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Rising damp: capillary rise dynamics in walls
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Manchester, Manchester M60 1QD, UK

We analyse rising damp using the concepts and methods of unsaturated flow theory.
A simple first-order Sharp Front model is developed which uses clear physical principles
and includes the effects of evaporation and gravity. We find that the simple model
captures well the observed features of capillary rise in walls and is supported by the
underpinning nonlinear capillary diffusion theory. For most cases, capillary forces are
dominant and the effects of gravity can be neglected.
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1. Introduction

Rising damp is the common term for the slow upward movement of moisture in
the lower parts of walls and other ground-supported structures. It is an
important cause of wetness in buildings. It is a cause of decay and deterioration
in standing stones, monuments and at archaeological sites. Much has been
written about rising damp, some informed and some less so. Experienced
practitioners in building conservation have described its features—see, for
example, the book by Massari & Massari (1993) and the technical pamphlet
from the Society for the Protection of Ancient Buildings (Thomas et al. 1992).
Almost all of these accounts are descriptive and qualitative. There is no harm
in that: rising damp is a complicated process. What we wish to do in this short
paper is to offer a physical analysis of rising damp from which we develop a
quantitative model to complement the descriptive accounts. This provides a
clear identification of the principal factors which control rising damp, expressed
in some simple formulae. These formulae can be evaluated numerically for
many cases to provide practical guidance on such matters as the height of rise,
the time-scale for drying and so on. We emphasize that these formulae do not
represent the phenomenon exactly, although they are the exact results of the
simplified model. We show that their predictions are consistent with practical
observations. Some features of this analysis are to be found in the paper of Vos
(1971) who described the suction of groundwater by walls from the standpoint
of a soil physicist.
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2. Unsaturated flow

(a ) Capillary absorption

Our understanding of water transport in building materials (brick, stone and
concrete, plaster and mortars) now has a strong scientific basis. The research
literature from, say, the 1960s is extensive. We have set out the present state
of scientific knowledge in our recent monograph (Hall & Hoff 2002). There are
many complications and much remains to be studied in more detail, but we do
now understand that the primary physical processes arise from capillary forces
at work within the pores of the materials. These forces are responsible for
the initial uptake of water from external sources, such as ground water,
driving rain or leaks, or through condensation. Capillarity is also the cause of
migration within the fabric, the redistribution of water from place to place
which is associated usually with the local differences of water content.
Eventually, water may leave the structure and the only important means to
do this is by evaporation: liquid water turning into vapour. The liquid–vapour
phase change may occur at a building surface or inside the fabric to be
followed by vapour migration within the material before eventual entry into
the atmosphere. These various processes all fall within the scientific theory of
unsaturated flow, the term emphasizing that the materials in the building fabric
are rarely fully saturated. If they were, capillary forces would be absent and
water movement could only occur in response to the external forces: in
practice, hydrostatic heads and gravity. As it is, the opposite is more or less
the case: almost always in building elements and structures, the capillary forces
are dominant.

The description of unsaturated flows can now be represented mathematically
with reasonable rigour. The mathematical models are often complicated and
frequently can be applied to particular cases only by means of computer-based
numerical methods. As a result, water transport modelling of building structures
linked to site survey and measurement is almost non-existent in building
conservation practice. But it is now technically possible and of course is
undertaken increasingly in the design analysis of heat, mass and air transfer for
new buildings (Adan et al. 2004). Hamilton (2006) carried out a brief but
important exploratory analysis of water flux in a standing stone at the Skara
Brae archaeological site using numerical code originally developed for modelling
unsaturated flow in hydrology.

Fortunately, there is often a half-way house, where we can use simpler models,
which express the essential first-order features of the processes. This allows us to
avoid the use of numerical computation and highlights the important factors and
their physical interrelationships. There is a trade-off: we obtain insight and
understanding, and reasonable estimates of the quantities we calculate, but less
detail than we obtain with numerical methods. In the field of unsaturated flow,
an important class of simplified models is based on sharp front (SF) theory. Here,
the important simplification is to ignore the rather fuzzy boundary between wet
and dry regions within a structure or fabric and to replace this by a notional
sharp boundary. We then ask how this boundary moves in particular materials as
water is fed into the structure from an external supply and perhaps removed
elsewhere by evaporation. These SF models are particularly good for dealing with

C. Hall and W. D. Hoff1872

Proc. R. Soc. A (2007)

 on November 14, 2011rspa.royalsocietypublishing.orgDownloaded from 



geometrical complications and with composite structures where two or more
different materials may be present. In this spirit, we now describe an SF model of
rising damp.

3. Rising damp

A brief outline of this model first appeared in a footnote in Hall & Hoff (2002).
Here, we expand the model and derive a number of new results. We consider the
situation represented in figure 1a: we have a structure in hydraulic contact with
the ground and of unlimited height. The structure is of constant thickness, b, and
composed of a porous material. For this analysis, the only material property of
the structure that we need to know is its sorptivity S. This property is easily
measured (Hall 1989). If the structure is composed of several materials, we need
to know only some kind of averaged or composite sorptivity, as we discuss later.

We take as our starting point the proposition that rising damp is the result of
competition between the capillary absorption of water along the boundary AA0

and the evaporation of water along the exposed surface(s) BB0 (Vos 1971;
I’Anson & Hoff 1986). We denote the total rate of absorption along AA 0 by U and
the total evaporation rate on BB0 as E. When the height of rising damp h has
stabilized at some value hss, we have a steady state in which UZE. This is not a
state of static equilibrium in which nothing happens, but a dynamic state in
which ‘water-in’ is balanced by ‘water-out’. In stabilized rising damp, there is a

E

U
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b

A A′

B

B′
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(a) (b)

Figure 1. (a) A physical view of rising damp. A porous material of thickness b is in hydraulic
contact with saturated ground at AA0. Water is absorbed at a rate u per unit width of wall. One or
both of the faces BB0 are subject to evaporation at a rate e per unit height of the wetted wall. The
wetted height measured from the datum at the ground surface is h. (b) The lumped SF model: the
total inflow UZbu is controlled by transport properties of the wall and the total evaporative loss
depends only on the dimensionless height of the wetted region, H.
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steady flow of water through the system FssZEssZeh ss, where e is the
evaporation rate per unit area of the wetted surface. In fact, the magnitude of
the steady flow Fss is one of the most interesting results of our analysis.

We note one further relation which we use later. The total quantity of water
stored within unit length of the wall is QZqwbh. Here, qw is the moisture content
of the wetted region of the wall. To be precise, it is the volume of water per unit
volume of material, averaged over the entire wetted region. The quantity qw
appears in all the rising damp formulae we derive, so its meaning and
measurement are important. It may be obtained by direct measurement of the
moisture content in the wall. However, we know from many previous research
studies that the value of qw always lies in the fairly narrow range between the
volume fraction porosity of the material f (the conventional ‘porosity’) and the
so-called capillary moisture content of the material (the value obtained in a
short-term capillary rise experiment). Since the capillary moisture content is
rarely less than approximately 0.7f, it follows that to take qwZ0.85f will not
introduce much error. If site measurements are available, so much the better.

Figure 1a is a two-dimensional physical summary sketch of rising damp in a
generic wall. Since our aim is to understand the scaling relations in the dynamics
of rising damp, we now represent this in the lumped one-dimensional form shown
in figure 1b. In this representation, the rate of evaporative loss E depends only on
the height of the wetted region h; whether evaporation occurs on one or both
sides of the physical wall is of no interest. The evaporation at every level is
lumped, as is the total capillary absorption at the foot of the wall.

We consider the two quantities U and E in turn. The water entering the
structure along AA0 depends on the capillary water absorption properties of the
wall material(s). For almost every construction material, capillary water
absorption into a bar of dry material obeys a simple physical law iZSt1/2,
where i is the cumulative volume of water absorbed (per unit area of inflow
surface) and t is the elapsed time. This in fact provides a definition of the sorptivity
property: S is easily measured by a laboratory test on a small sample of material.
We emphasize here that the sorptivity is not an empirical parameter, but is
rigorously defined in the theory of unsaturated flow and the capillary diffusion
theory based on the Buckingham–Richards equations (Hall & Hoff 2002).

We note that as the water rises in the wall, gravity exerts a downward force.
This effect can easily be included in our model, but at the price of some
mathematical complication. For completeness, we include a full SF model with
gravity effects in appendix A. However, the capillary forces are generally dominant
in walls and we therefore develop the theory here omitting gravitational forces.We
compare the results with and without gravity effects later in the paper.

Therefore, now neglecting the role of gravity, we write

U Z b
di

dt
Z

1

2
bStK1=2

Z

bS2

2i
ð3:1Þ

to describe the capillary absorption into unit length of the wall through AA 0.
Since iZqwh, we have

U Z

bS2

2qwh
: ð3:2Þ
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Equation (3.2) shows that the rate U at which water is absorbed at the base of
the wall varies inversely with the height of rise h.

Now we turn to the evaporation component of the model. Here, we make use of
a well-established result (van Brakel 1980; Hall et al. 1984) that the rate of
evaporation of water from moist porous materials is determined solely by the
environmental conditions over a wide range of water contents from saturated to
fairly dry. What we mean by fairly dry varies somewhat from material to
material, but for example in the case of brick the range of constant evaporation
extends from the saturation water content qs to approximately 0.3 qs (Hall et al.
1984; Massari & Massari 1993). We therefore do not need to know much about
the damp material below the rising wet front except its extent. However, we do
need to have some measure of the drying capacity of the local microenvironment.
For this, we use the potential evaporation (the evaporation rate of a free water
surface located at the surface BB0): this quantity we call e. (We know (Hall et al.
1984) that e is influenced by temperature, air humidity and air flow speed at and
close to the wall surface, although the interrelation of these quantities is
complex. Both air flow mapping and humidity measurement are difficult, so the
ideal site measurement is a direct measurement of e. This measurement is rarely
if ever made, and it is clear from this and other recent related work that it is a
high technical priority.) We then set the evaporation rate per unit area of the
wetted surface eZe.

The evaporation component of the model is thus extremely simple

E Z eh: ð3:3Þ
The total rate of evaporation E depends on the wetted height h and the
evaporation rate (per unit area) e established by the microenvironment.

(a ) Steady-state height of rise

We first consider the situation where rising damp has stabilized. Water
absorption and evaporative loss are in balance. We then put UssZEss, where the
subscript ss denotes the rising damp steady state. From equations (3.2) and
(3.3), we have

bS2

2qwhss
Z ehss; ð3:4Þ

so that

hss Z S
b

2eqw

� �1=2

: ð3:5Þ

This simple but important formula tells us that the steady-state height of rise
varies as the square root of the wall thickness and inversely as the square root of the
potential evaporation rate in the local microenvironment. The height of rise varies
also in direct proportion to the sorptivity of the wall material. The functional
dependence of hss on b and S agrees with the earlier analysis of Vos (1971).

There are three important quantities that we can now calculate. First, at
steady state, the total quantity of water per unit length of wall QssZqwbhss.
Second, the steady flow of water through the wall FssZehss. From these two
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quantities, we see also that the mean residence time of water in the wall is Q/F:
this is the mean journey time for a water molecule to travel through the wall.

(b ) Putting in some numbers

Let us consider an illustrative example: a solid masonry wall constructed of
building limestone. The sorptivities S of limestones usually lie somewhere
in the range 0.5–1.5 mm minK1/2, so we take SZ1.0 mm minK1/2. The volume
fraction porosity f is generally approximately 0.25, so we put qwZ0.2. We set the
wall thickness at, say, 150 mm. For the evaporation rate, we take a value of
eZ0.001 mm minK1, which corresponds to the UK annual potential evaporation
averaged over an entire year. If we insert these values into equation (3.5), we obtain
a steady-state height of rise of 0.61 m. This value is similar to the heights observed
in house walls showing rising damp (Building Research Establishment 1989).

The total water stored in the wall is approximately 18 L per m length of wall.
The total flow through the wall is approximately 0.88 L dayK1 per m length.
The total flow is striking, amounting to some 320 L yearK1 per m length. It is
unsurprising that we commonly see severe deterioration of the wall fabric, as well
as finishes and decorations such as wall paintings. The mean residence time is
approximately 21 days.

Equation (3.5) tells us that if we decrease the evaporation rate, the steady
height of rise increases, and that hssf1=

ffiffiffi

e
p

. So let us recalculate the results with
a value of e four times smaller than the previous one. We now have a height of
rise of 1.2 m; the volume of stored water has increased correspondingly to 37 L.
The total flow through the wall however has fallen considerably, from 0.88 to
0.44 L dayK1. This is the consequence of doubling the area from which
evaporation is occurring (owing to the increased height of rise) but reducing
the evaporation rate (per unit area) by a factor of 4. The residence time is now
much longer, approximately 84 days.

We can also see the effect of changing the wall thickness. Equation (3.5) shows
us that the height of rise hssf

ffiffiffi

b
p

. If we double the wall thickness b from 150 to
300 mm, we find that the height of rise increases from 0.61 to 0.87 m.

(c ) Changing the height of rise: the response time-scale

We now consider the case where the absorption inflow and the evaporation
loss are not in balance. Then, the difference between the quantities U and E
causes the total quantity of stored water to change, such that dQ/dtZUKE.
Since QZqwbh, we obtain the differential equation

dh

dt
Z

S2

2q2w

1

h
K

eh

bqw
: ð3:6Þ

Equation (3.6) determines how the height of rise varies with time when capillary
rise has not stabilized.

We may write this equation more simply as

h
dh

dt
ZKah2 Cc; ð3:7Þ

where aZe/qwb and cZS2=2q2w.
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We solve this equation for the initial value hZ0 at tZ0 and obtain the
equation for the entire capillary rise process h(t)

h2 Z
c

a
½1KexpðK2atÞ�: ð3:8Þ

At long times as t/N, h/hssZðc=aÞ1=2ZSðb=2eqwÞ1=2, as in equation (3.5).
From an initial dry state, the system reaches hZ0.95hss in a time t95Z3bqw=2e,
which we take as the time-scale for reaching rising damp steady state. With
bZ150 mm, qwZ0.2 and eZ0.001 mm minK1 as before, we find that this time is
approximately 31 days. This time-scale is consistent with the observations of
Taylor (1998) in a laboratory test on a narrow rectangular block of Lépine
limestone 630 mm high, in which the wet front climbed to the upper surface in
approximately 17 days in the absence of evaporation (Hall & Hoff 2002). The
time-scale t95 is inversely proportional to the evaporation rate, and in poorly
ventilated situations may be much longer.

It is common building practice to apply a low-permeability render coat to
damp-affected walls. Taken alone, this is a poor treatment for rising damp, since
it greatly reduces water loss from the wall and drives the steady-state height of
rise upwards. At first, it may appear to be effective because the adjustment in hss
can be slow and it may take a long time for rising damp to reappear at the top of
the render coat. Consider the case of a 215 mm thick masonry wall with an
effective composite sorptivity of 0.3 mm minK1/2 and with qwZ0.2. Before
rendering, we take eZe as usual and set eZ1!10K4 mmminK1, typical of
a poorly ventilated space. The steady-state height of rise is 695 mm. If we now
apply a render coat to the wall to a height of 1.25 m, we thereby reduce the water
loss from the wall surface and we can represent this in our model as a reduction
in the evaporation rate e. Thus, if we set eZ0.1eZ1!10K5 mmminK1 after
rendering, damp now rises once again up the wall and re-stabilizes well above the
top of the render coat. We calculate from equation (3.8) that the wet front takes
approximately 425 days to climb from the initial steady level of 695 mm to
reappear above the top of the render coat.

(d ) Comparison with practical observations

It is often noted that it is difficult to replicate rising damp in the laboratory.
The reasons for this include difficulties in producing a suitable mortar which is
sufficiently sorptive. In older walls, it is likely that mortars become more
sorptive as a result of the prolonged passage of water through them over long
periods of time. Fresh mortars, particularly those containing cements, act as a
barrier to rising damp. (We note here the work of Mamillan & Bouineau (1976)
on test walls of limestone masonry, which shows that the rising damp halts at
the first joint although the properties of the stone would suggest much greater
heights of rise.)

When we look at published survey data on older buildings, the predictions
of our model are satisfactory. Thus, there is the common observation
(Building Research Establishment 1989) that in UK houses built without a
damp-proof course, rising damp forms a band of saturated wall typically to a
height of 0.5–1 m. This agrees with the predictions for evaporation rates in the
range 0.25–1.0!10K3 mmminK1, which are appropriate for UK conditions.
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Massari & Massari (1993) have reported their observations of capillary rise in
buildings in Rome, noting the importance of wall thickness and evaporating
geometry on the height of capillary rise. From visual surveys of walls and pillars,
they define the quantity h ss/b which they call the climb index. They report from
their long experience that this quantity lies in fairly narrow ranges for walls and
pillars exposed to interior or exterior conditions. This is tantamount to proposing
a simple scaling of h ssfb. Thus, a free-standing square pillar with evaporation
from all the four sides has a climb index h ss/bz1. Our model (assuming
SZ1 mm minK1/2, qwZ0.2 and setting eZ4!0.0016 mm minK1) gives
h ss=bz20=

ffiffiffi

b
p

, giving a climb index in the range 1.15–0.90 for pillars of thickness
300–500 mm. Here, we set eZ854 mm, the annual potential evaporation for Rome
(Müller 1983). Similarly, for walls, Massari & Massari (1993) suggest that h ss=b
lies in the range 1.5–5, while our model gives h ss=b in the range 1–2.8 for typical
parameter values. Of course, uncertainties in sorptivity and porosity will affect
these results but the important conclusion is general. Our model provides an
explanation of the dependence of the height of rise on wall thickness and gives
numerical results in good overall agreement with the Massaris’ field observations.

These authors also report that in the Church of San Bernardo in Rome, the
exceptional wall thickness of 4 m results in rising damp reaching a height of
5.3 m. This is consistent with our model for SZ1 mm minK1/2 and an average
evaporation rate e of 1.8!10K4 mmminK1 for each side of the wall, not
unreasonable for a brick wall coated with painted stucco.

For experimental support, we might also look to other systems in which water
moves slowly through capillary structures at rates controlled by evaporation.
Thus, the vascular transport of water in plants has been the subject of scaling
analysis (notably West et al. 1999). Here, the dynamics of fluid flow and
evaporation limit the height of trees just as water absorption and evaporation
limit the height of rising damp. However, the architecture of plant transport
systems, in which tapered capillaries have evolved to provide constant
hydrodynamic resistance along flow paths to leaves at different heights, is
profoundly different from that of walls. Nonetheless, it is striking that the
heights of the tallest trees are similar to the maximum heights to which some
capillary water is calculated to rise in walls in the absence of evaporation
(Gummerson et al. 1980).

4. Gravity effects in rising damp

We have stated that in most situations, capillary forces are dominant and
that gravitational drainage plays a minor role. Since we have exact equations
for the approach to the capillary rise steady state with and without gravity
effects (appendix A), we can support this assertion by calculation. Figure 2
shows a comparison of capillary rise kinetics for two examples in which the
steady-state heights of rise neglecting gravitational drainage are 500 and
1000 mm. For these particular values of the parameters S, b and qw, gravity
reduces these steady-state heights to approximately 488 and 951 mm,
respectively, on the assumption that the ultimate equilibrium height of rise
in the absence of evaporation is 10 m. The effect on the rate of rise is minor.
In more extreme cases, where conditions are such that rising damp reaches
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greater heights, the influence may be greater. However, such conditions are
rare and probably only of practical significance on long time-scales where the
evaporation is unusually poor.

5. Model walls and real walls

We recognize that real walls and ground-supported structures are more individual
and complicated than the generic model we have drawn in figure 1. Our formulae
are exact for the model, but the model will not be an exact representation of a
particular building structure. Even so, the model embodies sound descriptions of
physical processes and these processes occur in real structures. The model
therefore captures essential features of these real structures.

What are the main points of difference between real walls and the schematic walls
of figure 1?We comment in turn on geometry, materials and water transfer physics.

(a ) Geometry: where is the foot of the wall?

In our model (figure 1), we measure the height of rise from a datum hZ0 which
we set at the lowest level at which evaporation occurs, that is at the point B, the
lowest level at which the wall surface is exposed. The justification for this is that
any part of the wall that lies below the surface is likely to be at or close to
saturation, although the location of the hZ0 datum benchmark may vary
slightly according to circumstances.

(b ) Materials: setting the sorptivity

The sorptivity is the only transport property of the wall material which
appears in the model. This property has been measured for many constructional
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Figure 2. The weak effect of gravity on capillary rise in walls. Solid curves: h(t) from equation (3.8),
which neglects gravity; dashed curves: h(t) from equation (A 5), which includes gravity. Curves
A: the no-gravity steady-state height of rise hssZ1000 mm and the potential evaporation rate
eZ1.4!10K4 mmminK1. Curves B: no-gravity hssZ500 mm and the potential evaporation rate
eZ3.4!10K5 mmminK1. For all curves, SZ1.0 mm minK1/2, qwZ0.2 and hNZ10 m.
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materials, including brick, stone, mortars and plasters. However in masonry
walls, the effective sorptivity may be lower than the sorptivity of the masonry
units because joints and interfaces resist flow. Some guidance on the choice of an
appropriate value for the composite sorptivity comes from detailed studies of the
capillary absorption into layered composite materials (Wilson et al. 1995; Hall
et al. 1996; Hall & Hoff 2002). On the other hand, there is some compensation from
another important long-term phenomenon, which was first demonstrated
experimentally by Gummerson (Gummerson et al. 1980). Accurate weight
measurements showed that steady capillary flow through a single clay brick
with one header face in contact with water and all other faces exposed to
evaporation led over the course of 2 years to complete saturation. All the air
trapped during capillary absorption into the initially dry brick was slowly lost by
molecular diffusion. Such full saturation has also been observed in detailed
measurements of water content profiles in brick and cement-based materials using
nuclear magnetic resonance imaging and X-ray attenuation techniques (Roels
et al. 2004; Hall 2007). It is therefore probable that in walls subject to long-term
rising damp, the water content of the wetted region will slowly approach full
saturation. Consequently, we may expect that both qw and S determined in short-
term tests underestimate the true values. Thus, qw may be closer to the open
porosity f than the value 0.85f which we have used; and the sorptivity Smay be as
much as 50% higher than the standard value. Some guidance on this is provided by
the recent measurement of the sorptivity under vacuum conditions where air
trapping is eliminated (Victoria Pugsley 2006, personal communication).

(c ) The effect of salts

Our model describes a mass balance in which, at steady state, the rate at
which water enters by capillary absorption equals the rate at which water leaves
by evaporation. If the water passing through the structure contains appreciable
amounts of dissolved salts, then there is an additional component to the mass
balance, and there is an accumulation of salts within the wetted region. This
leads to a progressive increase in the dissolved salt concentration of the stored
water and ultimately may lead to the deposition of solid salt either within the
fabric or at the surface. These processes are not incorporated in the model,
although some of their effects can be accommodated. The sorptivity can be
adjusted if need be by a small change in the value of the viscosity. More
importantly, in the presence of salts, the evaporation rate e is reduced by a factor
(psKp0)/(p1Kp0), where ps is the vapour pressure of the salt solution at the
surface BB0; p1 the vapour pressure of pure water; and p0 is the water vapour
pressure of the environment. The depression of vapour pressure by salt solutions
can evidently have a strong influence on the evaporation rate e. Indeed, e/0 as
ps/p0 or 100ps/p0/RH, the relative humidity of the microenvironment.

6. Relation between SF model and diffusion model

The SF model is a simple representation of the full nonlinear diffusion model of
unsaturated flow built on the Buckingham–Richards equation. In order to apply
the diffusion model, we need to have more comprehensive information on the
transport properties of the wall materials. If we can neglect gravity effects, then
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we need to have the full capillary diffusivity property D(q), where q is the water
content; if we cannot neglect gravity effects, then we need both the hydraulic
conductivity property, K(q), and the hydraulic capillary potential property,J(q)
(or alternatively D and one of K or J). Then, with a suitable numerical scheme,
the entire two-dimensional moisture distribution field may be calculated as a
function of time for particular initial conditions. An example of this calculation is
shown in Hall & Hoff (2002).

7. Some conclusions

Our analysis goes beyond previous qualitative descriptions of rising damp and
provides a first-order model from which important scaling relations emerge and
which includes the effects of gravity. Our main conclusions are as follows:

(i) a simple SF model of rising damp predicts values of the steady height of
rise that are consistent with field observations,

(ii) the dynamics depends on the dimensionless quantity a, so that the
primary factors are the wall thickness, the sorptivity of the wall materials
and the potential evaporation of the immediate microenvironment,

(iii) although gravity limits the ultimate height of rise and retards the
approach to capillary rise steady state, gravity effects can normally be
neglected as capillary forces are dominant, and

(iv) the SF model provides a rational basis for understanding field observations
and also for designing optimal conservation treatments.

We thank the Royal Society (Brian Mercer Award) and the UK EPSRC for financial support. We
thank Tobit Curteis and Robyn Pender for comments and advice.

Appendix A

We set out here the full theory to include the effect of the gravitational force
acting on the water in the wall. We denote by hN the ultimate height to which
moisture would rise in the complete absence of evaporation. While hN may seem
to be a quantity about which we can know little, this is not so, since at capillary
rise equilibrium, the capillary pressure potential J and the gravitational
potential are equal at every height (Gummerson et al. 1980). For many
constructional materials, the capillary potential J, as a function of the water
content q, is known from laboratory measurements using pressure plate and
other methods (Hall & Hoff 2002). From this, we can compute the entire
distribution of water content q with height z, and we may reasonably estimate hN
as the SF equivalent height which contains the same total amount of water. Thus

hNZ

1

qw

ð

qs

0
J dq; ðA 1Þ

where qs is the water content at saturation.
To include gravity effects, we use the SF equation for the approach to

gravitational capillary rise equilibrium (Gummerson et al. 1980; Hall & Hoff 2002),
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so that we have

U Z

bS2

2qwh
1K

h

hN

� �

: ðA 2Þ

This reduces to equation (3.2) when h/hN/0. Then, with QZqwbh, dQ/dtZUKE
and EZeh, we obtain, for the capillary rise dynamics with both evaporation and
gravity, the differential equation

dh

dt
Z

bS2

2qwhw

1K
h

hN

� �

: ðA 3Þ

The mathematics can be simplified by using the dimensionless variables HZh/hN
and TZS2t=ð2q2wh2

NÞ, so that equation (A 3) becomes

dH

dT
Z

1KH

H
KaH ; ðA 4Þ

where aZ2eqwh
2
N=bS

2. We see also that aZða=cÞh2
N, where a and c are the

parameters defined in equation (3.7) for the no-gravity case.
The complete solution of this differential equation for the initial condition

HZ0, TZ0 is

KT Z

1

2a
lnjaH 2

CHK1jC 1

2ab
ln

ð2aH C1CbÞð1KbÞ
ð2aH C1KbÞð1CbÞ

�

�

�

�

�

�

�

�

; ðA 5Þ

where bZð1C4aÞ1=2.
Equation (A 5) describes the entire process of capillary rise. The single

parameter a is a dimensionless group that can, however, take a wide range of
values. The steady-state height of capillary rise Hss obtained from equation (A 4)
when dH/dTZ0 and T/N is

Hss Z
hss

hN
Z

bK1

2a
: ðA 6Þ

For a[1, we can set bZ2a1/2, and substituting for a, H and T, we recover
the simpler equation (3.7). This is the case where gravity effects are negligible,
and occurs when the capillary forces are strong, so that hN is large and the
evaporation rate e is appreciable. At long times, the system reaches a capillary

rise steady state Hss, with a finite flow rate Fss. We obtain the result Hss/a
K1/2

and hss/Sðb=2eqwÞ1=2, as obtained previously in equation (3.4). From an initial
dry state, the steady state is reached in a time tz3bqw=2e.

In the other limit, if a/1, equation (A 5) reduces to the expression we have
given elsewhere (Hall & Hoff 2002) for simple capillary rise equilibrium. This
case is most easily obtained by switching off the evaporation, so that eZ0. At
long times, the system reaches a true equilibrium H(N)Z1, where the flow rate
F(N)Z0.

For the general case, with intermediate values of a, the full equations (A 5)
and (A 6) must be used. At long times, the system reaches a steady state
HssZðbK1Þ=2a, with finite flow rate FssZehNHss.
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In figure 3, the influence of the parameter a on the capillary rise dynamics is
shown graphically.
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