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Abstract Intravascular ultrasound (IVUS) is a catheter-based medical imaging
modality that is capable of providing cross-sectional images of the interior of
blood vessels. A comprehensive analysis of the IVUS data allows collecting
information about the morphology and structure of the vessel and the atherosclerotic
plaque, if present. Atherosclerotic plaque formation is considered to be a part
of an inflammatory process. Recent evidence has suggested that the presence
and proliferation of vasa vasorum (VV) in the plaque is correlated with the
increase of plaque inflammation and the processes which lead to its destabilization.
Hence, the detection and measurement of VV in plaque has the potential to enable
the development of an index of plaque vulnerability. In this paper, we review
the research at the Computational Biomedicine Lab towards the development of
a complete pipeline for the detection and quantification of extra-luminal blood
detection from IVUS data which may be an indication of the existence of VV.
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1 Introduction

Complications attributed to cardiovascular disease (CVD) constitute a major cause
of death worldwide. One of the primary causes of CVD is coronary artery disease
(CAD), which is a narrowing of the small blood vessels that supply blood and
oxygen to the heart. CAD is caused by a condition called atherosclerosis, which
occurs due to the accumulation of plaque on the inner walls of the arteries. The
progression of this condition may lead to inflammation of the coronary arteries
and the consequent obstruction of blood flow to the heart. But more critically, the
sudden rupture of a plaque (i.e., thrombotic-related complications) may lead to a
stenotic condition in which the blood supply is entirely cutoff from a region of
the heart, resulting in death. In this context, the field of cardiology has introduced
the term “vulnerable plaque” in reference to the plaques with a high likelihood of
rupture, thrombotic complications, and the consequent rapid progression to stenosis
[26–29]. Vasa vasorum (“vessels of the vessels”, VV) is a network of microvessels
that penetrates and “feeds” the vessel wall [13]. Recent evidence has suggested
that the presence and proliferation (i.e., increase in density) of VV in the plaque
is correlated to an increase in plaque inflammation and the processes which lead
to its destabilization [1, 4, 7, 10, 12, 21, 22]. Hence, it is believed that the detection
and measurement of VV in plaque and the detection of leakage of blood within
atherosclerotic plaques have the potential to enable the development of an index of
plaque vulnerability [3, 15].

Intravascular ultrasound (IVUS) is a catheter-based medical imaging technique
that is capable of providing cross-sectional images of the interior of blood vessels
and is currently the gold-standard technique for assessing the morphology of blood
vessels and atherosclerotic plaques in vivo [42]. An IVUS system consists of a
catheter with a miniaturized ultrasound probe attached to its tip. The ultrasound
probe transmits ultrasound pulses and receives an acoustic radio frequency (RF)
echo signal (i.e., A-line) at a discrete set of angles. A B-mode IVUS image is
obtained by computing the positive envelopes of each A-line (Fig. 1a). The B-mode
signals are compressed, stacked along the angular direction, and mapped into an
8-bit gray scale to form an image known as the polar B-mode image (Fig. 1b).
To provide a more familiar representation of the data (i.e., one that resembles
the interior of a vessel), the polar B-mode image is geometrically transformed to
obtain a disc-shaped image known as the Cartesian B-mode image (Fig. 1c). Similar
to other ultrasound modalities, IVUS may be used in combination with contrast
agents [47] delivered as microbubbles which are of a size similar to red blood
cells (diameter: 1–10 �m). These microbubbles resonate in response to the pressure
changes induced by the ultrasound wave and are highly echogenic when compared
to normal body tissues. As a result, they appear bright in the B-mode ultrasound
images, and can hence be used as tracers of blood flow [3, 11].

Since VV may be found in the atherosclerotic plaque and/or the wall of the
vessel (i.e., extra-luminal regions), the problem of VV detection can be posed as
the detection of extra-luminal blood perfusion. In this paper, we present our studies
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Fig. 1 Depiction of (a) A-line signal and its envelope, examples of the B-mode (b) polar, and
(c) Cartesian IVUS images

towards the detection and quantification of extra-luminal blood perfusion, which
can be categorized as: (1) methods for the detection of the lumen contour, and (2)
methods for the detection of blood perfusion. The rest of this paper is organized as
follows: In Sect. 2, we present a brief summary of methods that have been proposed
for the analysis of IVUS data. In Sect. 3, we describe the methods for solving
the extra-luminal blood detection problem. The results obtained with the proposed
methods are presented in Sect. 4, and in Sect. 5, we present our conclusions.

2 Previous Work

IVUS Segmentation: Segmentation of IVUS data refers to the delineation of the
lumen/intima and media/adventitia borders. This procedure is useful for studying
atherosclerosis diseases, since it provides an assessment of the vascular wall, and
also provides information on the nature of atherosclerotic lesions and information
about the shape and size of the plaque. Automatic methods for IVUS segmentation
are required as there are a large number of frames in an IVUS sequence, thereby
making manual segmentation of a sequence infeasible (within a reasonable time).
Some of the most recent approaches for automatic IVUS segmentation include a
shape-driven method for lumen and media-adventitia segmentation introduced by
Unal et al. [45] that uses Principal Component Analysis (PCA) to create a shape
space from previously segmented frames. Segmentation is accomplished by the
minimization of an energy function using nonparametric probability densities with
global measurements. Taki et al. [44] proposed a method that involved preprocess-
ing of the IVUS images, and the posterior deformation of geometric and parametric
models using edge information. Downe et al. [6] introduced a method where
PCA was first used for pre-processing. Active contour models were then used to
provide an initial segmentation for a 3D graph search method. Multilevel discrete
wavelet frame decomposition was used by Papadogiorgaki et al. [38] to generate
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texture information that was used along with the intensity information for contour
initialization. Low pass filters and radial basis functions were then used to refine the
contour. Similarly, Katouzian et al. [17] proposed a method where texture informa-
tion was extracted using a discrete wavelet packet transform. The pixels of the IVUS
image were then classified as lumen or non-lumen using k-means clustering. Finally,
the contour was parameterized using a spline curve. Ciompi et al. [5] presented a
method in which segmentation was tackled as a classification problem and solved
using an error correcting output code technique. In this work, contextual information
was exploited by means of conditional random fields computed from training data.
The most common limitation of the segmentation methods discussed above is the
lack of robustness with respect to noise, IVUS image variability, and the different
artifacts that can appear in an IVUS image.

Tissue Characterization: Tissue characterization from IVUS data involves a defi-
nition of composition (e.g., fibrous, calcified, or lipid) of the atherosclerotic plaque
based on the changes that occur to the sound waves as they interact with the different
tissues. A common approach for characterization is to compute different texture
features from the gray-level IVUS B-mode representation (e.g., co-occurrence
matrix, laws features, Gabor filters). These features are used to train a classification
model which is then used to predict the tissue classes on new data [2, 16, 41, 50].
The most successful approaches for the characterization of plaque are based on the
analysis of the IVUS-RF signal data instead of the B-mode data. Nair et al. [30,31]
proposed a method known as “virtual histology” (IVUS-VH) that is based on the
power spectral analysis (intercept, slope, mid-band fit, and minimum and maximum
powers and their corresponding frequencies) of the IVUS-RF signals combined with
classification trees. High accuracy (>85%) was reported for differentiating fibrous,
fibrofatty, calcified, and necrotic regions. In addition, Rodriguez-Granillo et al. [40]
and Nasu et al. [32], presented the results of in-vivo studies using the above method
and reported a high correlation with the corresponding histology. Kawasaki et al.
[18, 19] proposed a method for tissue classification using the integrated backscatter
(IB), which is a parameter derived from the RF signal that is used to divide the
tissue into five categories: thrombus, intimal hyperplasia or lipid core, fibrous tissue,
mixed lesions and calcification. This method has demonstrated high sensitivity and
specificity for characterizing calcification (100%, 99%), fibrosis (94%, 84%), and
lipid pool (84%, 97%) [20]. O’Malley et al. [36] presented a study of the feasibility
of blood characterization on IVUS data using features intended to quantify speckle
and features based on frequency-domain measures of high-frequency signal using
one-class support vector machines on the RF raw signal, the signal envelope and the
log-compressed signal envelope. The feasibility of using wavelet analysis of the RF
amplitude for plaque characterization [16,41] and blood classification [17] was also
studied. However, the majority of these methods are not suitable for blood detection
since they focus on the characterization of the atherosclerotic plaque components.
Also, the methods that have been proposed for blood detection are not capable of
detecting small extra-luminal blood perfusion.
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Perfusion Detection: O’Malley et al. [14, 34, 37, 46, 48, 49] proposed a protocol
and an automatic algorithm (Analysis of Contrast Enhanced Sequences, ACES)
for the quantification and visualization of VV in contrast-enhanced IVUS image
sequences. That method relies on the detection of local echogenicity changes in
stationary IVUS sequences caused by microbubble perfusion into the vessel wall.
The proposed protocol consisted of acquiring images from a suspect plaque while
a bolus injection of contrast agent was performed. The detection of extra-luminal
blood was performed offline and involved two steps: (1) image stabilization [33,35]
(i.e., image-based gating and registration), and (2) detection of enhancement,
which was based on a comparison of the stabilized pre-contrast baseline images
and the post-injection images. As a result, any change that occurred due to
contrast enhancement would be reflected as a positive difference in the intensities.
The enhancement was quantified and certain statistics were computed. The main
limitation of this method is that it requires the alignment of frames which is very
difficult to achieve even with the proposed stabilization methods. Goertz et al.
[8, 9] proposed a solution for perfusion detection based on the detection of the
harmonic and sub-harmonic response of the contrast microbubbles. The limitation
of these methods is the requirement of a specially designed, non-commercial IVUS
system.

3 Methods

Our proposed framework for the detection and quantification of extra-luminal blood
perfusion consists of two steps: (1) detection of the luminal border, and (2) detection
of extra-luminal perfusion. In the following subsections, we review the proposed
methods for the above mentioned tasks.

3.1 Lumen Segmentation

Image-Based Segmentation: In this method, we employ the B-mode polar IVUS
image representation for the segmentation of the lumen. This choice makes the
computations much simpler due to the 1D appearance of the lumen contour.
We define a function f .�; c/ as the curve that represents the change of interface
between the lumen and the vessel wall. Since we know that the shape of the vessel’s
wall is essentially smooth, and that a polar B-mode IVUS image is periodic with
respect to the horizontal axis, we parameterize the function that represents the lumen
contour using Fourier series. The lumen segmentation problem consists of finding
the optimum parameters c� such that the curve f .�; c�/ corresponds to the interface
between the lumen and the vessel wall. This is accomplished by minimizing a cost
function formulated using a Bayesian approach in which we incorporate a priori
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information about the regions of lumen and non-lumen based on the prediction of a
support vector machine (SVM) classifier, trained with samples from the lumen and
wall regions provided by the user [25].

RF-Based Segmentation: The use of B-mode images for IVUS data analysis poses a
limitation due to the loss of information resulting from the B-mode conversion and
the fact that the appearance of the B-mode images depends on the characteristics
of the IVUS system which varies between systems, and on the visualization
parameters (e.g., time gain compensation, compression, brightness, contrast) that
are subjectively adjusted by the interventionist. To overcome this limitation, one
has to work directly with the raw IVUS RF signal as it is not affected by the
transformation or visualization parameters. Based on this observation, we developed
a method for the segmentation of the lumen contour using the IVUS RF signal based
on a physics-based model of the interaction of the sound waves with the tissues of
the vessel [23].

When an incident sound wave interacts with an object, a fraction of its power
will be reflected and a fraction will be absorbed by the object. When the wavelength
of the incident wave is smaller in comparison with the size of the object, the
reflection will occur in many directions (i.e., scattering). The power scattered by
each scatterer object in the direction opposite to the direction of the incident wave
is referred to as the differential backscattering cross section (DBC) [43]. If we
consider that the wavelength of the IVUS impulse signal is large in comparison
with the structures in the vessel, we can model the received IVUS RF signal, OSk.t/,
for each transducer’s angular position (i.e., A-line) by representing the structures
in the vessel as a finite set of point scatterers with an associated DBC coefficient.
Our RF-based segmentation method consists of two steps: (1) a calibration step in
which we estimate the parameters of the model using the RF signal of a manually
segmented frame from the sequence to be segmented by employing an inverse
problem approach, and (2) the detection of lumen contour by locating the change
of interface for each A-line, by minimizing the cost function that employs the
RF signal and the calibrated scattering model. Both the steps are based on the
following assumptions: (1) there are only two types of tissue or layers within the
vessel: lumen (blood) and wall; (2) the DBC coefficient of blood is different from
the DBC coefficient of wall; (3) scatterers within the same layer will have the
same DBC; (4) the attenuation coefficient is constant along the radial direction;
and (5) the real IVUS signal can be approximated using a stochastic minimization
process that employs random samples of the scatterers’ positions. Since the lumen
interface for each angle is recovered independently, it is very likely that the resulting
curve is not smooth or periodic. Moreover, due to noise or artifacts, it is possible
that our method obtains an incorrect result in one or more angles. Therefore, we
introduce a post-processing step in which the lumen contour is constrained to a
smooth periodical curve using Fourier series parameterization by applying a spectral
smoothing method [39].
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3.2 Perfusion Detection

Contrast Agent Detection: We investigated the feasibility of detecting the contrast
agent on IVUS sequences by characterizing the RF IVUS signal using two contrast
detection classifiers (CDC) based on one-class cost-sensitive learning [24]. In the
first contrast detection classifier (CDC1), we build a model for the detection of
contrast agent using samples of the contrast agent present in the lumen during the
microbubble injection. In the second contrast detection classifier (CDC2), we detect
the contrast agent as a change from baseline IVUS (i.e., lumen, intima, media and
adventitia signals acquired from frames prior to the bolus injection). The primary
advantage of these methods is that, by using the RF IVUS data, we do not lose
information contained in the frequency of the signal. The second advantage is that,
by using one-class learning, we do not need to provide “background” samples for
building the classifiers. This is particularly important to this study because, although
samples for contrast agent in lumen can be acquired by manual annotations from an
expert, the background can consist of a wide variety of other imaged tissues. Thus,
obtaining samples for the other tissues may be difficult and labor-intensive.

The features that characterize contrast agent and the baseline IVUS are defined
for a 3-D window of size r � � � t . These features are computed by stacking
consecutive frames over time, and obtaining a 3D IVUS signal volume S.R; �; T /,
where R indicates the radial distance from the transducer, � is the angle with respect
to an arbitrary origin, and T is the time elapsed since the start of the recording
(i.e., frame number). We study the feasibility of characterizing the contrast agent’s
signal using two types of features: features based on frequency-domain spectral
characterization (as proposed by O’Malley et al. [36]) and features based on 2-level
2D discrete wavelet decomposition.

Blood Detection: We assumed that that the signal of a partition corresponding to
certain tissue can be characterized by the DBC coefficient that generates that signal.
We employ the scattering model for computing the DBC corresponding to a partition
of the RF-signal of an A-line. Our objective is to find the DBC value that minimizes
the difference between the root mean square power (RMS) of the signal of a given
partition and the RMS power of the signal generated by our model. We divide the
real and modeled signal of each angle � into NP non-overlapping partitions of the
same size 4P . The initial and final times (˛p and ˇp , respectively) for each partition
P�;p are computed such that 4P D .ˇp �˛p/8p, and the RMS of each partition of
the real and modeled signals (R�;p and OR�;p , respectively) are computed. In order to
find the DBC value that generates the signal in each partition we find the value ��;p

such that the quadratic error E between the RMS power of the real and modeled
signals for the partition P�;p is minimal. The RMS power of the modeled signal
depends on the spatial position arrangement of the scatterers. Since these positions
are unknown, we employ the Monte-Carlo approach on which we perform several
computations based on several random scatterer’s positions. The problem of finding
the DBC for each partition is formulated as a system of linear equations and solved
very efficiently. Since we consider that there may exist a certain degree of overlap
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between the ultrasound beams of consecutive angles due to the angular divergence of
the beam, we introduce a regularization term that embodies our assumptions about
the variation of the DBC value of each partition and its neighbors.

4 Results

Image-Based Segmentation: The first 50 frames from nine sequences of 20 MHz
data (i.e., 450 frames in total) and nine sequences of 40 MHz data (i.e., 405 frames
in total) were used for comparing the results of the automatic segmentation method
with the manual segmentation from two expert observers. In order to evaluate the
performance of the method, we computed the Dice similarity coefficient (degree
of overlap between segmentation) along with linear regression and Bland-Altman
analysis (comparison of lumen areas). The results indicated a high Dice similarity
coefficient for the 20 MHz and 40 MHz datasets (0.95 and 0.93, respectively). The
linear regression plots exhibited a high correlation between the measured areas
obtained by the automatic and the manual segmentations. In addition, Bland-Altman
analysis of the data indicated that the performances of the automatic method and the
human observers are comparable. Figure 2 depicts examples of the segmentation
results obtained with the proposed method.

RF-Based Segmentation: We evaluated the performance of the proposed method
using the RF data from 490 frames corresponding to fourteen 40 MHz pullback
IVUS sequences obtained from rabbit aortas and various coronary arteries of swine,
and compared the results with those obtained through the the manual segmentation
by expert observers. The average Dice similarity was 0.96 while the mean bias and
the linear regression also showed that the performance of the automatic method and
the human observers is comparable. Figure 3 depicts examples of the segmentation
results obtained with the proposed method.

Fig. 2 Examples of automatic image-based segmentation results. The solid and dotted lines
correspond to the automatic and manual segmentation, respectively
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Fig. 3 Examples of automatic RF-based automatic segmentation results. The solid and dotted
lines correspond to the automatic and manual segmentation, respectively

Contrast Agent Detection: Samples from two contrast-enhanced IVUS sequences
obtained from swine were used to evaluate the feasibility of the proposed method.
The best performance, for both CDCs and the two types of features, was obtained
when using a window of size r D 255, � D 7, and t D 13. For the frequency-
domain features, the best average performance for contrast detection (CD) and blood
rejection (BR) with CDC1 is CD = 96.61% and BR = 95.67%. With CDC2 BD =
96.79% and CR = 94.24%. The best performance for wavelet-based features with
CDC1 is CD = 96.79% and BR = 94.13%. With CDC2 BD = 98.51% and CR =
96.94%. Figure 4 depicts examples of the classification results obtained with the
proposed method.

Blood Detection Results: Experiments were performed using real IVUS RF data
from six 40 MHz pullback sequences corresponding to different arteries from
rabbits and swines. For each sequence we compared the recovered DBC values
for blood and non-blood samples acquired from manual annotations provided by
an expert. The recovered DBC values for blood and non-blood were very similar
for sequences acquired using the same IVUS system and from the same species.
Additionally, as a preliminary blood detection experiment, we used our method
to recover the DBC values from the IVUS RF data of a frame corresponding
to a 40 MHz IVUS pullback from swine, for which histological information is
available (Fig. 5a). We normalized the resulting DBC values for each pixel of
the image and depicted the frame using a color palette (Fig. 5c). The regions of
the resulting image that correspond to vascularization were manually annotated
according to the criterion that a vessel should contain a region of DBC values
corresponding to blood surrounded by DBC values corresponding to non-blood.
These results are very encouraging as they provide preliminary evidence that our
method could be used for computation of a feature that leads to automatic blood
detection.
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Fig. 4 Examples of classification results for CDC1 using the frequency-domain-based (a,b) and
wavelet-based features (c,d) in an IVUS frame before injection (a,c) and during the injection (b,d).
The green color indicates the pixels classified as contrast agent and the red color indicates the
pixels classified as non-contrast agent

Fig. 5 Annotation of vasculature on (a) histological sample, (b) its corresponding B-mode
Cartesian image, and (c) recovered DBC values using a color palette with annotation of blood
regions
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5 Conclusion

We have reviewed the proposed methods towards the development of a complete
framework for the automatic detection of extra-luminal blood. The initial results of
this study are very encouraging and we believe that further research in this direction
will lead to the development of a fast and reliable method for VV detection and
quantification.
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