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Abstract

Intrusion attempts due to self-propagating code are becoming
an increasingly urgent problem, in part due to the homoge-
neous makeup of the internet. Recent advances in anomaly-
based intrusion detection systems (IDSs) have made use of
the quickly spreading nature of these attacks to identify them
with high sensitivity and at low false positive (FP) rates.
However, slowly propagating attacks are much more difficult
to detect because they are cloaked under the veil of normal
network traffic, yet can be just as dangerous due to their ex-
ponential spread pattern. We extend the idea of using col-
laborative IDSs to corroborate the likelihood of attack by im-
buing end hosts with probabilistic graphical models and us-
ing random messaging to gossip state among peer detectors.
We show that such a system is able to boost a weak anomaly
detectorD to detect an order-of-magnitude slower worm, at
false positive rates less than a few per week, than would be
possible usingD alone at the end-host or on a network aggre-
gation point. We show that this general architecture is scal-
able in the sense that a fixed absolute false positive rate can be
achieved as the network size grows, spreads communication
bandwidth uniformly throughout the network, and makes use
of the increased computation power of a distributed system.
We argue that using probabilistic models provides more ro-
bust detections than previous collaborative counting schemes
and allows the system to account for heterogeneous detectors
in a principled fashion.

Intrusion Detection
Worms pose an increasingly serious threat to network secu-
rity. With known worms estimated at reaching peak speeds
of 23K connections per second, and theoretical analysis cit-
ing higher speeds, the entire Internet risks infection within
tens of minutes (Mooreet al., 2003). Because of the viru-
lence of fast scanning worms in the Internet, there is a pre-
mium on automated countermeasures. To wait for human in-
tervention is problematic because of the mismatch between
the timescale of worm spread and that of human software
patching efforts.
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Several automated methods have been proposed to pre-
vent, or at least mitigate, the damage caused by worm infec-
tions. While some of these methods are focused on preven-
tion, others are aim for detection and containment. Of par-
ticular interest in the latter class are intrusion detection sys-
tems(IDSs) which rely on searching for signatures of known
malware in traffic sent to a network or a node. Examples
include SNORT (Roesch, 1999) and Bro (Paxson, 1999). A
significant drawback with these traditional IDSs is that they
are defenseless against heretofore unknown worms, a.k.a.,
“day-zero” exploits. More recent work in the area reme-
dies this by building such signatures “on the fly” by search-
ing for frequent anomalous common substrings in observed
network traffic (Newsome, Karp, & Song, 2005; Kim &
Karp, 2004). An alternative approach is to look for the ba-
sic, invariant feature of any scanning worm—the need to
make connections to remote machines in search of future
victims (Weaver, Staniford, & Paxson, 2004; Eskin, 2000;
Lazarevicet al., 2003; Portnoy, Eskin, & Stolfo, 2001).
Here, the emphasis is shifted from the task of worm preven-
tion to detecting the worm infection, and subsequently on
worm containment. Most of these non-signature based tech-
niques rely on the fact that worms are reproducing quickly.

As the methods to detect worms become increasingly so-
phisticated, the worm designers react by making worms
harder to detect and stop. Worms released over the past
year have tended to the extremes: getting either much faster
to allow rapid spread, or much slower to prevent detection.
The latter approach places an increasing burden on detection
methods to effectively pick out and isolate worm traffic from
the baseline created by normal traffic seen at a host. While
the slower rate does offer some respite to the network op-
erator(s) (if detected, the worms can be contained with rel-
atively little collateral damage), the detection is extremely
challenging due to the fact that slow worms can hide under
the veil of normal traffic. Although locally a worm may be
propagating very slowly, if it can manage to reproduce more
than once before being detected on a local host, it will still
grow at an exponential rate.

Yet another challenge in dealing with worms is that in-
dividual entities can only see a partial picture of the larger
network wide behavior of the worm(s). IDSs deployed in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357281255?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


select networks might not see any worm traffic for a long
time and perhaps see it only when it is too late. Collabo-
ration is seen as a way to remedy this; systems that allow
multiple IDSs to share information have been shown to pro-
vide greater “coverage” in detection (Baileyet al., 2005;
Nojiri, Rowe, & Levitt, 2003; Anagnostakiset al., 2003;
Agu Rajab, Monrose, & Terzis, 2005). The existing collabo-
ration based schemes rely on relatively simple counting and
thresholding schemes. Collaborating detectors are assumed
to be homogeneous, which might not always be the case,1

and again they typically rely on the speed of worms to make
detections.

In this paper, we describe an approach to host-based IDS
using distributed probabilistic inference. The starting point
in our work is a set ofweakhost-based IDSs, referred to as
local detectors(LDs), distributed throughout the network.
We allow the hosts to collaborate and combine their weak
information in a novel way to mitigate the effect of the high
false positive rate. LDs raise alarms at a relatively high
frequency whenever they detect even a remotely plausible
anomaly. Alarms spreading in the network are aggregated
by global detectors(GDs) to determine if the network, as a
whole, is in an anomalous state, e.g., under attack. A similar
system of distributed Bayesian network-based intrusion de-
tection is presented by Gowadia, Farkas, & Valtorta (2005).
Their work uses a novel procedure called “soft-evidential
update” to smooth beliefs during inference. Our work is dis-
tinct from theirs in that we (1) separate the local detection
model from the global detection model to improve modular-
ity of the system, (2) identify a clear need for such a system
(detecting weak/slow network-wide anomalies), (3) empir-
ically test our approach on real data, and (4) demonstrate
empirically that our approach is superior to common exist-
ing methods.

Our main contribution in this paper is a probabilis-
tic framework that aggregates (local) beliefs to perform
network-wide inference. Our primary findings are:

• We can detect an order-of-magnitude slower worm than
could be detected by using LDs alone at a FP rate of one
per week.2

• Our framework shows good scalability properties in the
sense that we achieve a fixed false positive rate for the
system, independent of the network size.

• Our probabilistic model outperforms previous collabora-
tive counting schemes and allows the system to account
for heterogeneous detectors in a principled fashion.

While the methods we describe are quite general and ap-
plicable in a wide variety of network settings, our empirical
results operate over a subset of the Intel enterprise network.
In the following sections, we describe the architecture of our
system, discussing the advantages and disadvantages of the
many design points, and we present empirical results that

1For instance, a system may employ a range of detectors, or
some detectors may be more trusted than others.

2By contrast, the Intel network operations center typically in-
vestigates 2-3 false positives each day.

demonstrate several of the advantages to the system we pro-
pose.

Architectural Model
In answer to the challenges posed in the previous section,
we propose a system composed of three primary subcompo-
nents, shown in Figure 1: the LDs which make host-level de-
tections, the GDs which make system-wide detections, and
the information sharing system (ISS) to share state between
the LDs and the GDs.

The LDs live at the end-hosts and are designed to beweak
but generalclassifiers which collect information and make
“noisy” conclusions about anomalies at the host-level. This
design serves several purposes:

1. Analysis of network traffic at the host level compares the
weak signal to a much smaller background noise-level, so
can boost the signal-to-noise ratio by orders of magnitude
compared to an IDS that operates within the network.

2. Host-based detectors can make use of a richer set of data,
possibly using application data from the host as input into
the local classifier.

3. This system adds computational power to the detection
problem by massively distributing computations across
the end-hosts.

An important design decision of this system is where
to place the GDs in the network, and this decision goes
hand-in-hand with the design of the ISS. There are at least
two possibilities: centralized placement (Figure 1-a) or dis-
tributed placement (Figure 1-b). Both placements have ad-
vantages and drawbacks; however in this paper, we propose,
like the LDs, distributing the GDs onto the end-hosts. The
advantages of this approach are:

1. Distributing reduces congestion by preventing link-
implosion that can occur at a single centralized detector.

2. One GD in charge of securing the whole system is
a single-point of failure and is a vulnerable target for
would-be attackers.

3. A collection of GDs on the end-hosts can in principle be
used as a distributed ensemble classifier (e.g., using boost-
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Figure 1: In centralized corroboration, (a), all LDs report to a
single central GD. In the fully distributed version, (b), each end-
system has both an LD and a GD; nodes share their states with
peers.



ing or bagging), and distributing this ensemble calculation
can again allow more computational power to be brought
to bear on the global detection problem.

On top of thisa priori rationale, we show empirically that
in fact a single GD with full information of the system state
can perform worse than a simple ensemble of many GDs
with partial information when detecting day-zero attacks for
which the models are not correctly tuned.

The ISS uses a network protocol to communicate state be-
tween the LDs and the GDs. For the purposes of this paper
we assume that each LD communicates its state by beacon-
ing to a random set of GDs at regularly spaced epochs. There
are many important and interesting research questions about
what an ideal ISS should look like. For example, messages
could be aggregated from host-to-host to allow exponential
spreading of information. However it is beyond the scope of
this paper to deal with this issue in depth. Here we assume
that no message aggregation is taking place, each LD relays
its own state toM hosts, chosen at random each epoch.

In the following sections, we examine in detail the LDs
and GDs used by our system.

The Local Detectors
For the purposes of this paper, we define a LD as a binary
classifier that sits on the local host and uses information
about the local state or local traffic patterns to classify the
state of the host asnormalor abnormal. We assume that the
LDs areweakin the sense that they may have a high false-
positive rate, but aregeneral, so are likely to fire for a broad
range of anomalous behavior. In the context of intrusion-
detection systems, because of the high volume of traffic in
modern networks, what may appear to be a relatively small
FP rate could by itself result in an unacceptable level of in-
terruptions, so could be classified as weak.

The LD implementation we use in this paper is a heuristic-
based detector that analyzes outgoing traffic and counts the
number of new outgoing connections to unique destination
addresses and outgoing ports; alerts are raised when this
number crosses a configured threshold. Figure 2 shows this
statistic over 37 hosts in the Intel corporate network over a
five week period. This figure shows that setting the threshold
of this statistic above 200 connections per 50s interval would
have caught the Blaster, Slapper, Code Red II, Slammer and
Witty worm outbreaks, and would have resulted in about 2
FPs over the entire period and over all hosts. These worms
are relatively easy to detect with this heuristic because their
propagation rates stand out orders of magnitude higher than
typical connection rates in the enterprise. However, in line
with our goal of detecting extremely slow worms, we push
these LD thresholds to an orders-of-magnitude lower value
(4 connections per 50 seconds, shown as the left-most dotted
line in Figure 2), well within the bulk of the normal traffic
distribution. If a LD by itself was used with this threshold
it would have generated thousands of false alarms over the
five-week period; however, it would have successfully de-
tected worms operating at a much slower rate. Thus a simple
way to create a weak, general LD is to drastically reduce the
threshold of some standard heuristic, although other stan-
dard anomaly detection techniques can be used as well.
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Figure 2: The distribution of the number of new connections to
unique destination address-port-pairs per 50s time interval (CPI).
The dashed line indicates the threshold (4 CPI) our LDs use to
raise local alerts. The propagation rates of some previous worms
are also shown: W1=Blaster, W2=Slapper, W3=Code Red II,
W4=Slammer, and W5=Witty.

The space of LDs can roughly be partitioned into two
classes: those that areinward-looking and those that are
outward-looking. Inward-looking detectors analyze the state
of the host itself, including outgoing traffic, looking for
anomalous behavior of an infected host. Outward-looking
detectors look at incoming packets to decide if an exter-
nal threat is attempting to make contact with the host. The
distinction between outward and inward-looking detectors
is important because the dynamics of a system of inward-
looking detectors is qualitatively different from outward-
looking. We elaborate more on this point in the next Section.

The Global Detectors
Once the information of LD states has been collected at var-
ious locations, there remains the question of how to use that
information to draw conclusions about a global attack taking
place. We consider four possible GD models for this task:

1. The PosCountdetector aggregates the local information
simply by summing the number of positive (anomalous)
counts received from the LDs and thresholding the value.

2. TheCuSumdetector (cf., Bissell, 1984) is a standard tech-
nique from statistical process control to detect changes in
the trend of a statistic.

3. Thechange-point dynamic Bayesian network(CP-DBN)
is a simplified causal model that models an attack as oc-
curring uniformly across the population or not at all.

4. Theepidemic dynamic Bayesian network(E-DBN) mod-
els the dynamics of a system that is being swept by an
epidemic (exponentially growing) outbreak.



All of these detectors take as input a binary subsetLt of
LD observations at timet and output somesignal, St, which
is some measure of how likely a global anomaly is to be
occurring at timet. A fixed threshold is applied toSt to
decide if a GD fires. The system of GDs makes up an en-
semble, and there are many interesting ensemble techniques
such as boosting (Schapire, 2001) that could be employed to
combine beliefs among this ensemble; however, we do not
pursue these possibilities in much detail here. In this pa-
per, we use themax function as our aggregation function,
i.e., we combine the individual signalsSl

t into the aggregate
signalSmax

t = maxl S
l
t, which is thresholded to determine

whether a global alarm is raised or not.
We consider the PosCount and CuSum detectors to be

baseline techniques as they have been extensively used for
similar applications in the past. The last two we propose as
better alternatives, the CP-DBN being especially useful for
a system of outward-looking LDs and the E-DBN model for
inward-looking LDs. We briefly elaborate on these models
below.

The PosCount detector is a simple detector that has been
widely used in other distributed detection algorithms that
have performed well in detecting fast worms using outward-
facing LDs. This technique aggregates by counting events
(in our case, the number of positive local detections received
over a given time interval). We also apply smoothing to this
model by using a sliding window average to smooth epoch-
to-epoch variations. Thus for a sequence ofN binary (0/1)
observationsLT

t observed between timet − T and timet,
the signalSPosCt

t generated by PosCount is given by

SPosCt
t =

1
N

∑

li∈LT
t

li

This model is very simple and the information it needs to
draw conclusions is quite compact, requiring much smaller
messages to communicate local state information. However,
this method does not take into account the fact that the net-
work may consist of heterogeneous LDs, some of which
may be stronger than others. For example, one instance of
a very accurate detector firing is sufficient to raise a global
alarm with a low FP rate; whereas weaker detectors may re-
quire extensive corroboration.

The CuSum detector is extensively used in statistical pro-
cess control to detect a deviation from the mean of some
statistic. The CuSum variant that we use here considers each
binary (0/1) observationli ∈ Lt, and recursively computes
the signal

SCus
i = max(0, SCus

i−1 + li − (P + Q)/2),

whereP andQ are the assumed true positive (TP) and FP
rates for the LD with observed stateli. The CuSum model
thus provides an ad hoc mechanism to account for heteroge-
neous LDs (i.e., LDs with varying TP and FP rates).

The final two models we consider are based on Dynamic
Bayesian networks (DBNs) (Dean & Kanazawa, 1990),
which are a principled formalism for expressing indepen-
dence relations while modeling temporal stochastic pro-
cesses. This approach is motivated by the work of Cooper

et al. (2004) which used causal Bayesian networks to mon-
itor a large population for disease outbreaks. The signalSt

generated by a DBN modelM is a log-posterior odds of an
anomalyAm at the most likely timem given all the evidence
LT

t observed from timet− T to timet:

SDBN
t = log

P(Am | LT
t ,M )

P(no anomaly| LT
t ,M )

Because their signal is based on the posterior probability,
DBN models have the benefit of incorporating the{P,Q}
values of the LDs in a principled way.

The “change-point” CP-DBN model assumes that up to
some timeτcp, the network as a whole is not in an anomalous
state; whereas afterτcp the network is. There are anomalies
for which this type of step-function dynamics is expected.
For example, when the network address space is being port-
scanned by an external threat, then a system of outward-
looking LDs would all fire near-simultaneously, causing
an abrupt rise in the number of local detections. Other
anomalies that might trigger this type of dynamics are net-
work routing mis-configurations and downed servers, which
would affect the whole system simultaneously. Typically
these types of events would be detectable with an outward-
looking LD that is noticing unusual behavior outside an in-
dividual host, e.g. by looking at anomalies in the distribution
of incoming connections. The CP-DBN model structure is
shown in Figure 3. The binary variablesAi ∈ {T, F} cor-
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Figure 3: The CP-DBN model.

respond to the event that an attack has taken place at time
slice i or not. The variableOi

l ∈ {on, off} corresponds to
the event that detectorl is on or off at timei. There areM
total LDs in the population.

This model assumes that once an attack takes place at time
i, it remains in place for the duration of the model horizon
(N ). Thus, the transition probabilities for theAi variables
are written as:

P(Ai+1 = T | Ai = T ) = 1 (1)

P(Ai+1 = T | Ai = F ) = PA (2)

This model also assumes that for the duration of the time
horizon, once a LD fires it remains on; for this we need the
explicit arc fromOi

l → Oi+1
l . If LD l has a TP rate ofPl and



a FP rate ofQl, then the transition matrix of theOi
l variables

can be written as:

P(Oi+1
l = on | Oi

l = on, Ai+1 = ∗) = 1 (3)

P(Oi+1
l = on | Oi

l = off , Ai+1 = T ) = Pl (4)

P(Oi+1
l = on | Oi

l = off , Ai+1 = F ) = Ql (5)

It is easy to show that under assumptions of sparse ob-
servations (no LD is observed more than once in the interval
[t−T, t]), this model reduces to a naive Bayes model, where
each observed LD variablel has parameters that depend on
the time slice at which the feature is observed and the as-
sumed TP ratePl and FP rateQl of detectorl. Using this
naive approximation, inference with this model can be per-
formed in time linear in the number of observations.

TheepidemicE-DBN models the spread of exponentially
growing anomalies within the system. This type of dynam-
ics is relevant for inward-looking LDs during the spread of
an anomaly, and thus is most relevant for detection and con-
tainment of a worm that has infected the system. To model
this growing trend, we construct a DBN over random vari-
ablesA1, . . . , AT , N1, . . . , NT , S, andO1, . . . , OT , where
T denotes the length of the time horizon,At = {0, 1} is the
anomaly state at timet, Nt = {0, . . . , N} is the number of
infected computers,S is the spreading rate of a worm, and
Ot = {0, . . . , N} is the number of observed host detectors
that fired. The variablesAt, Nt, andS are unobserved. Note
that bothNt andOt are only statistics in the state and obser-
vation spaces. Thus, we do not represent each host explicitly
as in the CP-DBN model. The transition model between the
unobserved state variables is defined as:

P (At+1, Nt+1 | At, Nt, S) = (6)

P (At+1 | At)P (Nt+1 | Nt, At+1, S),

whereP (At+1 | At) models the dynamics of the binary
anomaly state, andP (Nt+1 | Nt, At+1, S) models our be-
liefs in the number of infected computers given the hypothe-
sisAt+1. A graphical representation of our model is shown
in Figure 4.

Assuming a worm attack, the growth rate in the number of
infected computers∆Nt+1 is modeled by a binomial (Chen,
Gao, & Kwiat, 2003):

P (∆Nt+1 | Nt, At+1 = 1, S) = (7)

Pbinom

(
∆Nt+1 | N −Nt, 1− (1− 1/N)SNt

)
,

whereNt+1 = Nt + ∆Nt+1. To explain the stochastic gen-
erative process in Equation 7, we assume that a worm attacks
N hosts at random and every attack succeeds with probabil-
ity 1. The chance of a single host not being hit by an individ-
ual attack equals to(1− 1/N). Consequently, the chance of
not being hit bySNt independent attempts is(1−1/N)SNt ,
and thus the chance of a hit is1− (1−1/N)SNt . Therefore,
the number of newly infected computers follows a binomial
distribution with mean[1− (1− 1/N)SNt ](N −Nt).

We put no restriction on the form of the transition function
P (Nt+1 | Nt, At+1 = 0, S). Although it is natural to expect
no infected computers if the network is not attacked, we can
employ the hidden stateNt to explain spatial correlations of

observations. Note that these correlations are likely to have
different temporal patterns than the trend in Equation 7. The
transition matrix betweenNt andNt+1 can be learned from
historical data, for instance by the expectation-maximization
(EM) algorithm (Dempster, Laird, & Rubin, 1977).

The likelihood ofot detectors firing whennt computers
are infected is modeled by a binomial:

P (Ot = ot | Nt = nt) = Pbinom(ot | N, p), (8)

wherep = (ntptp + (N − nt)pfp)/N . This approximation
follows from Pbinom(n | N, p) ≈ N (n | Np,Np(1 − p))
and the fact that the sum of two independent normal variates
is a normal variate.
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Figure 4: The E-DBN global model for detecting worm-like
spreading of anomalies.

An obvious alternative to the generative DBN models we
propose here is to use standard discriminative models such
as SVMs or decision trees as the GDs. The use of these
models is complicated by the fact that we do not possess any
labelled positive cases on which to train a decision bound-
ary, because we are interested in detecting “day-zero” events
that by definition have never occurred in the past. Even us-
ing previous instances of anomalies with semi-supervised
learning does not solve this dilemma because the positive
instances we have observed in the past will by definition not
contain day-zero threats. Instead, we make use of a wealth of
historical negative instances, and tune our generative model
thresholds to produce a given expected FP rate. An ad-
ditional advantage of causal models is that they provide a
principled approach to incorporating background knowledge
that could be essential in detecting various classes of day-
zero attacks, as illustrated by the different dynamics mod-
eled by the CP-DBN and the E-DBN models. Another ex-
ample of useful background knowledge is signal variation
based on time of day and day of the week. The data that
we use in our experiments demonstrates very strong diur-
nal patterns, and our models would likely benefit from such
information, although we do not consider this particular op-
timization in this paper.

Simulation Studies
In this section we present a set of results that highlight the
advantages of the system we are proposing. The algorithms
above were tested on five weeks of traffic data for 37 hosts
within our enterprise network. As detailed in the previous



section, the LDs we used were inward-looking detectors that
scanned outgoing packets and counted the number of UDP
packets3 to unique destination IPs, itemized by port. The
histogram for this statistic aggregated over all machines for
all five weeks is shown in Figure 2. We operated the LD at
a low threshold of 4 connections per 50 second interval. To
decrease run times, the CP-DBN implementation we used
assumed sparse observations and thus was reduced to the
naive approximation as discussed previously.

The simplicity of our LDs made simulating worm behav-
ior on top of real network traffic trivial. We modeled a
worm with two parameters: the spread rateS which indi-
cated how many hosts the worm attempted to spread to per
unit time, and the address density with which the worm was
able to spread. For example, if the worm is randomly choos-
ing addresses from the entire 32-bit address space and we
have a network of 37 hosts, then the address density will be
37/232. All results shown here use anS of 1 connection per
20 seconds, and set the address density to 1/1000. We have
many results for which these two parameters have been var-
ied; the performance is relatively insensitive to the worm
speed but much more sensitive to the address space den-
sity. Thus a worm with a perfect “hit-list” and a divide-and-
conquer strategy would likely do a pretty good job of de-
feating this system. Our simulations, implemented in C++,
superimposed artificial worm traffic on the real enterprise
traffic by releasing worms, letting the proportion of infected
hosts grow to 1 in the population, then repeating 20 times.
To test for FP rates we simply used the enterprise traffic with
no worm traffic superimposed. The results were averaged
over all runs.

All GD types tested, except the PosCount model, required
an estimate forP andQ, TP and FP rates of the LDs, re-
spectively. All models assumed for these experiments that
the system was comprised of a set of homogeneous detec-
tors. This was a correct assumption in so far as each LD
used the identical heuristic and an identical threshold, but
may not have been true in the sense that the traffic processed
by each LD was distinct, possibly resulting in different FP
rates. We used homogeneous LDs so that our results would
not be biased in favor of the DBN models which were ex-
pected to deal with heterogeneous detectors better (we save
a quantitative measurement of how heterogeneous detectors
affect the various techniques for future work). For all results
we used valuesP = 0.6 andQ = 0.2, although, we verified
empirically that for the homogeneous case, these parameters
could vary by an order of magnitude while having almost no
impact on the resulting performance curves.

We measure performance of the GDs by sweeping
through all GD thresholds and plotting the percentage of ma-
chines infected when a global detection is made (presumably
we are able to quarantine infected machines at this point)
versus the FP rate. Our results were invariant to wide pa-
rameter variations precisely because we sweep through all
threshold values. Much like an ROC curve, changing theP
andQ values widely will cause a shift in the threshold, but

3Many of these experiments have been repeated with TCP pack-
ets, and the results so far have all been qualitatively similar.
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Figure 5: The performance of the 4 GD models on 5 weeks
of enterprise data compared to an individual LD detector.

will have relatively little impact on the shape of the curve.
In practice, theQ value should be measured on historical
data and the threshold should be calibrated to the desired FP
rate via cross-validation. TheP value cannot be measured
directly since we are attempting to detect day-zero events.
Having the estimatedP value significantly different from
the actualP value is expected to cause a decrease in sensi-
tivity in the global detector performance. One method for
dealing this problem is to perform Bayesian averaging over
P values, an approach we are pursuing.

Figure 5 shows the results for all GDs when the LDs
pass one message per 10 second epoch. The ideal point on
this curve is in the lower-left corner where a low FP rate
is achieved but a global alarm is triggered before any hosts
are infected. Both DBN models clearly outperformed the
baseline GD models. The PosCount detector4 at a FP rate
of 100 per week will only raise a detection after the entire
network is infected. The CuSum detector is able to oper-
ate at our target FP rate of 1 per week, but it detects at a
much higher infection percentage (> 20%) than the DBN
models. The CP-DBN, which is not designed to detect an
epidemic spread can still achieve the 1 FP per week while
allowing only8% infection, while the E-DBN model which
was specifically designed for this scenario, can detect with
an infected-host percentage of about4%. The top line shows
the results that are obtained as you sweep through the LD
thresholds with no corroboration.

There are several questions about the scalability of these
results. One question that is useful to answer is whether we
can achieve similar absolute FP rates as the number of hosts
scales, or whether the FP rate increases as the number of

4Although not clear from the graph, the PosCount curve essen-
tially becomes a vertical line going to 1.00 at a FP rate of 100 per
week.
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Figure 6: CP-DBN results when data is bootstrapped to sim-
ulate 500 hosts. Both centralized and distributed approaches
show improvements compared to 37 hosts.

hosts increases. We tested this question by bootstrapping the
enterprise data to 500 hosts by picking one of the 37 hosts at
a random time and using a ring buffer to maintain a continu-
ous stream of data. With this methodology we can increase
the effective population of our 37 hosts to an arbitrary num-
ber. The result of this experiment for the CP-DBN model for
500 hosts is shown in Figure 6. This figure shows the orig-
inal 37 host results side-by-side with the 500 host results.
As shown here, the 500 hosts results performed even better
than the 37 hosts for the CP-DBN model. We also tested the
ring buffer methodology by sampling only 37 hosts–these
results were slightly worse than the results on the original
data indicating at least that there does not appear to be a sys-
tematic improvement-bias introduced by sampling. These
results provide evidence that the absolute FP rate can scale
with the network size. There are other scaling issues in this
system that we have not fully explored, such as how to de-
velop a scalable ISS.

Figure 6 also shows the results of the CP-DBN model that
is fully centralized, i.e., at each epoch,all hosts report in to a
single GD. Although messaging for this technique has seri-
ous scalability issues, we believed it would form an informa-
tive baseline to evaluate the amount of information needed
to be passed per epoch to achieve good results. The possi-
bly surprising fact for the CP-DBN is that a single version
of CP-DBN with N observations received per epoch actu-
ally performed worse thanN CP-DBNs with on average 1
observation received per epoch. This effect was tested more
stringently in Figure 7 where fraction of hosts infected at the
0-FP point is plotted versus the number of messages passed
per 10s epoch. The number of messages was varied from
1/64 (1 message per 64 epochs) to 4. The point labelled “C”
shows the results of a single centralized GD. These results
show that, for the CP-DBN model and for the parameters
used in our experiments, there exists an optimal message
spread rate at about 1 message per 4 epochs.
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Figure 7: Many aggregators with fewer messages can out-
perform a single centralized aggregator with full informa-
tion.

There are a few possible explanations for these results.
One is the simple fact that the naive approximation for the
CP-DBN model assumes sparse observations. As the num-
ber of messages passed per epoch increases, this assumption
can be violated. In the centralized case this assumption is
guaranteed to be violated. Another possible explanation is
that, since the centralized detector does not have a correct
estimate of theP values (presumably a common occurrence
for day-zero threat), it can become overconfident with much
information, and actually perform worse. Similar experi-
ments with the E-DBN model show that this effect is less
prominent, but still present. This fact provides support for
the latter hypothesis: because the E-DBN model is closer to
the epidemic outbreak being modeled, the over-confidence
should be less severe; however, it still does not possess an
accurateP value, so it should still be present. There is
yet another effect to consider. The centralized detector with
many observations will obviously possess a higher variance
on likelihood ratios than will the max over many global
detectors with just a few observations (there are exponen-
tially fewer combinations available to the latter model). The
higher variance may translate to poorer detection time. More
work is needed to disambiguate these hypotheses.

Conclusions
We consider the problem of detecting very weak or slowly-
spreading “day-zero” network-wide anomalies. We argue
that to separate the weak signal from the background traf-
fic, it is useful to split the data into smaller data streams,
and that the obvious place to do that is at the end-host.
We argue that causal generative models provide a natural
mechanism to aggregate data for unknown day-zero prob-
lems due to the ability to account for background knowledge
and heterogeneous LDs in a principled fashion. We intro-
duced the distinction between inward-looking and outward-
looking LDs, and showed that systems of the former possess
qualitatively different dynamics than systems of the latter.
We introduced two DBN models that are useful for aggre-
gation of LD information, one suitable for inward-looking
and one suitable for outward-looking LDs, and we showed



that both of these models outperformed state-of-the-art tech-
niques on real traces from an enterprise network using a sim-
ple inward-looking set of homogeneous LDs. Finally, our
results raised questions regarding what should be the opti-
mal amount of information to share when the GD being used
differs from the real world.

There are many future directions to take this work. One
obvious direction is to understand to what degree hetero-
geneous local detectors will impact the various techniques.
To do so requires a cross-validation step to calibrate the
global thresholds according to the assumed local TP and FP
rates. More extensive analysis and empirical work needs to
be done to understand the results of Figure 7. There are
other advantages to moving detection onto the hosts, such
as the ability to analyze internal application state data to im-
prove local detections. It would be worthwhile to explore
more elaborate local detectors based on these other sources
of data. There is the issue of how to train the local detec-
tor parameters online—it might be feasible to use the GDs
to soft-label the data in an EM-type algorithm to tune LD
parameters in real time. Finally, there is the issue of how to
deal with the absence of positive training instances; select-
ing reasonable and tractable priors to allow model averaging
overP is one obvious direction.
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