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Abstract

In this paper, we present necessary and sufficient condition for the
existence of ψ-bounded solution to the linear non-homogenous impulsive
differential system on R+.
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1 Introduction

Many authors have studied the problem of ψ-boundedness of the solutions for
systems of homogenous as well as non-homogenous ordinary differential equa-
tions; see for example; Akinyele [1], Constantin [2], Diamandescu [3], Hallman
[5]. In [1], [2], [5],ψ is taken as continuous matrix function, which allows mixed
asymptotic behaviors of the components of solution. Here also ψ is a contin-
uous matrix function. In this paper, we are going to present necessary and
sufficient condition for the non-homogenous impulsive differential system

x
′

= A(t)x+ f(t), for a. a. t ∈ J, t �= tj

Δx = Ij(x), t = tj , j = 1, 2, ..., n (1)

x(t+0 ) = x0
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to have at least one ψ-bounded solution for every Lebesgue ψ-integrable func-
tion on R+. Here 0 < t1 < t2 < ... < tn < t are fixed moment of impulsive
effect and Ij : Rn −→ Rn is continuous with ‖Ij(x)‖ ≤M , a constant.
Let Rd denote the Euclidean d-space. Elements of this space are denoted by
x = (x1, x2, ..., xd)

T and their norm is given by ‖x‖= max.{|x1|, |x2|, ..., |xd|}.
For d×d real matrices, we define the norm |A| = Sup‖x‖≤1‖Ax‖. Let ψi : R+ →
(0,∞), i=1, 2,..., d be continuous functions and let ψ = diag[ψ1, ψ2, ..., ψd]

Definition 1.1 : A function φ : R+ → Rd is said be ψ-bounded on R+ if
ψ(t)φ(t) is bounded on R+.

Definition 1.2 : A function φ : R+ → Rd is said to be Lebesgue ψ-
integrable on R+ if φ(t) is measurable and ψ(t)φ(t) is Lebesgue integrable on
R+.

Let A be a continuous d × d real matrix and the associated linear impulsive
differential system be

y
′

= A(t)y, for a. a. t ∈ J, t �= tj (2)

Δy = Ij(y), t = tj , j = 1, 2, ..., n

If y(t, s) is fundamental matrix of the system y
′
= A(t)y, tk−1 < t ≤ tk then

the fundamental matrix solution Y (t, s) of system (1) is defined by

Y (t, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
y(t, s), tk−1 < s < t < tk
y(t, tk)(I + Ij)y(tk, s), tk−1 < s < tk < t ≤ tk+1

y(s, tk+1)
∏k+1
j=i (I + Ik+j)y(tk+j, tk+j−1)(I + Ik)y(tk, s)

, tk−1 < s ≤ tk < tk+1 < t ≤ tk+i+1

(3)

LetX1 denote the subspace of Rd consisting of all vectors which are values of all
ψ-bounded solutions of (1) andX2 be the closed subspace of Rd supplementary
to X1. Also let P1, P2 denote projections of Rd onto X1, X2 respectively.

2 Main result

Theorem 2.1 :If A(t) is piecewise continuous in t with points of discon-
tinuity of first kind t = tj , j = 1, 2, ..., n at which it is continuous from the
left, then the equation (1) has atleast one ψ-bounded solution on R+ for ev-
ery Lebesgue ψ-integrable function f on R+ with

∫ t+1
t ‖ψ(u)f (u)‖du ≤ C for

almost all t ≥ 0 if and only if there exist positive constant K , such that

| ψ(t)Y (t, s)P1Y
−1(u, v)ψ−1(u) |≤ K for 0 ≤ v ≤ u ≤ s ≤ t (4)
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| ψ(t)Y (t, s)P2Y
−1(u, v)ψ−1(u) |≤ K for 0 ≤ s ≤ t ≤ v ≤ u (5)

Proof: Firstly we prove the ’if’ part.
We consider the function

x̃(t) =
∫ t

0
ψ(t)Y (t, s)P1Y

−1(u, v)f(u)du −
∫ ∞

t
ψ(t)Y (t, s)P2Y

−1(u, v)f(u)du,

for almost all t ≥ 0, t �= tj

x̃(t) =
∫ t

0
ψ(t)Y (t, s)P1Y

−1(u, v)ψ−1(u)ψ(u)f (u)du

−
∫ ∞

t
ψ(t)Y (t, s)P2Y

−1(u, v)ψ−1(u)ψ(u)f (u)du, for almost all t ≥ 0, t �= tj

Using given condition and the fact that∫ t+1
t ‖ψ(u)f (u)‖du ≤ C for almost all t ≥ 0,

we get that x̃(t) is bounded.
Set

x(t) = ψ−1(t)x̃(t) =
∫ t

0
Y (t, s)P1Y

−1(u, v)f(u)du −
∫ ∞

t
Y (t, s)P2Y

−1(u, v)f(u)du

, t �= tj

and x(t+i ) = ψ−1(t)[x(ti) + I(x(ti))], t = tj
Then x(t) is ψ(t)-bounded and piecewise continuous on R+. Now

x
′
(t) = A(t)[

∫ t

0
Y (t, s)P1Y

−1(u, v)f(u)du−
∫ ∞

t
Y (t, s)P2Y

−1(u, v)f(u)du]

+ Y (t, s)P1Y
−1(t, s)f(t) + Y (t, s)P2Y

−1(t, s)f(t), t �= tj

= A(t)x(t) + f(t), t �= tj

which shows that x(t) is a solution of (1).
Now we prove the converse part.
We define the sets
Cψ = {x : R+ → Rd : x is ψ- bounded and piecewise continuous on R+}
B = {x : R+ → Rd : x is Lebesgue ψ-integrable on R+}
D = {x : R+ → Rd : x is uniformly continuous on all (tk−1, tk] ⊆ R+, ∀k ≥
1, ψ-bounded on R+, x(0) in X2, x

′
(t) − A(t)x(t) in B}

It is easy to prove that Cψ is a real Banach space with the norm

‖x‖Cψ = sup
t≥0

‖ψ(t)x(t)‖

Also it is easy to prove that B is real Banach space with norm

‖x‖B =
∫ ∞

0
‖ψ(t)x(t)‖dt
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The set D is obviously a real linear space and
‖x‖D = supt≥0 ‖ψ(t)x(t)‖ + ‖x′ − A(t)x‖B is a norm on D.
Now we show that (D, ‖.‖) is a Banach space. Let < xn > be the fundamental
sequence in D. Then < xn > is a fundamental sequence in Cψ. Therefore,
there exist a piecewise continuous and bounded function x : R+ → Rd such
that ψ(t)xn(t) → x(t) uniformly on R+.
Denote x̄(t) = ψ−1(t)x(t) ∈ Cψ
Since‖xn(t) − x̄(t)‖ ≤| ψ−1(t) | ‖ψ(t)xn(t) − x(t)‖ → 0
implies xn(t) → x̄(t) as n → ∞ uniformly on every compact subset of R+.
Thus x̄(0) ∈ X2.
On the other hand 〈fn(t)〉 where fn(t) = ψ(t)(x

′
n(t)−A(t)xn(t)) is a fundamen-

tal sequence in L, the Banach space of all vector functions which are Lebesgue
integrable on R+ with the norm

‖f‖ =
∫ ∞

0
‖ψ(t)f(t)‖dt

Thus there is a function f in L such that

lim
n→∞

∫ ∞

0
‖fn(t) − f(t)‖dt = 0

Putting f̄(t) = ψ−1(t)f(t), it follows that f̄(t) ∈ B.
For a fixed, but arbitrary, t ≥ 0, we have

x̄(t) − x̄(0) = lim
n→∞(xn(t) − xn(0))

= lim
n→∞

∫ t

0
x

′
n(s)ds

= lim
n→∞

∫ t

0
[x

′
n(s) −A(s)xn(s) + A(s)xn(s)]ds

= lim
n→∞

∫ t

0
{ψ−1(s)[fn(s) − f(s)] + f̄(s) + A(s)xn(s)}ds

=
∫ t

0
[f̄(s) + A(s)x̄(s)]ds

It follows thatx̄
′
(t)−A(t)x̄(t) = f̄(t) ∈ B and x̄(t) is absolutely continuous on

all intervals J ⊂ R+.
Thus x̄(t) ∈ D. From limn→∞ ψ(t)xn(t) = ψ(t)x̄(t), uniformly on R+ and∫∞
0 ‖ψ(t)[(x

′
n(t) − A(t)xn(t)) − (x̄

′
(t) −A(t)x̄(t))]‖dt = 0.

It follows that limn→∞ ‖xn − x̄‖D = 0. Thus (D, ‖.‖) is Banach space.
Now we define T : D → B,

T (x) = x
′ −A(t)x

Clearly T is linear and bounded.
Let Tx = 0. Then x

′
= A(t)x for t �= tj, x ∈ D. This shows that x is ψ-

bounded solution of (2). Then x(0) ∈ X1
⋂
X2 = {0}. Thus x = 0 and so the
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operator T is one-to-one.
Now let f ∈ B and let x(t) be a ψ-bounded solution of system (1). Let z(t)
be the solution of cauchy impulsive problem

z
′

= A(t)z + f(t), for a. a. t ∈ J, t �= tj

Δz = Ij(z), t = tj , j = 1, 2, ..., n (6)

z(0) = P2x(0)

Then x(t)−z(t) is a solution of (2) with P2(x(0)−z(0)) = 0 i.e. x(0)−z(0) ∈
X1. It follows that x(t) − z(t) is ψ-bounded solution on R+. Then z(t) is ψ-
bounded solution on R+. It follows that z(t) ∈ D and Tz = f . Consequently
the operator T is onto.
From a fundamental result of Banach: If T is a bounded one-to-one linear
operator from one Banach space onto another, then the inverse operator T−1

is also bounded, we have that there is a positive constant K = ‖T−1‖− 1 such
that for f ∈ B and for the solution x ∈ D of (1)

sup
t≥0

‖ψ(t)x(t)‖ ≤ K
∫ ∞

0
‖ψ(t)f(t)‖

For u ≥ 0, δ > 0, ξ ∈ Rd, we consider the function f : R+ → Rd

f(t) =

{
ψ−1(t)ξ for u ≤ t ≤ u+ δ
0 otherwise

Then f ∈ B and ‖f‖B = δ‖ξ‖
The corresponding solution x ∈ D is

x(t) =
∫ u+δ

u
G(t, w)dw

where

G(t, w) =

{
Y (t, s)P1Y

−1(w, v) for 0 ≤ v ≤ w ≤ s ≤ t
−Y (t, s)P2Y

−1(w, v) for 0 ≤ s ≤ t ≤ v ≤ w

Therefore

‖ψ(t)x(t)‖ = ‖
∫ u+δ

u
ψ(t)G(t, w)ψ−1(w)ξdw‖ ≤ Kδ‖ξ‖

It follows that
‖ψ(t)G(t, u)ψ−1(u)‖ ≤ K‖ξ‖

Hence
| ψ(t)G(t, u)ψ−1(u) |≤ K

which is equivalent with (4), (5).
This completes the proof.
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Theorem 2.2 : Suppose that
1. The fundamental matrix Y (t, s) of (2) satisfies the conditions:
(a) limt→∞ ψ(t)Y (t, s)P1 = 0
(b) | ψ(t)Y (t, s)P1Y

−1(u, v)ψ−1(u) |≤ K for 0 ≤ v ≤ u ≤ s ≤ t
| ψ(t)Y (t, s)P2Y

−1(u, v)ψ−1(u) |≤ K for 0 ≤ s ≤ t ≤ v ≤ u
where K is a positive constant and P1 and P2 are defined in introduction.
2. The function f : R+ → Rd is Lebesgue ψ-integrable on R+.
Then every ψ-bounded solution x(t) of (1) is such that

lim
t→∞ ‖ψ(t)x(t)‖ = 0.

Proof: Let x(t) be a ψ-bounded solution of (1). Then there is a positive
constant M such that ‖ψ(t)x(t)‖ ≤M for almost all t ≥ 0. Consider

y(t) = x(t) − Y (t, s)P1x(0) −
∫ t

0
Y (t, s)P1Y

−1(u, v)f(u)du

+
∫ ∞

t
Y (t, s)P2Y

−1(u, v)f(u)du

From the hypothesis, it follows that the function y(t) is a ψ-bounded solution
of (2).Then y(0) ∈ X1. On the other hand, P1y(0) = 0. Therefore y(0) =
P2y(0) ∈ X2 and then y(t) = 0 for almost all t ≥ 0.
Thus we have,

x(t) = Y (t, s)P1x(0)+
∫ t

0
Y (t, s)P1Y

−1(u, v)f(u)du−
∫ ∞

t
Y (t, s)P2Y

−1(u, v)f(u)du

Now, for given ε > 0, there exist t
′ ≥ 0 such that∫ ∞

t
|ψ(u)f (u)‖du < ε

2K
, for t ≥ t

′
, t �= tj

Moreover, there exist t
′′
> t

′
such that, for t ≥ t

′

| ψ(t)Y (t)P1 |≤ ε

2
[‖x(0)‖ +

∫ t

0
‖Y −1(u, v)f(u)du‖]−1

Then, for t ≥ t
′′

we have

‖ψ(t)x(t)‖ ≤ | ψ(t)Y (t, s)P1 | ‖x(0)‖ +
∫ t

′

0
| ψ(t)Y (t, s)P1 | ‖Y −1(u, v)f(u)‖du

+
∫ t

t′
| ψ(t)Y (t, s)P1Y

−1(u, v)ψ−1(u) | ‖ψ(u)f (u)‖du

+
∫ ∞

t
| ψ(t)Y (t, s)P2Y

−1(u, v)ψ−1(u) | ‖ψ(u)f (u)‖du

≤ | ψ(t)Y (t, s)P1 | [‖x(0)‖ +
∫ t

′

0
‖Y −1(u, v)f(u)du‖]

+ K
∫ ∞

t′
‖ψ(u)f (u)‖du < ε

This shows that limt→∞ ‖ψ(t)x(t)‖ = 0, which completes the proof.
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Remark 2.3 : Above Theorem is no longer true if we assume that the
function f is ψ-bounded on R+, instead of condition (2) of the Theorem.
Even if the function f is such that

lim
t→∞ ‖ψ(t)f(t)‖ = 0,

Theorem (2.2) does not hold. We show it by following example

Example 2.4 : Consider the linear system (2) with A(t) = O2.
Then fundamental matrix for (2) is given by Y(t, s)=Y(t)x(s)
where

Y (t) =

⎧⎪⎨
⎪⎩
I2 for t < t1
I2 + Y (t1) for t1 ≤ t < t2
I2 + Y (t2) for t ≥ t2

where

I2 =

[
1 0
0 1

]

Y (t1) =

[ −1
2

0
0 −3

2

]
,

Y (t2) =

[ −1
3

0
0 −2

3

]

and t1, t2 are moments of impulsive effects.
Let

ψ(t) =

[
1
t+1

0

0 t+ 1

]

then

ψ−1(t) =

[
t+ 1 0

0 1
t+1

]

Then | ψ(t)Y (t, s)P1Y
−1(u, v)ψ−1(u) |≤ 1

where

P1 =

[
1 0
0 0

]

i.e. first hypothesis of the Theorem (2.2) is satisfied with K = 1.
Now we take f(t) = (

√
t+ 1, (t+ 1)−2)T

then,
lim
t→∞ ‖ψ(t)f(t)‖ = 0

But the solution of the system (1) are
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Y (t, s) = Y (t)x(s)
where

Y (t) =

⎧⎪⎨
⎪⎩
K(t) for t < t1
K(t) + Y (t1) for t1 ≤ t < t2
K(t) + Y (t2) for t ≥ t2

where

K(t) =

(
2
3
(t+ 1)

3
2 + C1

−1
t+1

+ C2

)

and Y (t1), Y (t2) are as defined above. It follows that the solution of system
(1) are ψ-unbounded on R+.
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