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Abstract In rewriting the Hydra battle refers to a term rewrite system H
proposed by Dershowitz and Jouannaud. To date, H withstands any attempt
to prove its termination automatically. This motivates our interest in term
rewrite systems encoding the Hydra battle, as a careful study of such systems
may prove useful in the design of automatic termination tools. Moreover it
has been an open problem, whether any termination order compatible with
H has to have the Howard-Bachmann ordinal as its order type, i.e., the proof
theoretic ordinal of the theory of one inductive de�nition. We answer this
question in the negative, by providing a reduction order compatible with H,
whose order type is at most ε0, the proof theoretic ordinal of Peano arithmetic.

1 Introduction

Kirby and Paris have shown in [16] that the Battle of Hercules and the Hydra

terminates and that this fact cannot be proven in Peano arithmetic. The latter
is due to the rapid growth rate of the length of the battle. It is a worthwhile
term rewriting exercise to de�ne a term rewrite system (TRS for short) that
faithfully describes this battle. A �rst such TRSH was presented in [10], where
H mimics the de�nition of the Hydra battle in [16] to some extent.

The central theoretical motivation of this paper is the following question,
posed by Cichon: Must any termination order used for proving termination of

the Battle of Hydra and Hercules-system have the Howard ordinal as its order

type? More precisely must any termination order used for proving termination
of H have the Howard-Bachmann ordinal as its order type? Here a termination

order is a well-founded order � on terms, such that by showing that the
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rewrite relation is contained in �, i.e., →H ⊆ �, we establish termination of
H, compare [8].

Incidentally this is open problem # 23 in the list of open problems in
rewriting (RTALooP for short).1 Note that the Howard-Bachmann ordinal is
the proof theoretic ordinal of the theory of one inductive de�nitions, compare
e.g. [23]. For related work, see for example [13, 26, 19, 5, 3, 12].

When slightly reformulated, the question can be directly answered nega-
tively. Touzet indicated in [26] how the Battle of Hydra and Hercules can be
formulated as a TRS R so that the order type of a termination order com-
patible with R equals ε0, the proof theoretic ordinal of Peano arithmetic, or
alternatively, the �rst �xpoint of the equation ωα = α. (Observe that the
Howard-Bachmann ordinal easily dwarfs the ordinal ε0.) However, in its strict
sense�where we consider the TRS H�the question remained open until now.
It is worthy of note that the system R de�ned by Touzet is quite di�erent from
the TRS H. In particular the former is totally terminating, while the latter is
not even simply terminating.

In this paper we provide a negative answer, by de�ning a reduction order
of order type at most ε0 that is compatible with H. (Clearly the existence of a
reduction order of order type ε0, implies the existence of termination order of
order type ε0.) Admittedly this is not a surprising result. The evidence that the
answer to the problem is negative, is (almost) overwhelming. Apparently the
question has its roots in a conjecture that is sometimes referred to as Cichon's
principle. Cichon claimed in [8] that the (worst-case) complexity of a TRS
compatible with a termination order of order type α is eventually dominated
by a function from the slow-growing hierarchy along α. The correctness of this
conjecture would imply a positive answer to the studied question. Although the
conjecture holds for the lexicographic and multiset path orders (c.f. [14, 27]
but also [4, 22]), it is incorrect in general, as has been shown by Touzet in [26].
Moreover, Touzet's result establishes that the principle already fails for the
class of simply terminating TRSs, compare. problem # 81 in the RTALooP.
Furthermore Lepper established that Cichon's principle fails for the oldest
invented reduction order: the Knuth-Bendix order (c.f. [17, 21]).

This implies that the intuition behind the question is unfounded. The order
type of a termination order compatible with a suitable encoding of the Hydra
battle need not be higher than the proof-theoretic ordinal of Peano arithmetic.
This suggests that the answer to the question is negative. Moreover, it even
seems to imply that proving this should be easy, in particular based on the
excellent work by Touzet and Lepper. Unfortunately, it turned out to be rather
hard work.

1 See http://rtaloop.mancoosi.univ-paris-diderot.fr/.
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Instead of studying the TRS H directly, we base our investigations on the
following TRS proposed by Dershowitz in 2004.2

1: h(e(x), y)→ h(d(x, y), S(y))
2 : d(g(g(0, x), y), S(z))→ g(e(x), d(g(g(0, x), y), z))
3 : d(g(g(0, x), y), 0)→ e(y)
4 : d(g(0, x), y)→ e(x)
5 : d(g(x, y), z)→ g(d(x, z), e(y))
6 : g(e(x), e(y))→ e(g(x, y)) .

In the following this TRS is denoted as D. (See [12] for an account on the
di�erences betweenH andD.) The TRSsH andD are known to be terminating
and sketches of termination proofs by trans�nite induction up-to ε0 can be
found e.g. in [10, 9] (but see also [12] for the limits of these sketches). Both
systems are overlapping and not simply terminating. Furthermore observe that
both systems are non-con�uent. For example with respect to TRS D consider
the following peak:

e(0)← d(g(0, 0), 0)→ g(d(0, 0), e(0)) .

It is easily seen that this peak is not joinable. In the sequel, we �rst study the
TRS D, as this system faithfully encodes the Hydra battle, which simpli�es
the investigation. Only after the completion of this study, we indicate how
the developed theory has to be adapted to deal with the original system H,
c.f. Section 6.

The motivation for this work is not purely theoretical, but also an attempt
to understand why proving termination of the Hydra battle automatically
seems so di�cult. Both TRSs H and D are part of a collection of TRSs used
in the international termination competition.3 None of the termination provers
that entered any of the termination competitions so far, can prove termination
of these systems.4

The rest of this paper is organised as follows. In Sections 2 we present basic
notions. In Section 3 we recall the de�nition of the Battle of Hercules and the

Hydra and provide the starting points of the paper. In Section 4 we introduce
a notation system for ordinal less than ε0 that is of central importance for
our termination proof. In Section 5 we prove the termination of D. To this
end, we introduce a well-founded, monotone algebra (A,B) that is compatible
with D. And the induced reduction order BA has order type ε0. In Section 6 we
adapt this algebra to an algebra (B,I) that is again well-founded, monotone,

2 The TRS D was presented in the rewriting list (see https://listes.ens-lyon.fr/wws/
arc/rewriting) on February 19, 2004. We swap the arguments of the symbols d and h and
make use of the unary function symbol S instead of the original c.
3 See http://colo5-c703.uibk.ac.at:8080/termcomp.
4 The results for the Termination Competition in 2008 are to be found at http:

//colo5-c703.uibk.ac.at:8080/termcomp. The problem identi�cation of H is TRS/D33-33,
while the identi�cation of D is TRS/Zantema06-hydra.

https://listes.ens-lyon.fr/wws/arc/rewriting
https://listes.ens-lyon.fr/wws/arc/rewriting
http://colo5-c703.uibk.ac.at:8080/termcomp
http://colo5-c703.uibk.ac.at:8080/termcomp
http://colo5-c703.uibk.ac.at:8080/termcomp


and compatible with H. Subsequently we show that the induced reduction
order IB has order type 6 ε0. Finally, we conclude with the discussion of
related work in Section 7.

2 Preliminaries

2.1 Proper Orders and Ordinals

We assume very basic knowledge of set-theory and in particular ordinals,
see [15]. In motivating this research, the Howard-Bachmann ordinal was men-
tioned, but in the remainder, ε0 will be the largest ordinal to occur. We write >
to denote the standard order on ordinals. Recall that any ordinal α < ε0, α 6= 0
can be uniquely represented in Cantor Normal Form (CNF for short), i.e., it
can be written as

ωα1 + · · ·+ ωαn ,

where α1 > · · · > αn. For α = ωα1 + · · ·+ ωαn and β = ωαn+1 + · · ·+ ωαn+m

de�ne the natural sum α ⊕ β as ωαπ(1) + · · · + ωαπ(n+m) , where π denotes a
permutation of the indices {1, . . . , n + m} such that απ(1) > απ(2) > · · · >
απ(n+m) is guaranteed. We write α · n as an abbreviation of α + · · · + α (n-
times α). Further, we identify the natural numbers with the ordinals below ω.
I.e. the ordinal {∅, {∅}} is denoted as 2. We denote the set of limit ordinals
by Lim.

A proper order � is an irre�exive and transitive relation. The converse of �
is written as ≺. A quasi-order is a re�exive and transitive relation and a partial
order is an anti-symmetric quasi-order. A proper order � on a set A is well-
founded (on A) if there exists no in�nite descending sequence a1 � a2 � · · ·
of elements of A. A well-founded proper order is called a well-founded order.
A proper order is called linear (or total) on A if for all a, b ∈ A, a di�erent
from b, a and b are comparable by �. A linear well-founded order is called a
well-order.

To each well-founded order � on a set A we can associate a (set-theoretic)
ordinal, its order type. First we associate an ordinal to each element a of A by
setting otype�(a) := sup{otype�(b) + 1 | b ∈ A and a � b}. Then the order

type of �, denoted as otype(�), is de�ned as sup{otype�(a) + 1 | a ∈ A}. For
two proper orders � and �′ on A and A′, respectively, a mapping o : A→ A′

embeds � into �′ if ∀x, y ∈ A (x � y =⇒ o(x) �′ o(y)). The proof of the next
lemma can be found in [17].

Lemma 1 If � and �′ are well founded and if � can be embedded into �′,
then otype(�) 6 otype(�′).

Two linear proper orders (A,�) and (B,�′) are called order-isomorphic (or
equivalent) if there exists a surjective mapping o : A → B such that ∀x, y ∈
A (x � y ⇐⇒ o(x) �′ o(y)).



2.2 Nested Multisets

Ordinals below ε0 are strongly related to nested multisets (S)],∗ over some
set S, c.f. [11] or [25, Appendix A].

A multiset M over S is a functionM : S → N such that the set of elements
of M is �nite. For s ∈ S, M(s) denotes the multiplicity of s in M . The
set of elements of M is de�ned as {s | M(s) > 0}. The set of multisets
over S is denoted as S]. We use the usual membership relation, to denote
membership for multisets; i.e. s ∈ M if M(s) > 0. For multisets M,N we
de�ne the multiset union M+N ofM and N by adding the two multiplicities:
(M +N)(s) := M(s) +N(s). Multiset union is associative and commutative.

For a proper order�, we de�ne themultiset extension �] of� as follows:�]
is the smallest transitive relation that satis�es

∀x ∈M ′ s � x =⇒M + {s} �] M +M ′ ,

for all s ∈ S, M,M ′ ∈ S]. Note that, if � is well-founded, then �] is well-
founded, too. Moreover, if otype(�) = α, then otype(�]) = ωα. We set I](S) :=
S∪S] and de�ne the set of nested multisets (S)],∗ over S by iterated application
of the operator I]:

(S)],∗ :=
⋃
n>0

(I])n(S) .

Note that I]
0(S) ⊂ I]

1(S) ⊂ I]
2(S) . . . is an ascending sequence. For a proper

order � de�ne the extension �I] of �] to I](S) inductively:

� ∀s, s′ ∈ S (s � s′ =⇒ s �I] s
′),

� ∀M,M ′ ∈ (S] − S) (M �] M ′ =⇒M �I] M
′),

� ∀s ∈ S, ∀M ∈ (S] − S) (M �I] s).

The results of the next two lemmas, have already been reported in [11].

Lemma 2 Let � be a well-founded order on S.

1. Then �I] is a well-founded order on I](S).
2. Let otype(�) = α and α closed under addition. Then otype(�I]) = ωα.

The given construction allows us to de�ne the nested multiset order induc-
tively. Let �0

I]
:=�; �n+1

I]
:=(�nI])I] . It is easy to see that �nI] is a proper order

on I]
n(S) for each n. Finally, we extend �I] to the nested multiset order �],∗

on (S)],∗ by de�ning

�],∗:=
⋃
n>0

�nI] .

We introduce the notion of ω-towers: ω0 := 1 and ωn+1 := ωωn .

Lemma 3 Let � be a well-founded order on S.

1. Then �nI] is a well-founded order on I]
n(S) and �],∗ is a well-founded order

on (S)],∗.



2. Let otype(�) = α and α closed under addition. Then otype(�nI]) = ωαn .

3. Let otype(�) = α, α closed under addition, and α 6 ε0. Then we have

otype(�],∗) = ε0.

Example 4 Consider (N, >), where > denotes the usual order on N. It is not
di�cult to see that ((N)],∗, >],∗) is equivalent to ((∅)],∗,�],∗), where � de-
notes the empty order. By the previous lemma, we obtain that otype(>],∗) =
otype(�],∗) = ε0.

In the sequel, we write (NMul, >],∗) instead of ((∅)],∗,�],∗).

2.3 Term Rewriting

Furthermore we assume familiarity with term rewriting. For further details
see [2, 25]. Let V denote a countably in�nite set of variables and F a signature.
The set of terms over F and V is denoted as T (F ,V), while the set of ground
terms is written as T (F). The set of variables occurring in a term t is denoted
as Var(t). A term t is called ground or closed if Var(t) = ∅.

A term rewrite system (TRS for short) (F ,R) over T (F ,V) is a �nite set
of rewrite rules. If there is no need to indicate the signature F , we simply
write R to denote a TRS. A relation on T (F ,V) is a rewrite relation if it is
compatible with F-operations and closed under substitutions. The smallest
rewrite relation that contains R is denoted as →R. The transitive closure
of →R is denoted by →+

R, and its transitive and re�exive closure by →∗R. A
TRS R is called terminating if there is no in�nite sequence (ti : i ∈ N) of terms
such that t1 →R t2 →R · · · →R tm →R · · ·

A rewrite relation that is also a proper order is called rewrite order. A
well-founded rewrite order is called reduction order. Let � denote a proper
order. A TRS R and a proper order � are compatible if R ⊆ �. We also say
that R is compatible with � or vice versa. A TRS R is terminating if and
only if it is compatible with a reduction order �.

Let F be a signature. An F-algebra (or simply algebra)A is a set A together
with operations fA : An → A for each function symbol f ∈ F of arity n. The
set A is called the carrier of A. An F-algebra (A,�) is called monotone

if A is associated with a proper order � and every algebra operation fA is
strictly monotone in all its arguments. A monotone algebra (A,�) is called
well-founded if � is well-founded. Let (A,�) denote a monotone algebra and
let a : V → A denote an assignment. We write [a]A to denote the homomorphic
extension of the assignment a and de�ne a rewrite order �A on T (F ,V) in
the usual way: s �A t if [a]A(s) � [a]A(t) for every assignment a. Let (A,�)
be a well-founded and monotone algebra (WMA for short). Then it is easy
to see that �A is a reduction order. We say the WMA (A,�) is compatible
with a TRS (F ,R), if �A is compatible with R. The following well-known
theorem essentially traces back to [20]. In its modern form it can be found
in [25, Chapter 6].



Theorem 5 A TRS is terminating if and only if it is compatible with a well-

founded, monotone algebra.

3 The Hydra Battle

We recall the de�nition of the Hydra battle, see also [16, 26]. The beast is
represented as a �nite tree, where each leaf corresponds to a head of the Hydra.
Hercules chops o� heads of the Hydra, but the Hydra regrows according to the
following rule: If the cut head has a pre-predecessor, then the branch issued
from this node together with the remaining subtree is multiplied by the stage
of the game. Otherwise the Hydra ignores the loss.

Let us consider a short example, more examples can be found in [16, 26, 12].
We write (H, n) to describe a single con�guration in the game, where H denotes
the Hydra and n the current stage of the game.

Example 6

(H1, 1) (H2, 2) (H3, 3)

In the �rst stage, Hercules chops o� the leftmost head. As this head has no
grandparent, Hydra shrinks. However, in Stage 2, Hercules chops o� a head
with a grandparent (the triangular root). Consequently, Hydra grows two re-
placement branches, as indicated.

The natural game-theoretic question is whether Hercules has a winning
strategy. A strategy is a mapping determining which head Hercules chops o�
at each stage. In turns out that any strategy is a winning strategy.

Theorem 7 Every strategy is a winning strategy.

In proof, we follow Kirby and Paris and associate with each Hydra an ordinal
strictly less than ε0:

� To each leaf assign 0.
� To each other node v assign ωα1 ⊕ · · · ⊕ ωαn , if αi are the ordinals assigned
to the successors of v.

The ordinal representing the Hydra, is the ordinal assigned to the root.

Example 8 Consider the Hydras H1�H3, above. These have the representa-
tions:

ω3 ⊕ ω2 ⊕ 1 , ω3 ⊕ ω2 , and ω2 · 3 .



In the sequel, we often confuse the representation of a Hydra as �nite tree
and as ordinal. We �x a speci�c strategy S. Let (H, n) denote a con�guration
of the game. Then (H)Sn denotes the resulting Hydra if S is applied to H at
stage n. I.e. the next con�guration is of form ((H)Sn, n + 1). As Hydras are
conceivable as ordinals, the next lemma follows easily, c.f. [16].

Lemma 9 For any strategy S, Hydra H, and natural number n, we obtain that

H > (H)Sn.

Then Theorem 7 follows from Lemma 9 together with the fact that > is
well-founded.

Remark 10 In Section 2 we indicated the connection between ordinals ( < ε0)
and nested multisets. It is a simple exercise to represent Hydras by elements
of NMul and prove the variant of the above lemma where the ordinal compar-
ison > is replaced by >],∗. Consequently Theorem 7 is provable without any
reference to ordinals.

In the remainder of this section, we formally de�ne a speci�c strategy for
the Hydra battle that has been called standard in [26]. Further, we show that
D simulates the Hydra battle on the standard strategy. For n ∈ N, we associate
with every α ∈ CNF an ordinal αn ∈ CNF:

αn =


0 if α = 0
β if α = β + 1
β + ωγ · n if α = β + ωγ+1

β + ωγn if α = β + ωγ and γ ∈ Lim .

Then we can de�ne the standard Hydra battle as follows.

De�nition 11 A Hydra is an ordinal in CNF. The Hydra battle is a sequence
of con�gurations. A con�guration is a pair (α, n), where α denotes a Hydra
and n the current step. Let (α, n) be a con�guration, such that α 6= 0. Then
the next con�guration in the standard strategy is de�ned as (αn, n+ 1).

Remark 12 The sequence (αn)n∈N is usually referred to as the fundamental

sequence of α. A fundamental sequence ful�ls the property that if α is a limit
ordinal, i.e. α ∈ Lim, then the sequence is strictly increasing and its limit is α.
For the connection between rewriting and fundamental sequences see e.g. [22].

We are going to show that the TRS (F ,D) introduced in Section 1 faithfully
represents the standard Hydra battle. In the sequel the signature F is �xed
to the signature of the TRSs D and H respectively. Due to the de�nition of D
this is particularly simple. We de�ne a mapping O : CNF→ T (F):

O(α) :=


0 if α = 0
g(O(γ), 0) if α = ωγ

g(O(γ),O(β)) if α = β + ωγ .

Each con�guration (α, n) of the game, is encoded by h(e(O(α)), Sn(0)).



Lemma 13 Let α ∈ CNF, α 6= 0, n ∈ N− {0}. Then h(e(O(α)), Sn(0)) →+
D

h(e(O(αn)), Sn+1(0)).

Proof Due to the presence of the rule h(e(x), y) → h(d(x, y), S(y)) in D it
su�ces to verify that d(O(α), Sn(0)) →+

D e(O(αn)). This can be shown by
trans�nite induction on α. We restrict our attention to the case where α =
β + ωγ+1, see [12] for the full proof. By de�nition αn = β + ωγ · n and t =
O(α) = g(g(0,O(γ)),O(β)), let s = O(β), r = O(γ). We obtain

O(αn) = g(r, g(r, · · · g(r, s) · · · ))︸ ︷︷ ︸
n occurrences of r

,

and the following rewrite sequence su�ces:

d(g(g(0, r), s), Sn(0))→+
D g(e(r), · · · d(g(g(0, r), s), 0) · · · )) rule 2, n times

→D g(e(r), g(e(r), · · · g(e(r), e(s)) · · · )) rule 3

→+
D e(g(r, g(r, · · · g(r, s) · · · ))) rule 6, n times .

ut

Remark 14 In Remark 10 we indicated that Theorem 7 can be proven without
the use of ordinals, by replacing the ordinal comparison > by the proper
order >],∗. The same result holds for Lemma 13. It is not di�cult to see how
to replace the de�nition of αn by a corresponding de�nition acting on the
set of nested multisets NMul. Hence, all results in this section can be proven
without the use of ordinals.

From Theorem 7, we conclude that the standard strategy is a winning
strategy for Hercules and that this fact can be proven by a well-founded order
of order type ε0. From Lemma 13, we know that D simulates the standard
strategy. And the proof of this lemma clari�es the intended semantics of the
symbols in F . Thus the de�nition of a suitable termination order � compatible
with D (or H) may appear to be a simple exercise. Unfortunately, the exercise
turns out to be a bit more involved. Below we emphasise the major obstacles.

The proof of Lemma 13 suggests to interpret the symbol h as a pairing
function that returns a con�guration in the Hydra battle. However, in general
the second argument of h can be an arbitrary term, for example the represen-
tation of a Hydra, not only (the representation of) a natural number. Thus
Theorem 7 is not much help in a termination proof of D (or H). A similar
problem arises with the function symbol d: It is essential to interpret d so
that it returns the nth branch of the fundamental sequence (αn)n∈N (see Re-
mark 12), if the �rst argument of d represents α and the second n. However,
what is the correct interpretation if the second argument is (the representation
of) a Hydra?

This problem can be solved by the introduction of functions Cα : N → N,
indexed by (the representation of) a Hydra. These functions act as collapsing
functions, by mapping Hydras to natural numbers so that the order relation



on Hydras is preserved. (See [23] or alternatively [22, 21] for further reading
on collapsing functions.)

On the other hand, our goal is not only to establish termination of the
TRS D (or the TRSH), but to de�ne a termination order � such that→D ⊆ �
and otype(�) 6 ε0. Note that to solve problem 23 in the RTALooP, any
termination order with order type strictly less than the Howard-Bachmann
ordinal, would su�ce. But naturally, we strive for an optimal result. In order
to de�ne the order � we go a step further and make sure that � is actually a
reduction order. Hence, instead of →D ⊆ �, it su�ces to verify D ⊆ �. More
precisely, we �rst de�ne a WMA (A,B) that is compatible with D, such that
otype(B) = ε0 and subsequently de�ne a WMA (B,I) compatible with H,
such that otype(I) 6 ε0.

Here a serious obstacle is the fact that neither the TRS D, nor the TRS H
are simply terminating. This implies that these TRSs are not totally termi-
nating, c.f. [28]. Which in turn implies that there cannot be a total WMA
compatible with either D or H. In particular, we cannot hope to prove ε0-
termination of either D or H. (Following [18], we call a TRS R α-terminating,
if R is compatible with the monotone algebra (α,>), where > denotes the
standard order on ordinals.) Furthermore, we have to make sure that the alge-
bra ismonotone. As already observed by Touzet (see [26]) and Lepper (see [19])
the de�nition of monotone interpretation functions for TRSs simulating the
Hydra battle is a non-trivial task.

We solve both this problems, by replacing the set-theoretic ordinals em-
ployed so far, by a suitable de�ned notation system for ordinals < ε0. This is
the topic of the next section.

4 A Notation System for the TRS D

In this section, we introduce an ordinal notation system for ordinals below ε0.
We follow an approach by Takeuti [24] (but see also [5] and [12]). We de�ne
OT := T ({g, 0}), i.e., OT denotes the set of (ground) terms over the symbols g
and 0, where the symbol 0 is a constant and the arity of g is 2. The elements
of OT are called ordinal terms and are denoted by lower-case Greek letters.
Sometimes, we drop the quali�er �term� and simply speak of ordinals. Any
Hydra H becomes representable as an element of OT. Or, alternatively any α ∈
OT is conceivable as an element of NMul, c.f. Section 2.2, such that g(α, β)
corresponds to the multiset β + {α}. Note that in contrast to the connection
between ordinals and Hydras, the correspondence between ordinals and nested
multisets is not exact. This is due to the fact that ordinals are ordered, but
nested multisets are not.

In the sequel the expression �ordinal� always refer to an element of OT.
If we refer to set-theoretic ordinals, this will be explicitly mentioned. Clearly
any element of OT di�erent from 0 can be written as follows:

g(αn, g(αn−1, . . . g(α1, 0) . . . )) , (1)



where each of the α1, . . . , αn can also be written in form (1). To improve
readability and clarify the connection to [24], we also denote terms of the
form (1) as ωα1 + ωα2 + · · ·+ ωαn .

De�nition 15 We inductively de�ne an equivalence ∼ and a proper order �
so that they satisfy the following clauses:

1. 0 is the minimal element of �.
2. For α ∈ OT of form (1), assume α contains the consecutive terms ωαi and
ωαi+1 with αi+1 � αi. That is α has the form

· · ·+ ωαi + ωαi+1 + · · · .

Let β be obtained by removing the expression �ωαi + � from α, so that β
is of the form

· · ·+ ωαi+1 + · · · .
Then α ∼ β.

3. Suppose α = ωα1 +· · ·+ωαm , β = ωβ1 +· · ·+ωβn , α1 < α2 < · · · < αm, and
β1 < β2 < · · · < βn, holds. (α < β means α � β or α ∼ β.) Then α � β if
either αi � βi for some i ∈ {1, . . . ,m} and αj ∼ βj for all 1 6 j 6 i− 1 or
m > n and αi ∼ βi holds for all 1 6 i 6 m.

Remark 16 A crucial idea of the notation system described, is the separation
of the identity of ordinal terms (denoted by =) and the identity of their set-
theoretic counterparts (denoted by ∼). We will see in the next section that
this pedantry is essential.

We identify natural numbers with ordinals less than ω. For ordinal terms
strictly less than ω the usual comparison of naturals coincides with De�ni-
tion 15. First we abbreviate g(0, 0) as 1 and denote 1 + 1 as 2, 1 + 1 + 1 as 3,
and so on. By de�nition, for any α 6= 0 ∈ OT, there exists a unique β ∈ OT
with α ∼ β so that β can be written as

ωβ1 + ωβ2 + · · ·+ ωβn with β1 < · · · < βn , (2)

where β1 < · · · < βn holds. If β is written in this way, we say that it is in
normal-form. The set of all ordinals in normal-form together with 0 is denoted
as NF. The unique normal-form of a given ordinal α is denoted as NF(α). Any
α ∈ NF uniquely represent a set-theoretic ordinals less than ε0 in CNF. The
following lemma is immediate.

Lemma 17 1. The relation � is a linear proper order on NF.
2. The relation � is well-founded and otype(�) = ε0.

We extend the well-founded, linear order � on NF to a well-founded, proper
order � on OT. To simplify notation we denote the extended relation with the
same symbol, no confusion will arise from this. For α, β ∈ OT de�ne: α � β,
if NF(α) � NF(β). It follows that � is a proper order and that α < β � γ =⇒
α � γ; as well as α � β < γ =⇒ α � γ holds. The next lemma is an easy
consequence of the de�nitions.



Lemma 18 Let α, β, γ ∈ OT.

1. α � β =⇒ g(α, γ) � g(β, γ).
2. β � γ =⇒ g(α, β) < g(α, γ).
3. g(α, 0) � α and g(0, β) � β.

Remark 19 As expressed in Remarks 10, 14 the results of the previous section
can be proven by replacing the membership relation > on ordinals by >],∗
over the set of nested multisets NMul. However, employing nested multisets
in the termination proof of D would be technically involved. By de�nition
nested multisets allow the permutations of the occurrences of elements. This
causes problems, if we want to interpret the function symbol d according to its
intended semantics. The only solution is the introduction of ordered (nested)
multisets, i.e., nested sequences. The latter are a roundabout way to denote
ordinal terms.

5 A Termination Proof of the TRS D

In this section we de�ne a WMA (A,B) that is compatible with (F ,D). Then
termination of D follows by Theorem 5. Before we can present this algebra we
need some preparations, which are the subject of the following subsection.

5.1 Preparations

Based on � and ∼, we de�ne a proper order A and an equivalence relation ≡
on OT. We write N(α) to denote the number of occurrences of g in α., i.e.,
N(0) := 0 and N(g(α1, . . . , g(αn, 0) . . . )) := n+ N(α1) + · · ·+ N(αn).

De�nition 20 Let α, β ∈ OT; we de�ne α A β, if either α � β and N(α) >
N(β) or α ∼ β and N(α) > N(β). On the other hand, we de�ne α ≡ β, if
α ∼ β and N(α) = N(β) holds. We de�ne the quasi-order A≡: α A≡ β, if
α (A ∪ ≡) β.

Example 21 Let us consider

ω + ω2 = g(g(0, g(0, 0)), g(g(0, 0), 0)) ,

with norm N(ω + ω2) = 5 and

ω + 3 = g(0, g(0, g(0, g(g(0, 0), 0)))) ,

where N(ω + 3) = 5. Hence ω + ω2 A ω + 3. This follows as NF(ω + ω2) =
ω2 = g(g(0, g(0, 0)), 0), NF(ω + 3) = ω + 3 = g(0, g(0, g(0, g(g(0, 0), 0)))), and
ω + ω2 � ω + 3. On the other hand, we have for example ω2 6A ω + 3 as
N(ω + 3) = 5 > 3 = N(ω2).

The example shows that the relation ∼ is not compatible with the rela-
tion A. Moreover, note that A≡ is not a partial order, as indicated in the next
example.



Example 22 Consider the terms 1+ωω and ω1+ω. Then we obtain: 1+ωω A≡

ω1+ω and ω1+ω A≡ 1 + ωω, but 1 + ωω 6= ω1+ω, while clearly 1 + ωω ≡ ω1+ω.

Lemma 23 The binary relation A is a well-founded order and otype(A) 6 ε0.
Furthermore for all n,m ∈ N: n A m if and only if n > m.

Proof That A is a proper order is immediate from the de�nition and the
observations that α < β � γ implies α � γ, as well as α � β < γ yields α � γ,
which were made immediately before Lemma 18 above.

To verify that A is well-founded with otype(A) 6 ε0, it su�ces to de�ne
an embedding o : OT→ ε0: o(α) := ωNF(α) + N(α). By case-distinction on the
de�nition of A one veri�es that for all α, β ∈ OT, α A β implies o(α) � o(β).
Assume �rst α � β and N(α) > N(β). Then ωNF(α) + N(α) > ωNF(β) + N(β)
is immediate from the de�nition of the usual comparison > of set-theoretic
ordinals. Now assume α ∼ β and N(α) > N(β). Then ωNF(α)+N(α) > ωNF(β)+
N(β) follows similarly.

The second half of the lemma is a direct result of the de�nition of A and
the de�nition of N. ut

The next lemma follows easily from Lemma 18 and the de�nitions.

Lemma 24 Let α, β, γ ∈ OT.

1. α A β =⇒ g(α, γ) A g(β, γ).
2. β A γ =⇒ g(α, β) A≡ g(α, γ).
3. g(α, 0) A α and g(0, β) A β.

Let p : N × N → N denote a �xed function, strictly monotone in each
argument.

De�nition 25 We de�ne the set of n-predecessors of α induced by p. Let
α ∈ OT, we set α[n] := {β | α � β and p(N(α), n) > N(β)}.

The notion of an n-predecessor stems from [7, Chapter 3]. However, in the def-
inition, we follow the idea of norm-based fundamental sequences, compare [6].

Lemma 26 Let α ∈ OT and let δ denote a A-maximal element of α[n].

1. For all n, the set α[n] is �nite.
2. For each β ∈ α[n]: δ A≡ β.

Proof The �rst assertion of the lemma follows from the observation that only
�nitely many ordinals of a given norm can exist. For the second assertion,
observe that it follows from the de�nition of δ that for all β ∈ α[n], either
δ A β, β ≡ δ, or β and δ are incomparable with respect to A. We prove
that the last case can never happen. We assume α 6= 0, as otherwise the
assertion follows trivially. Let β ∈ α[n] be arbitrary but �xed so that β, δ are
incomparable.



The ordinals β and δ can only be incomparable if either of the following
cases holds (i) δ ≺ β and N(β) < N(δ), or (ii) δ � β and N(β) > N(δ). As the
cases are dual, it su�ces to consider the �rst one.

Without loss of generality we can assume that β < ω. Assume otherwise
β ∈ N, then δ ∈ N and N(β) = β � δ = N(δ), which contradicts the assumption
N(δ) > N(β). We de�ne an ordinal term β∗ as follows: β∗ := (N(δ)−N(β))+β.
As β < ω, β∗ ∼ β holds. Furthermore N(β∗) = N(δ) > N(β), as N(β∗) =
(N(δ) − N(β)) + N(β) = N(δ). Hence β∗ A β. We show that β∗ ∈ α[n]: α �
β ∼ β∗ implies α � β∗. And p(N(α), n) > N(δ) = N(β∗) implies p(N(α), n) >
N(β∗). From this we derive a contradiction to the assumption that δ is a A-
maximal of α[n]. As we have β∗ � δ, and N(β∗) > N(δ), hence β∗ A δ, while
β∗ ∈ α[n]. ut

By the above lemma a A-maximal element of α[n] is, up-to the equiv-
alence ≡, unique. In the following we �x (for each α and each n) an arbi-
trary A-maximal element and denote it with Pn(α), such that if α ≡ β, then
Pn(α) ≡ Pn(β).

Lemma 27 Let α ∈ OT and suppose α < ω. Then N(Pn(α)) = p(N(α), n).

Proof The proof follows the pattern of the proof of the previous lemma. ut

The following lemma constitutes the main lemma of this subsection. Note
that the �rst property fails for the standard de�nition of the nth branch αn
of a fundamental sequence (αn)n∈N, c.f. Section 3, together with the usual
order > on (set-theoretic) ordinals. For this de�nition, we obtain ω > m, but
ωn = n 6> m− 1 = (m)n for any m > n.

Lemma 28 Let α, β ∈ OT, n ∈ N.

1. If α, β 6= 0 and α A β, then Pn(α) A Pn(β).
2. Suppose m > n. Then Pm(α) A≡ Pn(α).

Proof We only show the �rst point, the arguments for the other points are
similar, but simpler. Assume α A β. First we show the lemma for the special-
case, where α ∈ N. This assumption implies β ∈ N. Hence Pn(α) = α − 1 A
β − 1 = Pn(β).

Consider the case α < ω. We proceed by case-distinction on the de�nition
of A. Subcase α � β and N(α) > N(β): In particular p(N(α), n) > N(β).
Thus β ∈ α[n]. Utilising Lemma 26(2) we conclude Pn(α) < β � Pn(β),
which implies Pn(α) � Pn(β). By Lemma 27 we get: N(Pn(α)) = p(N(α), n) >
p(N(β), n) > N(Pn(β)). In summary, we see Pn(α) A Pn(β). Subcase α ∼
β and N(α) > N(β): From the assumptions we conclude Pn(β) ∈ α[n], as
α ∼ β � Pn(β) and p(N(α), n) > p(N(β), n) > N(Pn(β)). Hence, Lemma 26
implies Pn(α) A Pn(β) or Pn(α) ≡ Pn(β). If the former case holds, the lemma
is established. Assume the latter. By de�nition of ≡ we see that N(Pn(α)) =
N(Pn(β)). On the other hand, we have: N(Pn(α)) = p(N(α), n) > p(N(β), n) >
N(Pn(β)). We derive a contradiction. ut



We write fn(·) to denote the n-fold application of the function f .

De�nition 29 We de�ne the collapsing function Cα (parametrised in p):

Cα(n) := max({2n+1} ∪ {C2
β(n) | α � β ∧ p(N(α), n) > N(β)}) .

Lemma 30 Let α, β ∈ OT, n,m ∈ N.

1. Cα(n) > 2n+1 > n+ 1.
2. If m > n, then Cα(m) > Cα(n).
3. If α � β and p(N(α), n) > N(β), then Cα(n) > Cβ(n+ 1).
4. If α A β, then Cα(n) > Cβ(n).
5. If α ≡ β, then Cα(n) = Cβ(n).
6. Cα(n+m) > Cα(n) +m.

7. Cα(n+ 1) > 2 · Cα(n).

Proof We only show point 4) as the other points follow similarly. We proceed
by trans�nite induction on α. The base case is trivial. For the step-case, we
�rst consider the subcase, where α � β and N(α) > N(β). Then the property
follows by application of point 2) and 3). On the other hand assume α ∼ β
and N(α) > N(β). This implies that α < ω. It su�ces to show that

∀γ
(
β � γ ∧ p(N(β), n) > N(γ) =⇒ Cα(n) > C2

γ(n)
)
.

Fix γ ∈ OT with β � γ and p(N(β), n) > N(γ). The assumptions imply
γ ∈ α[n], as α ∼ β � γ and p(N(α), n) > p(N(β), n) > N(γ). Lemma 26 yields
Pn(α) A≡ γ which can be strengthened to Pn(α) A γ, as the assumption α < ω
together with Lemma 27 yields N(Pn(α)) = p(N(α), n) > N(γ). Moreover as
α � Pn(α), induction hypothesis is applicable to conclude CPn(α)(m) > Cγ(m)
for any m. We obtain:

Cα(n) > C2
Pn(α)(n) > CPn(α)Cγ(n) > C2

γ(n) .

Here we employ point 2 in the second inequality. ut

5.2 A Well-founded, Monotone Algebra for the TRS D

In this section we de�ne the F-algebra (A,B) and provide a proof that A is
well-founded and monotone. The carrier A of A is de�ned as the set

{(α,m, 1) | α ∈ OT,m ∈ N} ∪ {(0,m, 0) | m ∈ N} .

The triples are related as follows:

(α,m, p) B (β, n, q) :⇐⇒ ((α A β ∧m > n) ∨ (α ≡ β ∧m > n)) ∧ (p > q) .

Lemma 31 The binary relation B is a well-founded order and otype(B) 6 ε0.



Proof The proof follows the same pattern as the proof of Lemma 23. ut

We de�ne the following operations as interpretations of the elements of F .

dA (α,m, p), (β, n, q) 7→ (Pn(α),CPn(α)(Cβ(0) +m+ n), 1) α 6= 0

(0,m, p), (β, n, q) 7→ (0, 2Cβ(0)+m+n, 0)

gA (α,m, 1), (β, n, q) 7→ (g(α, β),Cβ(0) +m+ n, 1)
(α,m, 0), (β, n, q) 7→ (0,Cβ(0) +m+ n, 0)

hA (α,m, 1), (β, n, q) 7→ (0,Cα(Cβ(0) +m+ n), 1)
(α,m, 0), (β, n, q) 7→ (0,Cβ(0) +m+ n, 0)

eA (α,m, p) 7→ (α,m+ 1, 1)

SA (α,m, p) 7→ (α,m+ 1, 1)

0A (0, 0, 1) .

It is easy to see that these operations are well-de�ned; it remains to verify
that the operations dA, gA, hA, eA, and SA are strictly monotone in each
argument.

Lemma 32 For each fA ∈ {dA, gA, hA} and (α,m, p), (β, n, q), (γ, k, r) ∈ A
we have

(α,m, p) B (γ, k, r) =⇒ fA((α,m, p), (β, n, q)) B fA((γ, k, r), (β, n, r)) ,
(β, n, q) B (γ, k, r) =⇒ fA((α,m, p), (β, n, q)) B fA((α,m, p), (γ, k, r)) ,

and, for each fA ∈ {eA, SA}, we have

(α,m, p) B (γ, k, r) =⇒ fA((α,m, p)) B fA((γ, k, r)) .

Proof We only consider the operations dA, gA, and hA, as the monotonicity
of eA and SA is easily seen.

1. Case dA: Assume (α,m, p) B (γ, k, r), we �rstly show

dA((α,m, p), (β, n, q)) B dA((γ, k, r), (β, n, q)) . (3)

We proceed by case-distinction on α, γ. Subcase α, γ 6= 0: We have to show:

(Pn(α),CPn(α)(Cβ(0) +m+ n), 1) B (Pn(γ),CPn(γ)(Cβ(0) + k + n), 1) .

By assumption α A≡ γ, m > k so that at least one of the inequalities
is strict. Suppose α A γ, then Lemmata 28(1) and 30(2,4) yield Pn(α) A
Pn(γ), and CPn(α)(Cβ(0) +m+ n) > CPn(γ)(Cβ(0) + k + n). On the other
hand suppose m > k, then Lemma 28(1) yields Pn(α) A≡ Pn(γ) and due



to Lemma 30(2), CPn(α)(Cβ(0) +m+ n) > CPn(γ)(Cβ(0) + k + n) follows.
Subcase α 6= 0, γ = 0: Then the right-hand side becomes

(0, 2Cβ(0)+k+n, 0) .

Then Pn(α) A≡ 0 and the second argument strictly decreases: C0(Cβ(0) +
m + n) = 2Cβ(0)+m+n+1 > 2Cβ(0)+k+n; Subcase α = γ = 0: We have to
show:

(0, 2Cβ(0)+m+n, 0) B (0, 2Cβ(0)+k+n, 0) .

By the assumptions in this subcase, we have α ≡ γ and m > k. Hence the
second argument decreases. In all considered cases the third component
of the triple never increases, hence (3) follows. Now assume (β, n, p) B
(γ, k, r), we show:

dA((α,m, p), (β, n, q)) B dA((α,m, p), (γ, k, r)) . (4)

Subcase α 6= 0: We have to show:

(Pn(α),CPn(α)(Cβ(0) +m+ n), 1) B (Pk(α),CPk(α)(Cγ(0) +m+ k), 1) .

Due to Lemma 28(2) Pn(α) A≡ Pk(α). By assumption β A≡ γ, n > k, and
at least one of the inequalities is strict. Suppose β A γ. Then Lemma 30(4)
yields Cβ(0) > Cγ(0). Hence by Lemma 30(2), CPn(α)(Cβ(0) + m + n) >
CPk(α)(Cγ(0)+m+k). If on the other hand n > k, then Cβ(0) > Cγ(0) holds
and CPn(α)(Cβ(0)+m+n) > CPk(α)(Cγ(0)+m+k) follows by application
of Lemma 30(2). Subcase α = 0: We have to show:

(0, 2Cβ(0)+m+n, 0) B (0, 2Cγ(0)+m+k, 0) ,

which either follows from Lemma 30(4), if β A γ or directly from n > k.
In both sub cases the last argument remains equal, thus (4) follows.

2. Case gA: We assume (α,m, p) B (γ, k, r) and show

gA((α,m, p), (β, n, q)) B gA((γ, k, r), (β, n, q)) . (5)

Subcase p = r = 1: We have to show

(g(α, β),Cβ(0) +m+ n, 1) B (g(γ, β),Cβ(0) + k + n, 1) .

By assumption α A≡ γ, m > k, and at least one of the inequalities is
strict. Suppose α A γ. Lemma 24(1) shows that g(α, β) A g(γ, β), while
the second argument is non-increasing. On the other hand suppose m > k,
then the second argument strictly decreases and g(α, β) A≡ g(γ, β) holds.
Subcase p = 1, r = 0: Then the right-hand side rewrites to

(0,Cβ(0) + k + n, 0) .

By de�nition g(α, β) A 0 and the second argument is non-increasing. Sub-
case p = r = 0: We have to show

(0,Cβ(0) +m+ n, 0) B (0,Cβ(0) + k + n, 0) ,



which follows trivially, if the assumptions imply m > k. To see that this
always holds, note that α A γ would imply α 6= 0, and thus (α,m, 0) ∈ A,
for α 6= 0, in contrast to the de�nition of the algebra A. Finally, the
last argument is non-increasing for all subcases, hence (5) follows. Assume
(β, n, p) B (γ, k, q), we show

gA((α,m, p), (β, n, q)) B gA((α,m, p), (γ, k, r)) . (6)

Subcase p = 1: We have to show

(g(α, β),Cβ(0) +m+ n, 1) B (g(α, γ),Cγ(0) +m+ k, 1) .

Due to Lemmata 24(2) and 30(4,5), we conclude g(α, β) A≡ g(α, γ) and
Cβ(0) +m+ n > Cγ(0) +m+ k from which (6) follows. Subcase p = 0: We
have to show

(0,Cβ(0) +m+ n, 0) B (0,Cγ(0) +m+ k, 0) ,

which follows by Lemma 30(4) if β A γ; directly if β ≡ γ. As the last argu-
ment of the triple remains equal in both subcases, we have established (6).

3. Case hA: We assume (α,m, p) B (γ, k, q) and show

hA((α,m, p), (β, n, q)) B hA((γ, k, r), (β, n, q)) . (7)

Subcase p = r = 1. We have to show

(0,Cα(Cβ(0) +m+ n), 1) B (0,Cγ(Cβ(0) + k + n), 1)

By assumption α A≡ γ, m > k, so that at least one of the inequalities is
strict. It su�ces to show that Cα(Cβ(0) + m + n) > Cγ(Cβ(0) + k + n),
which follows by Lemma 30. Subcase p = 1, r = 0. We have to show

(0,Cα(Cβ(0) +m+ n), 1) B (0,Cβ(0) + k + n, 0) ,

which follows by Lemma 30(1). Subcase p = r = 0. We have to show

(0,Cβ(0) +m+ n), 0) B (0,Cβ(0) + k + n), 0) ,

which follows trivially, as the assumptions imply m > k. As the third
argument of the triple is non-increasing in all subcases, (7) follows. Finally
assume (β, n, q) B (γ, k, r), we show

hA((α,m, p), (β, n, q)) B hA((α,m, p), (γ, k, r)) . (8)

Subcase p = 1. We have to show

(0,Cα(Cβ(0) +m+ n), 1) B (0,Cα(Cγ(0) +m+ k), 1) ,

which follows as Lemma 30(4) implies Cβ(0)+m+n > Cγ(0)+m+k, and
Lemma 30(2) yields that the second argument decreases. Subcase p = 0.
We have to show

(0,Cβ(0) +m+ n, 0) B (0,Cγ(0) +m+ k, 0) ,

which follows as above. As the third argument of the triple remains equal
in both subcases, (7) follows.



ut

The next theorem is a direct consequence of Lemmata 31 and 32.

Theorem 33 The F-algebra (A,B) is a WMA and otype(B) 6 ε0.

5.3 Termination

We �x the parameter in the de�nition of the n-predecessors and the func-
tions Cα:

p(m,n) := (m+ 1) · (n+ 1) .

Theorem 34 The WMA (A,B) is compatible with the TRS (F ,D).

Proof Let BA denote the reduction order induced by the algebra (A,B). Due
to Theorem 5 it remains to verify that for each rule l → r ∈ D, l BA r holds.
To this end, suppose a : V → A denotes an arbitrary, but �xed assignment.
Then we must show for each rule l→ r: [a]A(l) B [a]A(r) holds. Let (α,m, p),
(β, n, q), and (γ, k, r) denote the interpretations of the variables x, y, and z,
respectively. In proof we only consider the rules 1, 2, 5, and 6. To show com-
patibility with the rules 3 and 4, similar, but simpler arguments su�ce.

1. Rule 1: h(e(x), y) → h(d(x, y), S(y)). Subcase α 6= 0: Set δ := Pn(α). We
simplify the left-hand side and right-hand side of the interpretations of the
rule:

hA(eA((α,m, p)), (β, n, q)) = hA((α,m+ 1, 1), (β, n, q))
= (0,Cα(Cβ(0) +m+ n+ 1), 1) ,

and

hA(dA((α,m, p), (β, n, q)), SA((β, n, q)))
= hA(dA((α,m, p), (β, n, q)), (β, n+ 1, 1))
= hA((δ,Cδ(Cβ(0) +m+ n), 1), (β, n+ 1, 1))
= (0,Cδ(Cβ(0) + Cδ(Cβ(0) +m+ n) + n+ 1), 1) .

Due to Lemma 30(1,2,7), we obtain:

Cα(Cβ(0) +m+ n+ 1) > Cδ(Cδ(Cβ(0) +m+ n+ 1))
> Cδ(2Cδ(Cβ(0) +m+ n)) = Cδ(Cδ(Cβ(0) +m+ n) + Cδ(Cβ(0) +m+ n))

> Cδ(Cβ(0) + n+ 1 + Cδ(Cβ(0) +m+ n)) .

Subcase α = 0: The right-hand side becomes

hA(dA((α,m, p), (β, n, q)), SA((β, n, q)))

= hA((0, 2Cβ(0)+m+n, 0), (β, n+ 1, 1))

= (0,Cβ(0) + 2Cβ(0)+m+n + n+ 1), 0) .



And, a few calculations reveal:

C0(Cβ(0) +m+ n+ 1) = 2Cβ(0)+m+n+2 > 2Cβ(0)+m+n + 2Cβ(0)+m+n+1

> Cβ(0) + n+ 1 + 2Cβ(0)+m+n .

Thus rule 1 is compatible with A, as in both subcases the �rst argument
of the compared triples remains unchanged and the last argument of the
triple is not increased.

2. Rule 2: d(g(g(0, x), y), S(z)) → g(e(x), d(g(g(0, x), y), z)). For that we set
δ := Pk+1(g(g(0, α), β)) and ε := Pk(g(g(0, α), β)). De�ne ` = Cβ(0) +
Cα(0) +m+ n. The left-hand side of the rule is transformed as follows:

dA(gA(gA(0A, (α,m, p)), (β, n, q)), SA((γ, k, r)))
= dA(gA(gA((0, 0, 1), (α,m, p)), (β, n, q)), (γ, k + 1, 1))
= dA(gA((g(0, α),Cα(0) +m, 1), (β, n, q)), (γ, k + 1, 1))
= dA((g(g(0, α), β), `, (γ, k + 1, 1))
= (δ,Cδ(Cγ(0) + `+ k + 1), 1) ,

while for the right-hand side we have

gA(eA((α,m, p)), dA(gA(gA(0A, (α,m, p)), (β, n, q)), (γ, k, r)))
= gA((α,m, 1), dA((g(g(0, α), β), `, 1), (γ, k, q)))
= gA((α,m, 1), (ε,Cε(Cγ(0) + `+ k), 1))
= (g(α, ε),Cε(0) +m+ Cε(Cγ(0) + `+ k)), 1) .

Let ε = g(ε1, g(ε2, . . . , g(εe, β) . . . )) such that εi ∈ OT for all 1 6 i 6 e. As
g(g(0, α), β) � ε, we obtain g(0, α) � εi for all 1 6 i 6 e. By Lemma 18, we
additionally have g(0, α) � α. Thus g(g(0, α), β) � g(α, ε) follows. Now, a
simple calculation shows

p(N(g(g(0, α), β)), k + 1) > N(g(α, ε)) .

Lemma 26 yields δ A≡ g(α, ε) and Lemma 24 yields g(α, ε) A ε. Hence, we
obtain δ A ε and by Lemma 30(4,6,7):

Cδ(Cγ(0) + `+ k + 1) > Cδ(Cγ(0) + `+ k) + Cδ(Cγ(0) + l + k)
> Cε(Cγ(0) + `+ k) + 1 + Cε(Cγ(0) + l + k)

> Cε(0) +m+ 1 + Cε(Cγ(0) + l + k) .

Hence the second argument strictly decreases, while the �rst and the third
do not increase.

3. Rule 5: d(g(x, y), z) → g(d(x, z), e(y)). Subcase p = 1, α 6= 0: Set δ :=
Pk(g(α, β)) and ε := Pk(α). The left-hand side becomes

dA(gA((α,m, 1), (β, n, q)), (γ, k, r))
= dA((g(α, β),Cβ(0) +m+ n, 1), (γ, k, r))
= (δ,Cδ(Cγ(0) + Cβ(0) +m+ n+ k), 1) ,



while the right-hand side amounts to

gA(dA((α,m, 1), (γ, k, r)), eA((β, n, q)))
= gA((ε,Cε(Cγ(0) +m+ k), 1), (β, n+ 1, 1))
= (g(ε, β),Cβ(0) + Cε(Cγ(0) +m+ k) + n+ 1, 1) .

Due to α 6= 0, we have α � Pk(α) = ε. By Lemma 18 we see g(α, β) �
g(ε, β) and by de�nition of the function p and the norm-function N:

p(N(g(α, β)), k) > (N(α) + 1)(k + 1) + N(β) + 1 > N(g(ε, β)) .

This implies that δ A≡ g(α, ε), yielding a weak decrease in the �rst ar-
gument. Moreover by Lemma 18 we obtain: g(α, β) � α and Lemma 26
implies δ < α � Pk(α) = ε. As g(α, β) < ω, Lemma 27 becomes applicable
to show: N(δ) = p(N(g(α, β)), k) > N(ε). Due to Lemma 30(3,6), we have:

Cδ(Cγ(0) + Cβ(0) +m+ n+ k) > Cε(Cγ(0) + Cβ(0) +m+ n+ k + 1)
> Cε(Cγ(0) +m+ k) + Cβ(0) + n+ 1 .

Subcase p = 1, α = 0: This setting implies that we have to show

(δ,Cδ(Cγ(0) + Cβ(0) +m+ n+ k), 1) B (0,Cβ(0) + 2Cγ(0)+m+k + n+ 1, 0)

We have δ A≡ 0. Moreover for all χ, Cχ(0) > 2 holds; we proceed as follows:

Cδ(Cγ(0) + Cβ(0) +m+ n+ k) > 2Cγ(0)+Cβ(0)+m+n+k+1

> 2Cγ(0)+Cβ(0)+m+n+k > 2Cγ(0)+m+k+1 + 2Cβ(0)+n+1

> 2Cγ(0)+m+k + Cβ(0) + n+ 1 .

Subcase p = 0: By de�nition this implies α = 0 and we have to show

(0, 2Cγ(0)+Cβ(0)+m+n+k, 0) B (0,Cβ(0) + 2Cγ(0)+m+k + n+ 1, 0) ,

which follows as above. In all subcases the last argument is not increased.
4. Rule 6: g(e(x), e(y)) → e(g(x, y)). Subcase p = 1: Independent of p the

left-hand side rewrites to

gA(eA(α,m, p), eA((β, n, q))) = gA((α,m+ 1, 1), (β, n+ 1, 1))
= (g(α, β),Cβ(0) +m+ n+ 2, 1) ,

while the right-hand side becomes

eA(gA((α,m, 1), (β, n, q))) = eA((g(α, β),Cβ(0) +m+ n, 1))
= (g(α, β),Cβ(0) +m+ n+ 1, 1) .



This subcase follows directly from the de�nitions. Subcase p = 0: We re-
calculate the right-hand side:

eA(gA((α,m, 0), (β, n, q))) = eA((0,Cβ(0) +m+ n, 0))
= (0,Cβ(0) +m+ n+ 1, 1) .

Thus we observe that g(α, β) A≡ 0, while the second argument decreases
as above. Note that the last argument does not increase.

ut

Corollary 35 The Hydra battle D is terminating and termination can be es-

tablished by a reduction order of order type ε0.

Proof The termination of (F ,D) is established by Theorem 34. We consider
the reduction-order BA induced by A. Let 0 : V → A denote the assignment
that substitutes 0 for each variable. By de�nition of BA, for all s, t: s BA t
implies [0]A(s) B [0]A(t). Thus BA is embeddable into B and by Lemma 1
and Lemma 31, we see

otype(BA) 6 otype(B) 6 ε0 .

To establish equality, we assume to the converse, that otype(BA) =: α < ε0.
From this, the termination proof, and Lemma 13 we see that for all β < ε0
the length of the Hydra battle is majorised by Cα. It is not di�cult to argue
that Cα is provably total in Peano arithmetic. Hence termination of the Hydra
battle would be provable within Peano arithmetic in direct contradiction to
the Kirby and Paris's result, c.f. [16]. ut

6 A Termination Proof of the TRS H

We recall the de�nition of the TRS H introduced in [10]. Again, we swap the
arguments of the symbols d and h and make use of the unary function symbol
S instead of the original c.

7: h(e(x), y)→ h(d(x, y), S(y))
8 : d(g(0, 0), y)→ e(0)
9 : d(g(g(x, y), 0), S(z))→ g(d(g(x, y), S(z)), d(g(x, y), z))

10: d(g(x, y), z)→ g(e(x), d(y, z))
11: g(e(x), e(y))→ e(g(x, y)) .

Note that the rules 7 and 11 are part of the above studied TRS D. Moreover,
rule 8 is a specialisation of the rule 4 in D. Despite these similarities, an
attempt to prove compatibility of H with A fails.

In order to yield termination of H we make use of a subtle variant of the
ordinal notation system introduced in Section 4: Instead of conceiving the term
g(α, β) as the the ordinal β+ωα (or similarly as the nested multiset β+{α}),



we forget about the earlier notation system, and now conceive g(α, β) as ωα+β
(i.e., as {α}+ β). This change is essential, as the role of the function symbol
g ∈ F with respect to the TRS H changes.

For this new interpretation, all results from Section 4 are preserved. Thus
we can use the �same� carrier and almost the same function interpretations as
in the F-algebra A to de�ne a new F-algebra B. The only exception is the
de�nition of interpretation for g that we change as follows:

gB (α,m, p), (β, n, 1) 7→ (g(α, β),Cβ(0) +m+ n, 1)
(α,m, p), (β, n, 0) 7→ (0,Cβ(0) +m+ n, 0) .

The resulting F-algebra B follows to some extent the corresponding sugges-
tions in [10]. However, note that the algebra B crucially rests on the use of
additional concepts like collapsing functions or the carefully crafted notion of
an n-predecessor, c.f. De�nition 25 and De�nition 29.

In the spirit of the relation B, we de�ne the relation I as: (α,m, p) I
(β, n, q) if either α A β and m > n, or if α ≡ β and m > n such that
in both cases p > q. Further we de�ne the parameter for the de�nition of
n-predecessors and the functions Cα as follows:

p(m,n) := 2m · (n+ 1) .

Following the pattern of the proofs of Lemmata 31 and 32 it is not di�cult to
see that (B,I) is a WMA and otype(I) 6 ε0.

We arrive at the main theorem of this paper.

Theorem 36 The WMA (B,I) is compatible with the TRS (F ,H).

Proof As in the proof of Theorem 34, IB denotes the reduction order induced
by the F-algebra (B,I). For each rule l → r ∈ H we show [a]B(l) B [a]B(r)
for an arbitrary but �xed assignment a. We suppose the variables x, y, and z
are interpreted as (α,m, p), (β, n, q), and (γ, k, r), respectively. The arguments
are similar to those in the proof of Theorem 34, exemplary we consider rule 9:
d(g(g(x, y), 0), S(z))→ g(d(g(x, y), S(z)), d(g(x, y), z))

Subcase q = 1: Let δ := Pk+1(g(g(α, β), 0)), ε := Pk+1(g(α, β)), ζ :=
Pk(g(α, β)). The left-hand side becomes

dB(gB(gB((α,m, p), (β, n, 1)), 0B), SB((γ, k, r)))
= dB(gB((g(α, β),Cα(0) +m+ n, 1), (0, 0, 1)), (γ, k + 1, 1))
= (δ,Cδ(Cγ(0) + Cg(α,β)(0) + Cα(0) +m+ n+ k + 1), 1) ,

while the right-hand side becomes:

gB(dB(gB((α,m, p), (β, n, 1)), SB((γ, k, r))), dB(gB((α,m, p), (β, n, 1)), (γ, k, r)))
= gB(dB((g(α, β),Cα(0) +m+ n, 1), (γ, k + 1, 1)),

dB((g(α, β),Cα(0) +m+ n, 1), (γ, k, 1)))
= (g(ε, ζ),Cε(0) + Cε(Cγ(0) + Cα(0) +m+ n+ k + 1)+

+ Cζ(Cγ(0) + Cα0) +m+ n+ k), 1) .



It is not di�cult to see that g(g(α, β), 0) � g(ε, ζ). Moreover we have

p(N(g(g(α, β), 0), k + 1) = 2N(g(α,β))+1(k + 2)
> N(Pk+1(g(α, β))) + N(Pk(g(α, β))) + 1 = N(g(ε, ζ)) .

The analogues of Lemmata 26, 24 yields δ A≡ g(ε, ζ) A ε, ζ. From which we
obtain δ A ζ, and δ A ε. The latter can even strengthened as δ � ε and
N(δ) > N(ε) holds. Employing Lemma 30 we conclude:

Cδ(Cγ(0) + Cg(α,β)(0) + Cα(0) +m+ n+ k + 1)
> Cδ(Cγ(0) + Cα(0) +m+ n+ k + 2) > 4Cδ(Cγ(0) + Cα(0) +m+ n+ k)

> Cε(0) + Cε(Cγ(0) + Cα(0) +m+ n+ k + 1)+
+Cζ(Cγ(0) + Cα(0) +m+ n+ k) .

Subcase q = 0: This implies β = 0; the left-hand side becomes

dB(gB(gB((α,m, p), (β, n, 0)), 0B), SB((γ, k, r)))
= dB(gB((0,Cα(0) +m+ n, 0), (0, 0, 1)), (γ, k + 1, 1))

= (0, 2Cγ(0)+Cα(0)+m+n+k+3, 0) ,

while the right-hand side becomes:

gB(dB(gB((α,m, a), (β, n, 0)), SB((γ, k, r))), dB(gB((α,m, a), (β, n, 0)), (γ, k, r)))
= gB(dB((0,Cα(0) +m+ n, 0), (γ, k + 1, 1)), dB(0,Cα(0) +m+ n, 0), (γ, k, 1)))

= (0, 2 + 2Cγ(0)+Cα(0)+m+n+k+1 + 2Cγ(0)+Cα(0)+m+n+k, 0) .

It is easy to see that the second argument of the triple decreases. In both
subcases, the last argument is not increased, hence the case follows. ut

7 Conclusion

A long standing challenge in the annual termination competition is the TRS
D33-33 introduced by Dershowitz and Jouannaud. To date this systems de-
�es all automated termination attempts. In this paper we study this system
(denoted as H above) together with its variant Zantema06-hydra (denoted D
above) in the light of Cichon's principle.

We provide conceptually simple, but arguably technical termination proofs
of these systems by showing compatibility with suitably chosen well-founded,
monotone algebras. To the best of our knowledge this is the �rst complete
termination proof for these systems given in the literature. (See [12] for a
termination proof based on the dependency pair method [1] that rests on
ideas fully developed here.) Based on this result, we can solve open problem
# 23 in RTALooP in the negative.

As a result of our investigations, we are convinced that in order to prove
termination of the TRSs H and D automatically, it will not su�ce to extend



(well-studied) polynomial interpretation by interpretations into the ordinals,
but additional investigations into ordinal notation systems will be necessary.
Both considerations will be subject of future work.

In concluding, we want to mention an alternative term rewriting character-
isation (denoted Q below) of the Hydra battle provided by Buchholz, see [5].

h(g(x, y), z)→ h(d(g(x, y), z), g(z, 0))
d(0, z)→ 0

d(g(x, 0), z)→ x

d(g(x, g(y, 0)), 0)→ x

d(g(x, g(y, 0)), g(z, v))→ g(d(g(x, g(y, 0)), z), y)
d(g(x, g(y, g(u, v))), z)→ g(x, d(g(y, g(u, v)), z)) .

The crucial di�erence between the TRS Q and the above studied TRSs H
andD is the fact thatQ is con�uent. Note that the TRSQ shows the possibility
to encode the Battle of Hercules and the Hydra faithfully as a standard TRS
without having to resort to types or speci�c strategies. Termination of Q
can be easily proven by trans�nite induction up-to ε0. In proof, one uses an
interpretation from Q into OT that is actually a model of Q, compare [5].
Unfortunately this elegant proof cannot be adapted to either of the system H
or D.

The (relative) simplicity of the termination proof of TRS Q seems to indi-
cate that (variants) of this TRS may be more accessible to automatic termina-
tion provers making use of interpretations into the ordinals. Such an extension
may also be suitable to deal with Touzet's formalisation of the Hydra battle,
c.f. [26].
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