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Estimating the Wall Heat Flux of
Unsteady Conjugated Forced
Convection Between Two
Corotating Disks Using an Inverse
Solution Scheme
An inverse solution scheme based on the conjugate gradient method with the minimiza-
tion of the object function is presented for estimating the unknown wall heat flux of
conjugated forced convection flows between two corotating disks from temperature mea-
surements acquired within the flow field. The validity of the proposed approach is dem-
onstrated via the estimation of three time- and space-dependent heat flux profiles. A good
agreement is observed between the estimated results and the exact solution in every case.
In general, the accuracy of the estimated results is found to improve as the temperature
sensors are moved closer to the unknown boundary surface and the error in the measured
temperature data is reduced. �DOI: 10.1115/1.2976788�
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Introduction
The problem of fluid flow and heat transfer in radial flows

etween two corotating disks is of practical significance in many
ngineering applications. In many cases, the fluid flow and heat
ransfer characteristics are unsteady. However, in conjugated heat
ransfer problems involving corotating disks, it is frequently dif-
cult, if not impossible, to measure the heat flux or temperature at

he rotating disk surface. Therefore, the use of some form of in-
erse technique is generally required. However, such inverse
roblems are ill-posed, and hence the estimated solutions are
ighly sensitive to errors in the measured input data. Various re-
earchers have proposed methods for overcoming the inherent in-
tability of inverse solution schemes �1–4�.

Moutsoglou �5� considered the problem of steady-state forced
onvection between parallel flat plates and used a straight inver-
ion scheme and the whole domain regularization technique to
stimate the unknown heat flux at the upper plate surface from
emperature data measured at the lower plate. Colaco and Orlande
6� investigated the inverse problem of predicting two boundary
eat fluxes in irregularly shaped channels containing a forced con-
ection flow. Huang and Ozisik �7� determined the spacewise
ariation of the heat flux along a parallel plate duct containing a
aminar flow stream from temperature measurements acquired at
arious locations within the flow field. Liu and Ozisik �8� em-
loyed the conjugate gradient method and an adjoint equation to
onduct an inverse analysis of the timewise variation of the wall
eat flux for the case of transient turbulent forced convection
ithin a parallel plate duct. Raghunath �9�, Bokar and Ozisik �10�,

nd Liu and Ozisik �11� considered the inverse convection prob-
em of determining the inlet temperature of a thermally develop-
ng hydrodynamically developed laminar flow between parallel
lates from temperature measurements taken downstream of the
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entrance region. Machado and Orlande �12� applied the conjugate
gradient method with an adjoint equation to estimate the timewise
and spacewise variations of the wall heat flux of a parallel plate
channel containing a laminar forced convection flow. Park and
Lee �13� derived the space-dependent wall heat flux of a duct
containing laminar flow using the Karhunen–Loeve Galerkin pro-
cedure. Fic �14� presented an inverse solution scheme for estimat-
ing the boundary velocity in steady-state convection-diffusion
heat transfer problems with a potential fluid flow. Li and Yan
considered the inverse problem of estimating the space- and time-
dependent wall heat flux distributions for an unsteady forced con-
vection within a parallel plate duct �15,16� and an annular duct
�17�, respectively. In a more recent study, Chen et al. �18,19�
considered the equivalent problem in a parallel annular duct.

Due to their practical significance, the fluid flow and heat trans-
fer characteristics of flow systems involving rotating bodies have
attracted considerable attention. For example, Attia �20� consid-
ered the unsteady flow of an incompressible viscous non-
Newtonian fluid above an infinite rotating disk. Seghir-Ouali et al.
�21� employed an experimental approach to investigate the prob-
lem of convective heat transfer within a rotating cylinder with an
axial air flow. Siddiqui et al. �22� obtained numerical solutions for
the effects of the hall current and heat transfer on the magnetohy-
drodynamic �MHD� flow of a Burger’s fluid induced by the pull of
eccentric rotating disks. Aus der Wiesche �23� performed large-
eddy simulations to establish the heat transfer characteristics of a
pair of corotating disks in a parallel air crossflow.

In unsteady conjugated heat transfer problems, the heat capac-
ity of the wall has a significant effect on the transient character-
istics of the forced convection heat transfer performance. The ef-
fects of wall conduction on the characteristics of mixed
convection channel flows in the direct solver were studied by Lee
and Yan �24� and Yan and Lee �25�, and the results indicated that
both the conduction in the wall and the wall heat capacity play an
important role in unsteady conjugated mixed convection channel
flow. Yan and Lee �26� also examined the characteristics of un-
steady conjugated mixed convection flow and the heat transfer
between two corotating disks. In Ref. �27�, Luna et al. applied the

energy equation and the integral boundary layer technique to per-
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orm a transient analysis of the conjugated heat transfer process in
he thermal entrance region of a circular duct containing a fully
eveloped laminar power-law fluid flow. Indinger and Shevchuk
28� presented numerical solutions for the transient laminar heat
ransfer characteristics of a rotating disk heated to a constant tem-
erature and then suddenly subjected to unsteady cooling in still
ir. Ozar et al. �29� and Basu and Cetegen �30,31� observed heat
ransfer phenomena in a thin liquid film flowing over a rotating
isk by the experiment and numerical method, separately. In a
ater study, Shevchuk �32� examined the unsteady conjugated heat
ransfer problem of a nonuniformly heated rotating disk. Lallave
t al. �33� investigated the conjugate heat transfer characteristics
f a rotating uniformly heated solid disk of finite thickness and
adius under the impingement of a confined liquid jet. Although
he conjugated mixed convection problem with the rotating sys-
em was the concern of those previous researchers, the direct so-
ution was used in most of these studies. Sladek et al. �34� com-
ined the Stehfest algorithm, the Laplace inversion, and the
eshless local Petrov–Galerkin method to solve the inverse heat

onduction problem of fluid flows within 3-D axisymmetric rotat-
ng bodies.

Reviewing literature, it is found that the problem of the un-
teady forced convection flow between two corotating disks has
eceived relatively little attention. However, the heat transfer char-
cteristics of radial flows between corotating disks are of practical
ignificance in many engineering applications and therefore merit
detailed investigation. In general, most previous studies of con-

ugated mixed convection in rotating systems employed direct nu-
erical approaches. However, in such systems, it is generally im-

ractical to measure the heat flux or temperature at the rotating
urface, and hence some form of inverse technique is required.
ccordingly, the current study develops an inverse scheme to in-
estigate the heat transfer characteristics of the unsteady laminar
orced convection flow between two corotating disks. In the pro-
osed approach, a conjugate gradient method is used to estimate
he space- and time-dependent wall heat fluxes acting on the sur-
ace of the upper disk from temperature data acquired from vari-
us locations within the flow field.

Analysis

2.1 Direct Problem. Figure 1 presents a schematic of the
roblem considered in the present analysis. As shown, the parallel
isks corotate at an angular speed � and have an opening of 2rin
t the center, a wall thickness of �, and a separation of s. The
eometry of the rotating disks is described using a cylindrical
oordinate system �r ,z�. The inlet coolant fluid flows radially out-
ards through the annular space between the two disks at a uni-

orm velocity uin and a uniform temperature Tin. Initially, the en-
ire system, i.e., the flowing fluid and the two disk walls, have a
niform temperature Tin. However, at time t=0, the upper disk
all is subjected to a wall heat flux qw, which varies as a function

Fig. 1 Geometry and coordinate system
f the time, t, or as a function of both the time and the radial
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position, r. As shown, the lower disk wall is thermally insulated.
The aim of the current inverse analysis is to estimate the heat

flux profile along the surface of the upper disk based on tempera-
ture measurements acquired at different locations within the cool-
ant fluid flow. To simplify the analysis, the following assumptions
are made. �1� The flow is steady, incompressible, and axisymmet-
ric. �2� The fluid is laminar and is a boundary layer flow. �3� The
flow has a high Peclet number and thus conduction in the radial
direction of the fluid is negligible. �4� The heat conducted in the
radial direction of the wall is sufficiently small to be neglected.
The following dimensionless quantities are introduced to nondi-
mensionalize the governing equations:

R =
r

s
, Z =

z

s
, Rin =

rin

s
, R� = R − Rin, ��R,Z,�� =

T − Tin

�Tc

Pe =
uins

� f
, Re =

uin

s�
, Ro =

�s

uin
, Q =

qw

qref

�1�

U =
u

uin
, V =

v
uin

, W =
w

uin
, P� =

p�

��uin
2 �

� =
�f t

s2 , K =
kw

kf
, 	 =

�

s
, A =

�w

� f

where kw and kf are the thermal conductivities of the plate and the
fluid, respectively, �w and � f are the thermal diffusivities of the
plate and the fluid, separately, T is the temperature, qw is the heat
flux applied to the wall, and qref is the reference heat flux. In this
paper, the heat transfer to the wall is assumed positive.

The dimensionless governing equations describing the problem
shown in Fig. 1 have the following form.

For the continuity equation,

��RU�
�R

+ R
�W

�Z
= 0 �2a�

For the radial momentum equation,

U
�U

�R
+ W

�U

�Z
−

V2

R
= −

dP�

dR
+ � 1

Re
� �2U

�Z2 + 2RoV �2b�

For the tangential momentum equation,

U
�V

�R
+ W

�V

�Z
+

UV

R
= � 1

Re
� �2V

�Z2 − 2RoU �2c�

For the energy equation,

Fluid � 1

Pe
� �� f

��
+ U

�� f

�R
+ W

�� f

�Z
= � 1

Pe
� �2� f

�Z2 �2d�

Plate
��w

��
= A

�2�w

�Z2 �2e�

The corresponding initial conditions and boundary conditions
are as follows:

� = 0: � f = �w = 0 �2f�

� 
 0: R = Rin: U − 1 = V = W = 0, � f = �w = 0 �2g�

Z = − 	:
��w�R,− 	,��

�Z
= 0 �2h�

Z = 0: U = V = W = 0, � f = �w, K
��w�R,0,��

�Z
=

�� f�R,0,��
�Z
�2i�
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Z = 1: U = V = W = 0, � f = �w, K
��w�R,1,��

�Z
=

�� f�R,1,��
�Z

�2j�

Z = 1 + 	: K
��w�R,1 + 	,��

�Z
= Q�R,�� �2k�

In the direct problem, the heat flux applied to the surface of the
pper disk is known, and the objective is to compute the dimen-
ionless temperature distribution in the fluid flow between the two
isks. In the direct solution procedure, the governing equations
re transformed into finite difference equations using a fully im-
licit numerical scheme in which the r-direction convection term
s approximated by the upstream difference method, the
-direction diffusion term by the central difference scheme, and
he unsteady term by the backward difference scheme. Note that
he full details of the numerical procedure are presented in Ref.
35� and are therefore omitted here. The resulting system of equa-
ions forms a tridiagonal matrix, which can then be solved using
he Thomas algorithm �36�.

2.2 Inverse Problem. In the direct problem described above,
he velocity distribution, initial conditions, and boundary condi-
ions are all known, and thus the temperature distribution in the
ow field and the upper disk is easily derived. However, in the

nverse problem, the dimensionless heat flux Q�R ,�� acting on the
urface of the upper disk is not known and must be estimated from
emperature data acquired using sensors located within the fluid
tream. Essentially, the problem of estimating the wall heat flux
rom the measured temperature data involves minimizing the fol-
owing objective function:

J = �
i=1

M

�
k=1

N

�� f ,i,k − �i,k�2 �3�

here � f ,i,k=� f�Ri ,Z1 ,�k� is the calculated dimensionless tempera-
ure corresponding to an estimated Q�R ,�� and �i,k
��Ri ,Z1 ,�k� is the measured dimensionless temperature. Note

hat Z1=0 indicates that the temperature sensors are located at the
nterface between the fluid and the lower disk wall. Similarly, 0

Z1�1 implies that the sensors are positioned at some vertical
eight within the fluid stream, while Z1=1 indicates that the tem-
erature measurements are acquired at the interface between the
uid and the upper disk wall. Finally, M and N indicate the num-
er of measurement data in the R and � dimensions, respectively.
In the inverse solution procedure performed in this study, the

onjugate gradient method �37� is used to determine the unknown
all heat flux Q�R ,�� by minimizing the objective function J. The

terative process employed to do so can be expressed as

Qm,n
p+1 = Qm,n

p − pdm,n
p �4�

here Qm,n=Q�Rm ,�n�, p is the step size, and dm,n
p is the direc-

ion of descent and is determined from

dm,n
p = � �J

�Qm,n
�p

+ �pdm,n
p−1 �5�

n which the conjugate coefficient �p is calculated as

�p =

�
m=1

M

�
n=1

N �� �J

�Qm,n
�p	2

�
m=1

M

�
n=1

N �� �J

�Qm,n
�p−1	2

with �0 = 0 �6�

n Eq. �6�, �J /�Qm,n represents the gradient of the objective func-
p
ion. The step size  in Eq. �4� is determined from
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p =

�
i=1

M

�
k=1

N

�� f ,i,k
p − �i,k��

m=1

M

�
n=1

N � �� f ,i,k

�Qm,n
�p

dm,n
p

�
i=1

M

�
k=1

N ��
m=1

M

�
n=1

N � �� f ,i,k

�Qm,n
�p

dm,n
p 	2 �7�

where �� f ,i,k /�Qm,n is the sensitivity coefficient. This coefficient
can be obtained by differentiating the direct problem with respect
to Qm,n, i.e.,

� 1

Pe
� �

��
� �� f

�Qm,n
� + U

�

�R
� �� f

�Qm,n
� + W

�

�Z
� �� f

�Qm,n
�

= � 1

Pe
� �2

�Z2� �� f

�Qm,n
� �8a�

�

��
� ��w

�Qm,n
� = A

�2

�Z2� ��w

�Qm,n
� �8b�

� = 0:
�� f�R,Z,0�

�Qm,n
=

��w�R,Z,0�
�Qm,n

= 0 �8c�

� 
 0: R = Rin:
�� f�Rin,Z,��

�Qm,n
=

��w�Rin,Z,��
�Qm,n

= 0 �8d�

Z = − 	:
�

�Z
� ��w�R,− 	,��

�Qm,n
� = 0 �8e�

Z = 0:
�� f�R,0,��

�Qm,n
=

��w�R,0,��
�Qm,n

= 0 �8f�

K
�

�Z
� ��w�R,0,��

�Qm,n
� =

�

�Z
� �� f�R,0,��

�Qm,n
� �8g�

Z = 1:
�� f�R,1,��

�Qm,n
=

��w�R,1,��
�Qm,n

= 0 �8h�

K
�

�Z
� ��w�R,1,��

�Qm,n
� =

�

�Z
� �� f�R,1,��

�Qm,n
� �8i�

Z = 1 + 	: K
�

�Z
� ��w�R,1 + 	,��

�Qm,n
� = û�R − Rm,� − �n� �8j�

for m=1,2 , . . . ,M and n=1,2 , . . . ,N, where

û�R − Rm,� − �n� = 
1 if R = Rm, � = �n

0 otherwise
� �8k�

The gradient of the objective function, �J /�Qm,n, is determined
by differentiating Eq. �3� with respect to Qm,n, i.e.,

�J

�Qm,n
= 2�

i=1

M

�
k=1

N

��i,k − �i,k�
�� f ,i,k

�Qm,n
�9�

In general, if the inverse problem contains no measurement
errors, the condition

J�Qm,n
p � � � �10�

can be used as a termination criterion for the iterative process,
where � is a small specified positive number. However, in the
current case, the measured temperature data inevitably contain a
degree of error. Accordingly, the termination criterion is specified
using the discrepancy principle �38�, i.e.,

J�Qm,n
p � � MN�2 �11�

where � is the standard deviation of the measurement error.
The computational procedure employed to solve the current in-
verse convection problem can be summarized as follows.
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Step 1. Solve the sensitivity problem to calculate the sensitivity
oefficient �� f ,i,k /�Qm,n.

Step 2. Make an initial guess of the dimensionless heat flux

m,n
0 and set the iteration step number to p=0.
Step 3. Solve the direct problem to compute � f ,i,k.
Step 4. Calculate the objective function. Terminate the iteration

rocess if the specified criterion is satisfied; otherwise go to Step
.

Step 5. Knowing �� f ,i,k /�Qm,n, � f ,i,k, and �i,k, compute the gra-
ient of the objective function, �J /�Qm,n.
Step 6. Knowing �J /�Qm,n, compute �p and dm,n

p .
Step 7. Knowing �� f ,i,k /�Qm,n, � f ,i,k, �i,k, and dm,n

p , compute for
p.
Step 8. Knowing p and dm,n

p , compute Qm,n
p+1. Set p= p+1 and

eturn to Step 3.

Results and Discussions
As described above, the aim of the current inverse analysis is to

stimate the unknown heat flux acting on the surface of the upper
isk in the corotating pair from temperature measurements taken
ithin the flow field or at the interface between the flow field and

he upper or lower disks. As shown in Fig. 1, three types of
oundary are applied on the corotating disks, i.e., the interface
etween the disk wall and the fluid, the quantity of the heat flux
ntering the upper disk surface, and the adiabatic boundary on the
ower disk wall. In practice, such temperature measurements in-
vitably contain a certain degree of error. To reflect this, the tem-
erature data, �, used in the present simulations as the basis for
stimating the unknown boundary conditions, are computed by
dding a random error to the exact temperature solutions, �, ob-
ained by solving the direct problem, i.e.,

� = � + �� �12�

here � is the standard deviation of the measurement data and �
s a random variable with a normal distribution, a zero mean, and

unit standard deviation. The value of � is calculated using the
MSL subroutine DRNNOR �39� and is specified within the range
2.576���2.576, which represents the 99% confidence bound

or the measured temperature.
The validity and applicability of the proposed inverse solution

rocedure are demonstrated by considering three different heat
ux profiles.
In Case 1,

Q��� = 0.01�, � � 500 �13a�

Q��� = 0.01�1000 − ��, � 
 500 �13b�
In Case 2,

Q��� = 5 sin���/1000� �13c�
In Case 3,

Q�R,�� = 0.125R� sin���/1000� �13d�
As can be seen, the heat flux profiles in Cases 1 and 2 have the

orm of simple time-dependent triangular and sinusoidal func-
ions, respectively, whereas Case 3 considers the rather more com-
licated scenario of a wall heat flux that varies both in time and
pace. In performing the simulations, the dimensionless thickness
f the disk wall, 	, is assumed to be 0.1, and 41 equally spaced
easurements are taken in the ranges 0�R��40 and 0��
1000, respectively. These data are then used as input data to

econstruct the unknown wall heat flux in the inverse problem.
he simulations consider an air stream �Pr=0.7� flowing between

wo corotating disks with carbon steel walls �K=2000 and A
0.65�. The opening radius, Rin, and the through-flow Reynolds
umber, Re, are assumed to be 20 and 500, respectively.

To evaluate the robustness of the proposed inverse solution pro-

edure, the three heat flux profiles described in Eqs. �13a�–�13d�

21702-4 / Vol. 130, DECEMBER 2008
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are estimated under the assumptions of measurement errors of �
=0, 0.03, 0.06, or 0.09, respectively, and sensor positions of Z1
=0–0.9. The accuracy of the estimated results is quantified using
the following absolute average error index:

� =
1

nt
�
j=1

nt

�f − f0� �14�

where f is the estimated result with measurement errors, f0 is the
exact result, and nt is the number of temporal steps. Clearly, a
smaller value of � indicates a better estimation result, and vice
versa.

Figure 2 compares the exact solution of the Case 1 heat flux
profile with the estimated results obtained under the assumption of
temperature measurement errors of �=0.03 and �=0.06, respec-
tively. Note that in both cases, the temperature sensor is assumed
to be located at Z1=0.9. In general, when the temperature mea-
surements are error-free, the estimated heat flux profile virtually
coincides with the exact solutions. Furthermore, a good general
agreement exists between the exact result and the inverse solu-
tions even when the temperature measurements include an error
component. Thus, the robustness of the proposed inverse solution
scheme is confirmed. From inspection, the absolute average errors
of the estimated dimensionless heat fluxes are found to be 0.144
and 0.174 for measurement errors of �=0.03 and �=0.06, respec-
tively. In addition, the corresponding relative errors are computed
to be around 2.88% and 3.48%, respectively, where the relative
error is defined as the absolute average error divided by the maxi-
mum wall heat flux.

Figure 3�a� illustrates the variation of the absolute average error
of the estimated results with the temperature measurement error as
a function of the sensor location under various conditions in
which � ranges from 0.0 to 0.09 at Z1=0.0, 0.3, 0.6, or 0.9, sepa-
rately. In general, large measuring errors make the estimated re-
sults diverge from the error-free solutions. It is observed that the
absolute average error increases with an increasing measurement
error, but decreases with an increasing value of Z1, i.e., the sen-
sors are moved closer toward the upper disk. For convenience, the
data presented in Fig. 3�a� are also tabulated in Table 1. It is noted
in Table 1 that the absolute average errors are relatively amplified
when � is increased from 0.03 to 0.06, compared with that when
� is changed from 0.06 to 0.09, especially Z1=0.0 and 0.3. From
inspection, it is found that the absolute average error is highly
sensitive to input data errors over the range �=0.03–0.06, par-
ticularly when the sensors are located further from the unknown

Fig. 2 Comparison of the exact result and inverse results „�
=0.03 and �=0.06… for the Case 1 heat flux profile „Z1=0.9…
boundary surface, i.e., at Z1=0.0 or Z1=0.3, respectively. Figure
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�b� illustrates the variation of the absolute average error with the
ensor location as a function of the temperature measurement er-
or. It is apparent that irrespective of the magnitude of the mea-
urement error, the absolute average error reduces significantly as
he value of Z1 increases beyond 0.2. In other words, an improved
stimation performance is obtained as the sensors are moved
loser to the unknown boundary of interest. Overall, the results
how that the accuracy of the inverse solution scheme improves as
he error in the temperature measurement data decreases or the
istance between the temperature sensors and the upper boundary
urface reduces.

ig. 3 Variation of the absolute average error with the „a… mea-
urement error as a function of sensor location and „b… the
ensor location as a function of the measurement error for the
ase 1 heat flux profile

Table 1 The absolute average errors at diffe
Case 1

� 0.0 0.01 0.02 0.03 0

Z1=0.0 0.05 0.485 0.633 0.719 0
Z1=0.3 0.04 0.475 0.608 0.665 0
Z1=0.6 0.004 0.199 0.258 0.312 0
Z1=0.9 0.0 0.081 0.104 0.144 0
ournal of Heat Transfer
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To evaluate the effect of the sensor location on the estimation
performance of the proposed scheme, Fig. 4 compares the esti-
mated and exact solutions for the Case 1 heat flux profile for a
constant temperature measurement error of �=0.03 and sensor
locations of Z1=0.0, 0.5, and 0.9, respectively. In general, it is
seen that the deviation between the estimated results and the exact
solution increases as the value of Z1 decreases. In other words, the
accuracy of the estimated heat flux reduces as the sensors are
moved further from the unknown boundary surface.

To verify the applicability of the inverse solution scheme to the
estimation of unknown time-dependent heat flux profiles of vari-
ous forms, the simulation procedure described above was repeated
for the second heat flux boundary condition, i.e., the time-
dependent sinusoidal profile given in Eq. �13c�. Figure 5�a� com-
pares the exact solution with the estimated results obtained using
input data with measurement errors of �=0.03 and �=0.06, re-
spectively, and the sensor location is Z1=0.9. As in Fig. 2, it can
be seen that a good agreement is obtained between the exact result
and the estimated solutions as the value of the measurement error
is reduced. Figure 5�b� shows the effect of the sensor location on
the accuracy of the estimated results given a constant measure-
ment error of �=0.03. As in the previous example, the deviation
between the estimated result and the exact solution increases as
the sensor is moved further from the upper wall. Figure 6 plots the
variation of the absolute average error with the sensor location as
a function of the measurement error. It is evident that the accuracy
of the estimated results improves as the error in the measurement
data decreases or the sensor is moved closer to the upper wall
surface.

Finally, the wall heating condition of Case 3, which is a func-
tion of space �R�� and time ���, is tested. Figure 7 shows the
estimated heat fluxes at R�=8, 20, and 32 under different mea-
surement errors ��=0.03 and �=0.06� for wall heating conditions

t � and Z1 for the wall heating condition of

0.05 0.06 0.07 0.08 0.09

6 0.877 0.88 0.882 0.885 0.887
9 0.814 0.817 0.82 0.823 0.827
7 0.388 0.406 0.429 0.5 0.5
4 0.169 0.174 0.191 0.215 0.226

Fig. 4 Comparison of the exact result and inverse results „�
=0.03… for the Case 1 heat flux profile as a function of the sen-
sor location
ren
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of Case 3 and compared with the exact data; the sensor location is
Z1=0.9. As shown, the heat flux considered in this example is
both time- and space-dependent. In general, it can be seen that the
absolute value of the heat flux increases with an increasing value
of R�. Finally, it is noted that for a given value of R�, the accuracy
of the estimated results improves as the measurement error re-
duces. Figure 8 shows the variation of the absolute average error
with the sensor location as a function of the measurement error.
As in previous examples, it can be seen that the accuracy of the
estimated results improves as the sensor is moved toward the un-
known boundary surface or as the measurement error is reduced.
Table 2 summarizes the variation of the absolute average error as
a function of both the measurement error and the sensor location.
The results show that the accuracy of the estimated results reduces
when the sensor is positioned closer to the lower wall. For ex-
ample, given a constant measurement error of �=0.09, the esti-
mation errors corresponding to sensor locations of Z1=0.0, 0.3,
0.6, and 0.9 are found to be 1.055, 1.017, 0.436, and 0.246, re-

Fig. 7 Comparison of the exact result and inverse results „�
=0.03 and �=0.06… for the Case 3 heat flux profile „Z1=0.9…

Fig. 8 Variation of the absolute average error with the sensor
location as a function of the measurement error for the Case 3
ig. 5 Comparison of the exact result and inverse results for
he Case 2 heat flux profile: „a… �=0.03 and �=0.06 „Z1=0.9…
ig. 6 Variation of the absolute average error with the sensor
ocation as a function of the measurement error for the Case 2
heat flux profile
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pectively. However, it is apparent that the effect of the sensor
ocation on the accuracy of the estimated results becomes less
ronounced as the measurement error reduces.

In general, the results presented in this section of the paper
onfirm the ability of the proposed inverse solution scheme to
stimate surface heat flux profiles of various forms given knowl-
dge of the corresponding temperature distribution within the fluid
eld. Overall, the results demonstrate that the accuracy of the
stimated solutions is enhanced as the temperature sensors are
oved toward the unknown boundary surface or the precision of

he measured temperature data is improved.

Conclusions
This study has presented an inverse scheme based on the con-

ugate gradient method to estimate the space- and time-dependent
all heat flux in the problem of unsteady conjugated forced con-
ection between two parallel corotating disks. The validity of the
roposed approach has been demonstrated by considering three
ifferent heat flux profiles. In general, the results have shown that
he solution scheme yields satisfactory results for all three pro-
les. It has also been shown that the accuracy of the estimated
esults can be enhanced by suppressing the error in the measure-
ent data or by locating the temperature sensors closer to the

nknown boundary surface.
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omenclature
A � dimensionless thermal diffusivity
d � direction of descent
f � estimated result with measurement errors

f0 � exact result
h � heat transfer coefficient
J � objective function
K � dimensionless thermal conductivity
k � thermal conductivity

M � number of the measured data in the R direction
N � number of the measured data in the � direction
nt � number of temporal steps

P� , p� � dimensionless and dimensional pressure
departures

Pe � Peclet number
Q � dimensionless wall heat flux

qw � wall heat flux
qref � reference heat flux
R ,r � dimensionless and dimensional radial

coordinates
R � dimensionless relative radial position

Rin ,rin � dimensionless and dimensional radius openings
Re � Reynolds number
Ro � rotation number

s � disk spacing
T � temperature

Table 2 The absolute average errors at diffe
Case 3

Z1 0.0 0.1 0.2 0.3

�=0.0 0.071 0.07 0.068 0.034
�=0.03 0.642 0.668 0.687 0.645
�=0.06 1.049 1.049 1.043 1.01
�=0.09 1.055 1.056 1.05 1.017
Tin � inlet temperature

ournal of Heat Transfer
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t � time
U ,V ,W � dimensionless velocity

uin � inlet velocity
u ,v ,w � velocity

Z1 � Z-coordinate position of temperature sensors
� � measured dimensionless temperature data

Greek Symbols
� � thermal diffusivity
 � step size
� � disk wall thickness
� � absolute average error
� � conjugate coefficient
� � angular speed of corotating disks
� � specified positive number
	 � dimensionless disk wall thickness
� � kinematic viscosity
� � dimensionless temperature
� � standard deviation
� � dimensionless time
� � random variable

Superscript
p � pth iteration

Subscripts
f � fluid

w � wall
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