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Response of a Nonlinear System 
Under Combined Parametric 
and Forcing Excitation 

H. Troger1 and C. S. Hsu2 

In this Note we study a nonlinear second-order system subjected 
to combined parametric and forcing excitations. The paper may be 
regarded as an extension of [1, 2].3 In [1, 2] nonlinear systems 
subjected only to parametric excitation are considered. In [1] the 
nonlinear response of such a system to the first-order approximation 
is considered, and in [2] the second-order approximation is also 
studied and the analytic results are compared with results obtained 
from direct numerical integration. The present Note is an extension 
of [1, 2] in the sense that we study now the nonlinear response when 
both the parametric and forcing excitations are present. 

The results of [1, 2] have been applied to the problem of a para-
metrically excited hanging string in fluid [3]. This is a basic vibration 
problem with practical engineering implications. Similar applications 
for the results of this paper could also be expected. Keeping practical 
applications in mind, we consider in this Note the two, perhaps, most 
important nonlinearities; namely, a quadratic velocity damping and 
a cubic term in the restoring force. Also, in most practical cases the 
parametric and the forcing excitation are caused by the same exci
tation process; therefore, we take these two excitations to be of the 
same frequency. So far as the analysis is concerned, we restrict our 
study to the response of the system in the neighborhood of the first 
instability region of the simple Mathieu equation which is known to 
be the most important one. The asymptotic analysis is carried out only 
to the first-order approximation. The analytic results thus obtained 
are, however, compared against results obtained by direct numerical 
integration for a few cases. 

The system to be studied is governed by 

x + \ic\± + i*C2\x\ 2 sgn x + (1 + ny + fit cos 2t)(x + iiflx3) 

= g cos (2t - <p) (1) 

M is a small parameter. In addition to equation (3) in [2] we have an 
external forcing term, the amplitude of which we do not assume to be 
of the order of ii. We use the general asymptotic method of Krylov-
Bogoliubov-Mitropolski [4-6] to obtain a first-order solution of (1) 
which is given by 

g 
x0 = 4 (t) cost +B(t) sin t - - c o s (2t - <p) (2) 

It consists of two parts. One is the 1/2-order subharmonic oscillation 
with amplitude coefficients A and B. The second part is a forced os
cillation which has the same frequency as the external excitation. For 
the stationary amplitudes^/! and B we get from 

1 r'2* , , fsin t) 
— J o f(x0, x0,t)\ \dt=0 (3) cos t 

with 

. /(x0„ x0, t) = ciio + c2Xo2 s g n i 0 + yx0 + jSxo3 + exo cos It (4) 

two nonlinear algebraic equations which are explicitly 
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Here ii, ••, ig are integrals of the form, for example, for j 3 , 

Jo 
sin2 (2t - <p) sgn -A sin t •[-

2g 
+ B cos t + — sin (2t - <p) sin tdt (6) 

We immediately see that A = B = 0 is a solution of (5) regardless 
whether g = 0 or not, because is = is ~ 0 for A = B = 0, even wheng 
9^ 0, as it can be seen from (6). The solution A =B = 0 corresponds, 
of course, to a response which is devoid of the 1/2-order subharmonic. 
In solving (5) for A ^ 0, B ^ 0 there are two basic difficulties. One 
has to do with the sgn xo term and, hence, all the j-factors in (5). As 
A and B are still unknown at the outset the term 

gn - A i 
1g 

sgn | — A sin t + B cos t H sin (2t • * - ) (7) 

cannot be calculated explicitly. Only for g = 0 can (7) be evaluated 
analytically. To circumvent this difficulty we can apply an iterative 
procedure. Starting with g = 0, we determine A and B from (5). Then 
for small increments of g we always take the values of A and B of the 
preceding calculation in order to calculate the sgn xo term and also 
all the i-factors in (5) for the current value of g. This procedure can 
be expected to lead to a good approximation if the discrete amount 
of increase of g in each step is small enough. This procedure, however, 
makes it necessary to evaluate ii to ig numerically. One also notes that 
by this iterative procedure, A and B are solved from (5) for a given 
g, with the integrals i\ to is calculated from the preceding set of A and 
B values and, therefore, regarded as known coefficients. 

The second difficulty is in finding an efficient way of solving (5) for 
A and B. Generally one could try to eliminate one unknown to obtain 
a single equation in one of the unknowns, either A or B. But (5) is so 
complex that the elimination of one unknown seems not to be possible 
in an easy way. Here, we use a procedure which was suggested in [5, 
p. 481] but not carried through. We introduce an undetermined pa
rameter X by setting 

A = XB (8) 

Substituting (8) into (5), we obtain a system of two third-degree 
polynomials in B 

PoB3 + P iB 2 + p2B + p 3 = 0 

qQB3 + qxB
2 + q2B + qa = 0 (9) 

Where the coefficients po,. • . , qa are functions of X. By requiring that 
these two equations must have a common root, the value of X is de
termined. The condition which the coefficients of (9) have to fulfill 
is that a certain determinant which is called the resultant of the two 
polynomials [7, p. 175] must vanish. 
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With the value of X determined from (10) by means of a numerical 
iteration we evaluate the roots of the two polynomials of (9) and pick 
that root which is common to both. Having obtained B, we calculate 
A from (8) and the amplitude of the steady-state subharmonic re
sponse is then given by 

a = (A2 + B2)1'2 (11) 

In this manner the influence of all the parameters on the stationary 
response amplitude may be studied. As already mentioned A = B = 
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Fig. 1 Response amplitude a (11) as a function of g for a system (a) with 
and without nonlinear term in displacement; (b) with various values of the 
nonlinear damping coefficient nc2 

0 is always a possible solution. However, a response containing the 
1/2-order subharmonic is also possible under appropriate conditions. 
It is therefore important to study the stability of these responses, 
which can be done in the same way as in [2]. The result of this stability 
analysis is shown in Figs. 1-3(a), such that full lines represent for a 
5̂  0 stable responses whereas thick dotted lines in Figs. 2(b) and 3(a) 
for a ^ 0 are for unstable ones. In the domains where a stable sub
harmonic oscillation (o ^ 0) exists, the solution a = 0 is unstable 
within the bounds delineated by the thin vertical dotted lines; see Fig. 
1(a) to Fig. 2(6). In Fig. 3(a) the unstable domain for the a = 0 solu
tion is within the stable and unstable branches. Outside these domains 
the solution a = 0 is, however, stable. 

We present now some of the results. In each case linear damping 
was excluded (cj = 0) as its influence is well known and can be seen 
in [2]. In general, the influence of the external excitation on the 
parametrically excited system is a decrease in the amplitude a. This 
is an interesting result, although a result of similar kind has also been 
noticed for the forced van der Pol equation [6, p. 250]. One also finds 
that with other parameters kept constant, there is a distinct critical 
or cutoff value gCT of the amplitude g of the external excitation below 
which the subharmonic exists and above which only the forced 
ir-periodic term in (2) is present. In Figs. 1(a) and (6) the subharmonic 
response amplitude a as a function of g is shown for a system with zero 
linear damping (c\ = 0), zero detuning (7 = 0), zero phase angle (<p = 
0), and a parametric excitation strength ixt = 0.025. In Fig. 1(a) the 
quadratic damping 11C2 is taken to be 0.1 and a comparison between 
a system with a nonlinear cubic restoring force (iifS = — %) and a system 
linear in displacement (/3 = 0) is given. In Fig. 1(b) the system has a 
nonlinearity n(i = —% and the influence of the amount of nonlinear 
damping on the a — g curve is shown. In both Fig. 1(a) and Fig. 1(6) 
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Fig. 2 Response amplitude a as a function of the detuning parameter /.iy 
for various values of g; (a) for /? = 0, (b) for n() = —% 

one notes that when nonlinear damping is present (c-> ^ 0) the am
plitude of the subharmonic response is finite and nonzero a tg = g„. 
This means that the steady-state subharmonic response appears and 
disappears with a jump discontinuity at the critical value of external 
forcing amplitude. 

In Figs. 2(a) and (6) the influence of a detuning parameter 7 on the 
existence of subharmonic oscillations for various values of g is given. 
Fig. 2(a) is for a system without nonlinear term in displacement (/3 
= 0) whereas in Fig. 2(6) the influence of the cubic nonlinearity in 
displacement is included. Again we note that there is a range of de
tuning bounded by two cutoff values beyond which the steady-state 
response contains no subharmonic part. Moreover, for C2 ^ 0 andg 
^ 0 the amplitude a of the subharmonic response again has finite 
values at the cutoff values of detuning and, therefore, the steady-state 
subharmonic response appears and disappears with a jump discon
tinuity as the system moves across the cutoff values. In Fig. 3(a) the 
behavior of an undamped system with a nonlinear displacement term 
is given. The effect of the phase shift ip of the external excitation with 
respect to the parametric excitation has also been considered but it 
is found to have no significant influence on the amplitude a of the 
subharmonic oscillations. 

The behavior shown in Figs. 1(a) and (b) has been checked by a 
direct numerical integration of (1), using values of g immediately 
below and immediately above the critical value gcr. In the first case 
the solution approaches a 2ir-periodic oscillation with an amplitude 
given by (2). Whereas for g slightly larger than gcr, a ^-periodic os
cillation with amplitude g/3 is obtained. In Fig. 3(b) the time history 
of the response of a certain system obtained from direct numerical 
integration is compared with the corresponding asymptotic solution 
of (2). It can be seen that a sufficiently good accuracy is provided by 
the first-order analytic solution. For all numerical integrations zero 
initial conditions have been used. 

The results presented here were obtained in the course of research 
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Fig.3 (a) a as a function of ny for the undamped system; (b) comparison 
of the direct numerical integration of (1) (—full line) with the first-order ap
proximation by (2) ( dotted line) 
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Equivalence of Finite Elements 
for Nearly Incompressible 
Elasticity 

T. J. R. Hughes1 

Introduction 
When one passes to the incompressible limit in the theory of elas-
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ticity, a special formulation is required. A pressure-like variable is 
introduced as an unknown and, concomitantly, an additional equa
tion, restricting the motion to be isochoric, must be satisfied. The 
pressure variable is interpreted as the force which maintains this 
constraint. 

In principle, the usual formulation of elasticity covers all other 
unconstrained cases. However, it has been discovered in the appli
cation of finite-element methods that for nearly incompressible cases 
numerical problems are encountered with the usual formulation of 
the theory. These problems have been dealt with in two ways. 

The first method is to reformulate the equations for the com
pressible case in a way reminiscent of the incompressible case (see 
Herrmann and Toms [l],2 Herrmann [2], Taylor, Pister, and 
Herrmann [3], Key [4], and Hughes and Allik [5] for background and 
applications along these lines). What one does is to consider the stress 
a function of the strain and a pressure variable. The constitutive 
equation relating the dilatation to the pressure variable then must 
be satisfied independently. With a judicious choice of shape functions 
for the displacements and pressure, an effective numerical scheme 
can be developed. This approach is equally valid for the compressible 
and incompressible cases. The variational formulation of this theory, 
due to Herrmann [2], may be viewed as a special case of Reissner's 
theorem, since only a part of the stress (i.e., the pressure) is considered 
to be independent. It should be emphasized here that this formulation, 
although capable of yielding successful numerical algorithms, is no 
panacea. This fact, although known for some time, does not seem to 
be widely appreciated. If one is naive in the use of this method it can 
lead to results equally bad as those obtained by the standard formu
lation (see [5] for elaboration and numerical examples). However, this 
method has been used successfully on a wide range of engineering 
problems (see [1-5] and references therein). 

Recently, Fried [6] has provided insight into what goes wrong with 
the usual formulation for the linear isotropic case. As a remedy he 
suggests underintegrating the troublesome portion of the strain en
ergy. Computations performed by Naylor [7] yield results consistent 
with Fried's theory. This approach is simpler to implement and more 
economical than the method involving a pressure variable. However, 
its use has not yet become widespread in engineering, perhaps due 
to the fact that it has an ad hoc flavor. 

It is the purpose of the present Note to show that a certain under-
integrated element is in fact identical to an element based upon 
Herrmann's formulation, which has been used successfully in the past 
[5]. The elements in question are a bilinear displacement model, which 
employs one-point Gaussian quadrature on a portion of the strain 
energy, and a constant pressure, bilinear displacement model based 
on Herrmann's formulation. 

Equations of Classical Elasticity 
Let U be a bounded region in [R2, with piecewise smooth boundary 

dfi. Vectors defined on fl are written in the standard indicial notation, 
e.g., u„,a = 1,2, are the Cartesian components of the displacement 
vector. A comma is used to denote partial differentiation and the 
summation convention is employed, e.g., du„/dx„ = u„t„ = Uji + 112,2. 
A general point in fi is denoted by x. The equations of classical iso
tropic elasticity are 

0 = (X + M) «/J,/JO + M Ua.pn + / „ , (1) 

where X and \x are the Lame constants, and /„ denotes the extrinsic 
body force. The mixed boundary-value problem for (1) consists of 
finding functions ua(x) satisfying (1) for all x e SI and 

ua{x) =gaW, * £ a n i> 

np(x) jX uy,y(x)Sl,n + 2u u(„ji)(x)\ = h„(x), x E dii2, (2) 

where ga and h„ are the given boundary data, n$ is the unit outward 
normal vector to dfi, h„g is the Kronecker delta, U(„,/fl = 1/2 (u„,fi + 
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