H. K. A comprehensive model for the storage structure design of CODASYL databases. Information

Systems, 1984, 9, 217-230.

[21] Jain, H. K., & Krobock, J. R. Computer-aided system for the database storage structure design.

Information Management, 1983, 6, 337-349.

[22] Katz, R. H., & Wong, E. Resolving conflicts in global storage design through replication. ACM

Transactions on Database Systems, 1983, 8, 110-135.

[23) Kroenke, D. M. Database processing (2nd ed.). Chicago, IL: Science Research Associates, 1983.

[24] March, S. T Techniques for record structuring. ACM Computing Surveys, 1983, 15, 45-80.

[25) March, S. T., & Severance, D. G. The determination of efficient record segmentation and blocking factors

for shared data files. ACM Transactions on Database Systems, 1977, 2, 279-296.

[26] Palvia, P. Art analytical investigation into record structuring and physical database design. Unpublished

doctoral dissertation, University of Minnesota, 1984.

[27] Palvia, P. How sensitive is the physical database design?—Results of experimental investigation. In

Proceedings of the AFIPS National Computer Conference. Reston, VA: AFIPS Press, 1987.

[28] Palvia, P., & March, S. T. Approximating block accesses in database organizations. Information

Processing Letters, 1984, 19, 75-79.

[29] Schkolnick, M. A clustering algorithm for hierarchical structures. ACM Transactions on Database Systems,

1977, 2, 27-44.

[30] Schkolnick, M. A survey of physical database design methodology and techniques. In Proceedings

of the 4th International Conference on Very Large Databases. New York: ACM, 1978.

[31] Severance, D. G. A parametric model of alternative file structures. Information Systems, 1975, 1, 51-55.

[32] Whang, K. Y., Weiderhold, G., & Sagalowicz, D. Physical design of network databases using the property

of separability. In Proceedings of the 8th International Conference on Very Large Databases. New York: ACM,

1982.

[33]Yao, S. B. An attribute based model for database access cost analysis. ACM Transactions on Database

Systems, 1977, 2, 45-67.

[34) Zanakis, S. H., Evans, J. R. Heuristic "optimization": Why, when, and how to use it. Interfaces, 1981, ii,

84-91.

