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A Spherical Source Model for the 
Thermal Pulse Decay Method of 
Measuring Blood Perfusion: A 
Sensitivity Analysis 
The thermal pulse-decay method, as developed and analyzed by Chen et al. [1-6], is 
a thermal clearance technique that uses a small thermistor probe for determining the 
blood perfusion and thermal conductivity of the tissue immediately surrounding the 
probe. They described the energy transfer of the probe/tissue system mathematically 
with a simple analytical model, the point source model, which assumes that the 
heating source is infinitely small. This paper introduces a new, more accurate 
analytical description that assumes the heating source is spherically symmetric with a 
finite radius. A numerical study of these two alternative mathematical models is 
presented in which the solutions of each model are compared to transient 
temperature decay data generated from a detailed finite difference simulation of the 
probe/tissue system. The accuracy and sensitivity of the predictions of each of these 
models to variations in tissue thermal conductivity and perfusion, probe 
characteristics, and heating time are presented. In all cases, the accuracy of the 
spherical source model was better than the point source model. It is also shown that 
the spherical source model can accurately predict low rates of perfusion {on the 
order of 1 kg/m3s) unlike the point source model. The spherical source model also 
allows for the possibility of the measurement probes to be calibrated for an "effec
tive bead radius" which accounts for the nonideal characteristics of the probe, 
thereby giving even more accurate determinations of perfusion. 

Introduction 

Knowledge of the thermo-physical and related physiological 
properties of biological materials is critical to the accurate 
thermal modeling of tissue. The blood perfusion is considered 
the most important property in determining the temperature 
distributions, particularly during hyperthermia treatments [7]. 
The ability to measure and map tumor and normal blood 
flow, both before and during a hyperthermia treatment, could 
improve the accuracy of the treatment modeling and estima
tion of the temperature field and thereby provide for a more 
effective treatment. There are numerous methods now in use 
to determine the blood perfusion to various organs and 
regions of tissue such as tumors. A summary of indicator and 
thermal clearance techniques has been presented by Eberhart 
et al. 18], while an overall review of measurements of the ther
mal properties of biological materials has recently been 
presented by Chato [9]. 

This paper will consider a thermal clearance technique, 
known as the thermal pulse-decay method, for determining 
the blood perfusion and thermal conductivity in tissues [1-6]. 
This method utilizes a small invasive thermistor probe which is 
subjected to a short pulse of power. The subsequent 
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temperature decay is then measured and curve fit to an 
analytical model to yield the estimates of thermal conductivity 
and blood perfusion. The original thermal pulse decay probe 
was described by Goldenberg [10], Chen et al. [1] improved 
the model by using "small" thermistor probes. They assumed 
that the probe is a point source because of its "small" size and 
derived an analytical description of the temperature decay 
based on this point source model (PSM). Theoretical studies 
of the point source model have been performed by Arkin et al. 
[5-6]. The theoretical assumptions of the point source model 
were justified by Arkin's analysis where the effects of bead 
radius, nonhomogeneity of the surrounding tissue region, and 
tissue trauma were shown to be negligible during the optimal 
measurement time interval [5]. Also, the effects of experimen
tally derived errors (those errors propagated from errors in the 
measurement data) on the overall error in the calculated values 
of perfusion and thermal conductivity were determined. From 
these studies an ideal experimental protocol was established 
that limited the effects of the experimental and theoretical er
rors on the parameter estimations. The optimal measurement 
protocol was shown to be dependent on the actual values of 
tissue perfusion and thermal conductivity, and at low and 
moderate simulated perfusion rates the dominant error was in 
the prediction of perfusion. 

From the above work it is apparent that the thermal pulse 
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decay method is a worthwhile approach to measuring blood 
perfusion. It is also apparent that the point source model is 
only an approximation of the actual thermobead/tissue 
system. The purpose of this paper is twofold; to introduce an 
improved model of the TPD system, the spherical source 
model (SSM), and to extend the theoretical work of Arkin by 
comparing this model's error with those of the point source 
model (PSM) under various simulated experimental condi
tions [11]. Also, the ability of these models to predict low 
values of blood perfusion is investigated. 

At this point it should be noted that these solutions for the 
thermal pulse-decay method are derived from the bio-heat 
transfer equation (BHTE). The BHTE is an approximate 
representation of the heat transfer process in the tissue. 
Nonetheless, due to its solvability, most thermal techniques 
for determining tissue properties utilize the BHTE to obtain 
their solutions. The accuracy of the BHTE and a comparison 
to other existing tissue models can be found in the survey by 
Roemer [12]. 

Methods 

Physical Description of Thermobead/Tissue System. The 
actual physical configuration of the TPD system consists of a 
thermistor probe imbedded within the tissue region of interest. 
In experimental and clinical applications of this technique, the 
thermistor bead is mounted to the tip of a rigid probe 
assembly and coated with a layer of epoxy [4]. The thermistor 
bead (Fig. 1) consists of an inner, solid prolate spheroid com
posed of a resistive composite material, surrounded by suc
cessive annular coatings of glass and epoxy. The power is 
generated electrically within the resistive region. The passive 
coatings and the composite material of the bead each possess 
different thermal properties. The thermistor is thus a 
nonuniform power source with finite dimensions and distinct, 
inhomogeneous material properties. The tissue that surrounds 
the probe has separate thermal properties from those of the 
probe and may have a nonhomogeneous distribution of these 
properties within the tissue region itself. Also, the effects of 
trauma due to the insertion of the probe can result in different 
thermal parameters for the damaged region other than those 
of the nondamaged tissue region. 

Description/Derivation of Analytical Models. The point 
source model, as developed by Chen et al. [1], is an approx
imate solution to the above system in that it assumes that the 
probe is an infinitely small power source (a point source) sur
rounded by an infinite, homogeneous tissue region. This 
representation does not account for the finite size and in-
homogeneous composition of the thermobead as a power 
source and as a temperature sensing device. The assumption of 
an infinite media is valid as long as the tissue is homogeneous 
over a volume greater than the effective measurement volume 
sensed by the probe. 

The new spherical source model (SSM) more accurately 
describes the thermistor probe by accounting for the finite size 

of the heated volume of the thermobead. It does this by using 
a spherical power distribution with the same diameter as the 
thermistor. Otherwise, the SSM makes the same assumptions 
as the PSM, including homogeneity of all tissue parameters 
throughout an infinite region, including the thermistor. 
Neither model takes into account the separate thermal proper
ties of the bead. 

The derivations of both the spherical and point source 
analytical models assume that the bio-heat transfer equation 
adequately describes the thermal processes in the surrounding 
tissue region. (Note that the BHTE is an approximate 
representation of the heat transfer processes in tissue. 
Therefore, the term W is an approximation of the true tissue 
perfusion.) Thus, the equation describing the behavior of the 
point source model system can be written as: 

C>^T = ̂ v 2 0 r WcbP< + 6*8(0,0 PtCf 
dt 

(1) 

where 6, is the temperature above the steady state temperature 
field, thus the boundary and initial conditions for equation (1) 
are zero. However, in the spherical source analysis it is assum
ed that the power applied to the bead (Qb) is of finite extent 
and is uniformly distributed in a sphere with a radius equal to 
the outer bead radius, R. Using the same assumptions implicit 
in equation (1), the equation for the spherical source model 
reduces to the following, where H is the Heavyside function: 

P,ct^ = ktV
2e,-Wcbl9t + Qbll--lU.r-R)] (2) 

at 
As in equation (1), the initial and boundary conditions for this 
equation are zero. A Green's function analysis can be used to 
solve equations (1) and (2), for the temperature at r = 0: 
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Equations (3) and (4) represent the point source model (PSM) 
as derived by Chen et al. [1] and the spherical source model 
(SSM), respectively, where 0 ( 0 is the temperature measured 

Nomenclature 

c = specific heat, J/kg°C 
k = thermal conductivity, W/m° 
t = time, s 

Q = volumetric power, W/m3 

P = power, W 
R = outer bead radius, m 
T = temperature, "C 

W = perfusion, kg/m3s 
D = domain of influence 
p = density, kg/m3 

e = 

tm = 

T(r,t) - T(r,0) = temperature 
above the initial temperature, 
°C 
power pulse length, s 
central measurement time, s 
dirac delta function 

Subscripts 
ar = arterial 

b = 
bl = 
P '-
s = 
t = 

rm = 
am = 

= thermistor bead 
= blood 
= point source 
= spherical source 
= tissue 
= reference model parameter 
= analytical model parameter 
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Fig. 1 Physical configuration of the finite difference reference model 
showing the TPD probe and surrounding regions 

by the thermistor above the steady state temperature. Since 
both equations (3) and (4) are integral equations which do not 
yield simple elementary functions when directly integrated, 
they were solved numerically using the Romberg method [13]. 

Reference Model Description. In order to generate a data 
base which could be used to systematically evaluate the ac
curacy of the two analytical models, a reference model was 
developed which more accurately describes the actual probe 
geometry. A finite difference representation of the geometry 
of Fig. 1 was developed in spherical coordinates with variable 
thermal properties, using a fully implicit tridiagonal solver to 
calculate the one dimensional, transient temperature 
distributions. 

The reference model allows for regions of different thermal 
properties in the thermobead and the surrounding tissues. The 
resistive composite was modeled as a spherical power source 
and temperature sensing element of a specified radius, sur
rounded by passive coatings of glass and epoxy. These three 
regions have separate thermal conductivities and no perfusion. 
The tissue medium was modeled as a series of concentric 
spherical regions surrounding the thermistor bead. The 
number, size, and thermal properties of these concentric 
regions could be varied according to the desired simulation 
design. Only one annular region of tissue medium was model
ed for most of the conditions simulated. The outer spherical 
boundary of the tissue media was set at a radius of 2 cm, 
which was sufficient for all of the analysis since the 
temperature gradients near the boundary were negligible for 
all cases. 

The temperatures calculated from this reference model are 
considered to be a more accurate representation of the actual 
probe response than are the temperatures from either 
analytical model because the thermistor was more accurately 
modeled. Thus, the reference model temperatures were used as 
a common basis of comparison for the predictions of the two 
analytical models. The comparison was performed by 
generating a set of power-off transient temperature data from 
the reference model for a given set of conditions (thermal con
ductivity and blood perfusion). This transient data was then 
used as if it were actual temperature data measured by a 
probe. The two analytical models were then fit to that "ex
perimental data" to predict the local tissue perfusion and ther
mal conductivity. The accuracy of those predictions were then 
compared to the known tissue properties (i.e., those of the 
reference model that were used to generate the "experimental 
data"). 

Reference Model Simulations 

The standard reference model was chosen to have an outer 
diameter of 0.3 mm and an inner composite diameter of 0.2 
mm to be consistent with the probes used in experimental 
situations. The average values of the thermal properties of the 

0.0 5.0 10.0 15.0 20.0 

TIME (SEC) 

Fig. 2 Typical simulated temperature decay curve produced from the 
reference model. Parameters used: IV=10 kg/m3s, k = 0.5 W/m°C, r = 3 
seconds, P = 5 mW. 

thermistor bead were taken from the literature and used in the 
simulations. The thermal conductivity of common nickel-
oxide and nickel-magnesium-oxide composites range in value 
from 2 to 14 W/m°C [14]. For this study, the thermal conduc
tivity of the composite was generally chosen as 10 W/m°C, 
with a few comparisons made using values of 1 and 14 
W/m°C. The outer glass coating was chosen to have a thermal 
conductivity of 1.4 W/m°C [15]. The layer of epoxy resin was 
chosen to have a thermal conductivity of 0.21 W/m°C [16]. 
Some theoretical decay curves were also produced for beads 
with an outer diameter of 0.4 mm to study the effects of bead 
diameter on the solutions. 

The tissue parameters used to generate data were chosen to 
generously bracket the expected physiological values. In the 
parametric studies, the tissue thermal conductivity was varied 
from 0.3 to 0.7 W/m°C and the local perfusion values ranged 
from 1 to 50 kg/m3s. The power delivered to the thermistor 
was 5 mW and the pulse length was varied from 1 to 5 seconds. 
The simulation parameters as used in most comparisons were 
as follows: a tissue perfusion of 10 kg/m3s, tissue thermal 
conductivity of 0.5 W/m°C, and a pulse length of 3 seconds. 

To generate the reference model temperature decay data, 
the finite difference program was run on a VAX 750 using 
double precision accuracy. To obtain a high degree of ac
curacy, the finite difference solution used a time step of 0.1 
milli-seconds and a grid size of 4 microns throughout 1̂1 
regions. This grid size was chosen to give a high degree of ac
curacy with as short as possible of a computation time. The 
transient temperature data were recorded in 0.1 second inter
val for a total time of 20 seconds. A plot of a typical simulated 
temperature decay versus measurement time is shown in Fig. 
2. 

The temperature data from the reference model were then 
used to evaluate the predictions of perfusion and thermal con
ductivity obtained from each analytical model (equations (3) 
and (4)). The radius of the reference model thermistor, in
cluding the layer of epoxy, was used as the radius of the heated 
sphere for the SSM solutions unless noted otherwise. An op
timization program was used to determine the perfusion and 
thermal conductivity of each of the analytical models for every 
set of reference model transient temperature data. The op
timization routine used the Gauss method of parameter 
estimation [17]. 

To investigate the accuracy of the model predictions as a 
function of the time at which the temperature measurements 
were made, the parameter estimations were computed for an 
interval of 1.2 seconds, centered at each desired measurement 
time (tm). For example, since the temperature data was record
ed in 0.1 second increments, the parameter estimations at the 
central measurement time of 10 seconds were determined by 
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Fig. 3 Perfusion prediction errors for the PSM and SSM versus time 
after pulse. Parameters used: k = 0.5 W/m ° C, T = 3 seconds, P = 5 mW. W 
is varied from 1-50 kg/m3s. 

D SSM U - 1. 
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Fig. 4 Effects of the reference model tissue conductivity and perfu
sion on the perfusion errors of each model for a discrete measurement 
time (fm) of 11 seconds after the pulse. Parameters used: r = 3 seconds, 
P = 5 mW. 

using the measured temperature data from 9.4 to 10.6 
seconds. The reason for these discrete evaluations was to il
lustrate how the effects of the inherent model errors varied 
with measurement time. The errors were computed as the ab
solute value of the difference between the parameter values 
predicted by each model and the actual, known values used in 
the reference model simulation program. 

Results 
The parameter prediction errors for each of the analytical 

models for various perfusion rates, tissue thermal conduc
tivities, pulse lengths, and dimensions and thermal properties 
of the thermistor bead are given in Figs. 3-8. For all of these 
tests, the parameters were constant as follows, unless noted 
otherwise; Wrm = 10 kg/m3s, krm =0.5 W/m°C, T= 3 seconds, 
Rrm=0A5 mm, and an applied power of 5 mW. Figure 3 
shows the errors in predicting perfusion for each analytical 
model, the SSM and PSM, as a function of measurement time 
for several simulated perfusion magnitudes (1, 10, and 50 
kg/m3s). 

The percent error of each model in predicting perfusion ver
sus the tissue thermal conductivity of the reference model is 
shown in Fig. 4, where the reference model perfusion was 
varied between 1, 10, and 50 kg/m3s. The perfusion error of 
each model was also plotted against the simulated heating 
pulse length, again as the perfusion was varied, as shown in 
Fig. 5. The central measurement time (tm) was 11 seconds after 
the pulse for all of these determinations. 

Figures6(a) and6(d) are plots of the error in the perfusion 
prediction model versus the central measurement time for 
various dimensions of the reference model thermobead for the 

SSM W 

PSM W 

SSM W 

PSM W 

SSM W 

PSM M 

2.0 3.0 

PULSE LENGTH (SEC) 

Fig. 5 Effects of pulse length and simulated perfusion on perfusion er
rors of each model for a discrete measurement time of 11 seconds after 
the pulse. Parameters used: ft = 0.5 W/m°C, P = 5 mW, r is varied be
tween 1,3, and 5 seconds, and W is varied between 1,10, and 50 kg/m s. 
Both SSM and PSM solutions are used. 
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Fig. 6(a) 

° 0.3,0.25,0.2 mm PSM 
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• 0.4.0.35.0.3 mm PSM 

5.0 10.0 15.0 20.0 

TIME AFTER PULSE (SEC) 

Fig. 6(b) 

Fig. 6 Effects of the thermobead dimensions on the perfusion error of 
the (a) SSM and (b) PSM. Parameters used: k = 0.5 W/m°C, T = 3 seconds, 
P= 5 mW, W= 10 kg/m3s. Four different bead geometries were tested. 
The dimensions given are the outer diameters of the three 
layers—epoxy, glass, and inner composite. 

SSM and PSM, respectively. The inner composite diameter 
was varied from 0.2 mm to 0.3 mm and the outer bead 
diameter from 0.3 mm and 0.4 mm. The other experimental 
values were held constant at the nominal values. 

To show the effects of tissue trauma due to needle insertion, 
the perfusion error of the PSM and SSM model is plotted 
against the measurement time in Fig. 7 for cases where the 
thickness of a nonperfused region surrounding the probe is 
varied from zero to a distance of 0.45 mm (3 bead radii thick). 

To study the dependence of the spherical source model 
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Fig. 7 Effects of traumatized tissue on the perfusion error of the SSM. 
Parameters used: k = 0.5 W/m°C, T = 3 seconds, P = 5 mW, W = 10 
kg/m3s. The damaged tissue region was modeled as a spherical an-
nulus, with zero perfusion, surrounding the bead. The trauma region 
was varied from 0.0 mm to 0.45 mm (3 bead radii) from the outer surface 
of the standard reference model bead. 

prediction on the value of the bead radius (heated region) used 
to obtain the solutions, the perfusion errors of the SSM for 
various perfusions (1, 10, and 50 kg/m3s) are plotted in Fig. 8 
against the radius (heated region) used in the SSM solution. 
For these tests, the reference model outer bead radius was 0.15 
mm, krm=0.5 W/m°C, T = 3 seconds, P=5 mW, and 
Wrm = 1, 10, or 50 kg/m3S. Figure 9 is a plot of the SSM per
fusion errors as a function of measurement time for several 
simulated perfusion magnitudes (1, 10, and 50 kg/m3s). In 
this figure the radius of the heated region in the SSM was 0.3 
mm, i.e., twice the reference model bead radius. 

Discussion 
For all of the conditions tested, the spherical source model 

more accurately predicted the local tissue perfusion and the 
thermal conductivity (results not shown) than the point source 
model, with significant decreases in error, especially for low 
blood perfusion situations. For example, the difference be
tween the errors of each model ranged from 28 percent for a 
perfusion of 1 kg/m3s to 1 percent for a perfusion of 50 
kg/m3s at a measurement time of 11 s after the pulse (a good 
measurement time) and all other parameters at their nominal 
values (Fig. 3). 

All the prediction errors increase at shorter measurement 
times. At the short times, the error in the PSM is due to the 
fact that the thermistor has a finite size and therefore is not 
adequately modeled as a point source, as previously discussed 
by Arkin [6]. Similarly, the error in the SSM is due to the fact 
that the thermistor is surrounded by a passive coating of glass 
and epoxy and therefore is not a uniform power source such as 
assumed in the SSM. The longer measurement times (tm>\\ 
seconds) produced acceptable results, within 10 percent for 
perfusions of 10 kg/m3s or greater, but failed to adequately 
improve the predictions at lower flow rates. At these large 
measurement times the effective measurement volume of the 
probe has become large in comparison to the physical dimen
sions of the probe, and therefore the probe has begun to 
resemble a point source. Thus, both solutions become more 
accurate representations of the actual system and the predic
tions of the two models become similar. As suggested in Fig. 
3, from the time where the errors approach a level less than ap
proximately 10 percent and from the experimental protocol set 
up by Arkin, a measurement time interval centered at 11 
seconds after the pulse was chosen as the ideal measurement 
time to be used in later simulations. Note that Arkin [5] deter
mined that a measurement time interval from 6-12 seconds 
minimized the effects of experimentally derived errors. This 

W=10 

W=50 

0.0 0.1 0.2 0.3 0.4 0.5 

RRDIUS DF SSM MODEL i mm ) 

Fig. 8 Effects of different values of the radius (heated region) in the 
SSM on the subsequent predictions of perfusion. The Reference Model 
data were obtained with the following parameters; firm=0.15 mm, 
k = 0.5 W/m°C, T = 3 s, and the perfusion was varied between 1,10, and 
50 kg/m3s. 

a w=l 
» W=10 

e W=50 

0 . 0 5 .0 10.0 15.0 20 .0 

TIME RFTER PULSE (SEC) 

Fig. 9 Error of the SSM in perfusion predictions versus time after pulse 
using an effective radius of 0.3 mm for the solutions. Parameters used: 
k = 0.5 W7m°C, T = 3 seconds, P = 5 mW, and R f m=0.15 mm. W was 
varied from 1-50 kg/m3s. 

time was found to be a trade off between too small of a 
measured temperature signal (experimentally derived errors) 
at long times and too large of a model error at the shorter 
times. 

As noted previously, each of the models was used to 
simultaneously determine both the thermal conductivity and 
blood perfusion from the reference model temperature data. 
The accuracy of both models in predicting the simulated tissue 
thermal conductivity was always very good, with the spherical 
source solution consistently yielding slightly better results. In 
all cases the SSM estimations of thermal conductivity were a 
fraction of a percent closer than those of the PSM and all 
predictions from both models followed the same trends. The 
error decreased as the perfusion increased but was well below 
2 percent in the time interval of interest. These accurate 
predictions are not unexpected, due to the conduction 
dominated nature of this technique [18]. 

The actual value of tissue (reference model) thermal con
ductivity was found to have a significant effect on the predic
tion of perfusion, as shown in Fig. 4. It is evident that larger 
values of tissue conductivity decrease the error in predicting 
perfusion. Again, the errors are larger at low values of perfu
sion (Fig. 5) and diminish as the measurement time is in
creased (results not shown). These effects are again a result of 
larger sampling volume obtained due to the increase in ther
mal conductivity which, for reasons mentioned previously, 
allow most of the bead properties to be neglected, and thus 
both model solutions become more accurate. To investigate 
the effect of several bead parameters, in particular the internal 
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bead thermal conductivity, specific heat, and density on the 
perfusion errors in both models, different test cases of the 
reference model were simulated, varying each parameter 
(results not shown). The internal composite conductivity 
values (from 1-15 W/m°C) have a negligible effect. Similarly, 
a + / - 50 percent change in the specific heat (from 835 
J/kg°C) and density (from 2225 kg/m3) of the composite was 
also found to have a negligible effect on the errors for the 
standard test conditions. 

The effects of the pulse length on the prediction of various 
perfusion rates is shown in Fig. 5. This effect is most 
noticeable at low perfusion levels, where the shorter pulse 
lengths produce better results. For these shorter pulse lengths, 
the ratio of the measurement time (time after the pulse) to the 
pulse length is much greater, allowing for a large effective 
sensed volume at a shorter time. Again, making the finite bead 
results more closely approach the model predictions. At 
moderate to high perfusions the pulse length has little effect. 

The physical dimensions of the thermistor bead (inner com
posite material, glass coating, and outer layer of epoxy) have 
an effect on the prediction errors (Fig. 6). Note the scale 
change between Figs. 6(a) and 6(b). Small deviations from 
the standard bead dimensions of 0.2 mm O.D. for the inner 
composite material, 0.25 mm O.D for the glass coating, and 
0.3 mm O.D. for the epoxy layer caused a considerable change 
in error. An increase in the thickness of the epoxy layer from 
0.3 mm to 0.4 mm O.D. increased the perfusion prediction er
ror by 5-10 percent. Similarly, increasing the thickness of the 
glass coating to 0.35 mm O.D. and maintaining the epoxy 
layer at 0.4 mm O.D. increased the error another 5-10 per
cent. An increase of the inner composite material from 0.2 
mm to 0.3 mm decreased the error by 5-10 percent. As the 
ratio of the outer diameter of the bead to the diameter of the 
inner resistive material is decreased, the thermistor is more 
closely approximated as a uniform power source which is an 
assumption in the derivation of both models. Also, as the 
outer diameter is decreased the thermistor geometry ap
proaches that of a point source. The above analysis illustrates 
that the overall size and the internal composite diameter are 
significant bead properties in limiting prediction errors for 
both of the analytical models. 

The effect of tissue trauma in the immediate volume sur
rounding the thermistor bead is shown in Fig. 7. The damaged 
region was modeled as a spherical annulus of tissue, without 
perfusion, surrounding the thermistor bead. For damage rang
ing in thickness from 0 to 3 bead radii, the effect on the 
resulting perfusion predictions was noticeably small for the 
SSM results. 

Finally, turning to the results of Figs. 8 and 9, one can begin 
to answer the question, "Which SSM heated radius best 
models the actual bead performance?" Here one is free to 
choose any value for this radius between zero (which would 
reduce the SSM to the PSM, which the present study has 
shown to be a nonoptimal solution) and infinity. In the 
present study, we have used the physical dimension of the 
outer bead radius as the radius of the heated region of the 
SSM. This is a dimension which is easy to obtain experimen
tally, and reflects the fact that the thermistor bead is a 
physically separate entity of a given size immersed in the 
tissue. However, from the results of Fig. 8 it appears that there 
may be a better choice of the radius of the heated region in the 
SSM, a variable which we may call the "effective" bead 
radius. For the condition tested, it can be seen that the error 
approached zero for two effective radii; one was slightly less 
than the heated composite radius (0.1 mm) and the other was 
twice the actual outer bead radius. Choosing this latter radius 
of 0.3 mm as the effective radius, Fig. 9 illustrates how ac
curate the SSM can become when an optimal effective radius 
is used. By comparing Fig. 3 with Fig. 9 it is shown that the 
difference between using the effective radius and the actual 

physical radius in the SSM has a dramatic effect, especially at 
low blood flows. These results indicate that the size of the 
heated region in the SSM can be considered as an effective 
radius, and that perhaps probes can be calibrated to account 
for any inconsistencies between the SSM and the actual probe 
properties, allowing for more accurate determinations of per
fusion and thermal conductivity. This concept of calibrating 
probes for effective properties is utilized in the implementa
tion of the thermal diffusion probe method, a similar thermal 
clearance technique of determining perfusion that was 
developed by Bowman et al. [19-21]. The present study has 
concentrated on presenting the spherical source model and 
evaluating its performance when the effective bead radius 
(i.e., the size of the heated region in the SSM) equaled the ac
tual outer bead radius. Further study is needed to determine 
under what conditions a better, optimal, choice of effective 
radius exists and the sensitivity of that choice to various 
parameters. 

Clearly, from the above results, the spherical source model 
offers a better representation of the thermal pulse-decay pro
cess than that of the point source model. An obvious improve
ment in the pulse decay method would then be to replace ex
isting PSM algorithms with the SSM algorithm. The amount 
of extra computation time, using Romberg numerical integra
tion [13], would be small and the accuracy of the perfusion 
determination would be improved. 

Conclusions 

The spherical source model is more accurate than the point 
source model in describing the thermal decay process and con
sistently yields improved predictions for determining both the 
local tissue perfusion and thermal conductivity. For large 
measurement times and high perfusions these errors are 
limited to within 10 percent. For low blood flow, both models 
are inaccurate and produce errors in perfusion predictions in 
excess of 20-40 percent for the SSM and 30-50 percent for the 
PSM. These errors decrease with longer measurement times, 
shorter pulse lengths, and smaller bead diameters. The effect 
of tissue trauma within 3 bead radii of the probe is negligible. 
The accuracy of the SSM can be improved by allowing the 
heated source radius to be an effective value that is determined 
by a calibration of each probe. This process allows the SSM to 
predict perfusions in the 1-5 kg/m3s range with errors less 
than 3 percent. 
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