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Abstract

In this paper, we present necessary and sufficient condition for the
existence of ¥-bounded solution to the linear non-homogenous impulsive
differential system on R.
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1 Introduction

Many authors have studied the problem of ¥-boundedness of the solutions for
systems of homogenous as well as non-homogenous ordinary differential equa-
tions; see for example; Akinyele [1], Constantin [2], Diamandescu [3], Hallman
[5]. In [1], [2], [5], is taken as continuous matrix function, which allows mixed
asymptotic behaviors of the components of solution. Here also v is a contin-
uous matrix function. In this paper, we are going to present necessary and
sufficient condition for the non-homogenous impulsive differential system

’

r = A(t)r+ f(t), fora.a. t € J,t #t;
Ar = ILi(x),t=t;, j=12,..,n (1)

z(ty) = o
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to have at least one ¥-bounded solution for every Lebesgue ¢-integrable func-
tion on R,. Here 0 < t; < ty < ... < t, < t are fixed moment of impulsive
effect and I; : R" — R™ is continuous with ||;(z)|| < M, a constant.

Let R denote the Euclidean d-space. Elements of this space are denoted by
r = (21,29, ...,74)7 and their norm is given by ||z||= maz.{|x1|, |x2], ..., |z4|}-
For dxd real matrices, we define the norm |A| = Supj,<i1||Az||. Let ¢; : Ry —
(0,00), i=1, 2,..., d be continuous functions and let ¢ = diag[¢n, Vs, ..., V4]

Definition 1.1 : A function ¢ : R, — R? is said be 1-bounded on R, if
W»(t)p(t) is bounded on R,

Definition 1.2 : A function ¢ : R, — R is said to be Lebesgue 1-
integrable on R, if ¢(t) is measurable and ¢ (t)¢(t) is Lebesgue integrable on
R,.

Let A be a continuous d x d real matrix and the associated linear impulsive
differential system be

’

y = A(t)y, fora.a .t e J t#t; (2)
Ay = Ly),t=t;,j=12..,n

If y(t, s) is fundamental matrix of the system 3 = A(t)y, tp_1 < t < t; then
the fundamental matrix solution Y (¢, s) of system (1) is defined by

y(t,s),th—y < s <t <ty
Y(t 8) _ y(t,tk)(l + Ij)y(tkys),tk:—l <s <t <t< tht1

’ Y(ss b)) T (1 + i)y (s s ) (L + I)y(te, s)
1 <8 St <tpyr <t <ty

(3)

Let X denote the subspace of R? consisting of all vectors which are values of all
y-bounded solutions of (1) and X5 be the closed subspace of R? supplementary
to X;. Also let P, P, denote projections of R? onto X, X, respectively.

2 Main result

Theorem 2.1 :If A(t) is piecewise continuous in ¢ with points of discon-
tinuity of first kind ¢ = ¢;, j = 1,2,...,n at which it is continuous from the
left, then the equation (1) has atleast one t-bounded solution on R for ev-
ery Lebesgue t-integrable function f on Ry with [/ [|1(u)f(u)||du < C for
almost all ¢ > 0 if and only if there exist positive constant K , such that

| ()Y (t,s)PY Hu,v)p  (u) [K Kfor0<v<u<s<t (4)
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| ()Y (t,8)PY H(u,v)y H(u) [<K Kfor0<s<t<v<u (5)

Proof: Firstly we prove the ’if” part.
We consider the function

/ SOY (t, ) PLY " (u, 0) f(w)du — /t T UOY (5 PoY M (u, 0) f(u)du,
for almost all t > 0,t # t;

= [y (6 )R (o) ) ) () d

/ V()Y (t, 8)PY " (u, v) ™ (u)h(u) f (u)du, for almost all t > 0,t # t;

t

Using given condition and the fact that
[ [ (w) f (w) || du < C for almost all t > 0,
we get that Z(t) is bounded.

Set

2(t) = v (D)E(t) = /OtY(t,s)PlYl(u,v)f(u)du - /tOOY(t,s)Png(u,v)f(u)du
, tFE
and z(t]) = ¥~ (t)[x(t;) + I(x(t:))], t = t;

Then x(t) is ¢ (t) bounded and piecewise continuous on R;. Now

() = At /OtY(t s)PLY )f(u)du—/too Y (t,8)PY "Hu,v) f(u)du)
+ V(L) PY T (1) () + Y () PY TN (L 9) (1), L
— AWa(t) + 1), A

which shows that z(t) is a solution of (1).

Now we prove the converse part.

We define the sets

Cy ={z:Ry — R?: 2z is ¢)- bounded and piecewise continuous on R}

B ={r: R, — R?: x is Lebesgue v-integrable on R, }

D = {z: Ry — R?: z is uniformly continuous on all (t;_1,%] C Ry, Vk >
1,7-bounded on R, z(0) in Xy, 2 (t) — A(t)z(t) in B}

It is easy to prove that Cy is a real Banach space with the norm

e, = sup [¢(02(0)]

Also it is easy to prove that B is real Banach space with norm

ol = [ @)
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The set D is obviously a real linear space and

%] p = supyg [ () (t)|| + [|2" — A(t)|| is a norm on D.

Now we show that (D, ||.||) is a Banach space. Let < z,, > be the fundamental
sequence in D. Then < z,, > is a fundamental sequence in Cy. Therefore,
there exist a piecewise continuous and bounded function z : Ry — R? such
that ¥ (t)x,(t) — z(t) uniformly on R,.

Denote Z(t) = ¢~ (t)z(t) € Oy

Sincellz, (t) — Z(t)[| <[ ¢7'(t) | [l (#)zn(t) — 2(£)]| — 0

implies z,(t) — Z(t) as n — oo uniformly on every compact subset of R.
Thus z(0) € Xs.

On the other hand (f,(t)) where f,(t) = ¥ (t)(z,,(t) = A(t)z,(t)) is a fundamen-
tal sequence in L, the Banach space of all vector functions which are Lebesgue
integrable on R with the norm

1= [l s@lde

Thus there is a function f in L such that

lim [ [ f(t) = £(8)]dt =0

n—oo Jo

Putting f(t) = ¢ ~1(t)f(t), it follows that f(t) € B
For a fixed, but arbitrary, ¢t > 0, we have

#(t) ~2(0) = Jim (a(t) — 2,(0)

t ’
= lim [ z,(s)ds

= Jim t[ﬁf%(S)—A() n(8) + A(s)z,(s)]ds
= Jg{;/{w — F($)] + F(s) + A(s)an(s) }ds

- /O[f()+A() #(s))ds

It follows thatz (t) — A(t)Z(t) = f(t) € B and Z(t) is absolutely continuous on
all intervals J C R.

Thus z(t) S D. From lim,,_, ¥(t)x,(t) = ¢(t)Z(t), uniformly on R and

S5 @) [(n () — A()za(t)) — (F'(8) — A(1)Z())][1dt = 0.

It follows that lim,, . ||z, — Z||p = 0. Thus (D, |.||) is Banach space.

Now we define T': D — B,

T(z) =2 — A(t)x

Clearly T is linear and bounded.
Let Tx = 0. Then 2' = A(t)z for t # t;,» € D. This shows that z is 1-
bounded solution of (2). Then z(0) € X; N Xy = {0}. Thus = 0 and so the
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operator T is one-to-one.
Now let f € B and let z(t) be a 1-bounded solution of system (1). Let z(t)
be the solution of cauchy impulsive problem

z = A(t)z+ f(t), fora.a.t € J,t #t;
Az = Liz),t=t;, j=12,...n (6)
2(0) = Px(0)
Then x(t) — 2(t) is a solution of (2) with Pa(z(0) —2(0)) =0 i.e. z(0)—=2(0) €
X;. It follows that x(t) — z(t) is ¥-bounded solution on R. Then z(t) is -
bounded solution on R. It follows that z(t) € D and Tz = f. Consequently
the operator T is onto.
From a fundamental result of Banach: If T is a bounded one-to-one linear
operator from one Banach space onto another, then the inverse operator 71

is also bounded, we have that there is a positive constant K = ||T7!|| — 1 such
that for f € B and for the solution x € D of (1)

sup (020l < K [ ()70

For u > 0,6 > 0,¢ € RY, we consider the function f : R, — R?

ﬂw:{¢l“ﬁf““étsu+5

0 otherwise

Then f € B and | f|5 = d[¢]|
The corresponding solution x € D is

where

Gt w) = Y(t,s)P (wv) for0<v<w<s<t
o Y(t,s) Yw,v) for0<s<t<v<w

Therefore
u+o

le@a@l =1 [ $OGE wp w)edu] < Kol

It follows that
[o) Gt u)p~ (w)] < K]
Hence
| YOGt Wy () | K

which is equivalent with (4), (5).
This completes the proof.
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Theorem 2.2 : Suppose that
1. The fundamental matrix Y'(¢, s) of (2) satisfies the conditions:

(a) lim; o ¥(t)Y (1, S)P1 =0

(b) [ ()Y (t, S)P1Y *(u, U)l/) u) [K Kfor0<v<u<s<t

| V(@)Y (¢, s)PBY N u,v)p Hu) K Kfor0<s<t<v<u

where K is a positive constant and P, and P, are defined in introduction.
2. The function f : R, — R? is Lebesgue 1-integrable on R

Then every 1-bounded solution x(t) of (1) is such that

lim [[4(0a(1)]) = 0.

Proof: Let x(t) be a -bounded solution of (1). Then there is a positive
constant M such that [|¢(¢t)z(t)|| < M for almost all ¢ > 0. Consider

y(t) = z(t) = Y(t,s)Px(0) — /tY(t s)PY M (u,v) f(u)du

+ / (t, s)PY " (u,v) f(u)du

From the hypothesis, it follows that the function y(¢) is a ¥-bounded solution
of (2).Then y(0) € X;. On the other hand, Piy(0) = 0. Therefore y(0) =
Pyy(0) € X, and then y(t) = 0 for almost all £ > 0.

Thus we have,

x(t) = Y(t, s)Plx(O)+/()tY(t, s)PY "u, U)f(u)du—/oo Y (t, 8)PY " Hu,v) f(u)du
Now, for given e > 0, there exist ¢ > 0 such that
/t°° ) (u)ldu < S, fort > €t 2

Moreover, there exist ¢ >t such that, for t > ¢

OY 0P, 1< SO+ [ 17 0) fdu~
Then, for t >t we have
[v@)z@)[ < [v@)Y(E s)P | [lz(0)] +/O [ Y@ (ts) Py | Y™ (u,0) f(u) || du

[ 1@y (6 )P (i 0)97 () | 9000 u)
£ [T TeOY )Py (o) (@) | ) ()| du

< JOY ()P 2O+ [ 1Y (w,0) ()]

+ K / | (u) f(u)]|du < €
This shows that lim;_ ||2(t)z(t)|] = 0, which completes the proof.
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Remark 2.3 : Above Theorem is no longer true if we assume that the
function f is ¢-bounded on R, instead of condition (2) of the Theorem.
Even if the function f is such that

Jim ()7 0)] =
Theorem (2.2) does not hold. We show it by following example

Example 2.4 : Consider the linear system (2) with A(t) = Os.
Then fundamental matrix for (2) is given by Y(t, s)=Y(t)x(s)
where

IQ for t < tl
Y(t) = I + Y(tl) for t1 <t <ty
IQ + Y(tg) for ¢ Z tg

where

Let
& 0
Mt)_[ 0 t+1]
then
1 0
o=
Then | (#)Y (t,s)PY L (u,v)y 1 (u) |< 1
where
10
P=1y 0]

i.e. first hypothesis of the Theorem (2.2) is satisfied with K = 1.
Now we take f(t) = (vt +1,(t+1)"3)7
then,

lim [ () f ()] =0

t—o00

But the solution of the system (1) are
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Y(t,s) =Y (t)x(s)

where
K(t) fort <t
Y(t)=< K(t)+Y(t1) forty <t <ty
K(t) -+ Y(tg) for ¢ 2 tg
where

24 1)
K(t) = ( st U+ )
T T Cy
and Y'(t1),Y (t2) are as defined above. It follows that the solution of system

(1) are ¢-unbounded on R,.
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