Int. Journal of Math. Analysis, Vol. 2, 2008, no. 25, 1249-1256

Existence of ψ-Bounded Solution for a System of Impulsive Differential Equations

Bhanu Gupta

J.C.D.A.V College
Dasuya, Punjab (India)
bgupta_81@yahoo.co.in
Sanjay K. Srivastava
Beant College of Engineering and Technology
Gurdaspur, Punjab, India

Abstract

In this paper, we present necessary and sufficient condition for the existence of ψ-bounded solution to the linear non-homogenous impulsive differential system on \mathbf{R}_{+}.

Mathematics Subject Classification: 34A37, 34C11
Keywords: Impulsive differential equations, ψ-bounded, Lebesgue ψ-integrable function

1 Introduction

Many authors have studied the problem of ψ-boundedness of the solutions for systems of homogenous as well as non-homogenous ordinary differential equations; see for example; Akinyele [1], Constantin [2], Diamandescu [3], Hallman [5]. In [1], [2], [5], ψ is taken as continuous matrix function, which allows mixed asymptotic behaviors of the components of solution. Here also ψ is a continuous matrix function. In this paper, we are going to present necessary and sufficient condition for the non-homogenous impulsive differential system

$$
\begin{align*}
x^{\prime} & =A(t) x+f(t), \text { for a. a. } \mathrm{t} \in \mathrm{~J}, \mathrm{t} \neq \mathrm{t}_{\mathrm{j}} \\
\Delta x & =I_{j}(x), t=t_{j}, j=1,2, \ldots, n \tag{1}\\
x\left(t_{0}^{+}\right) & =x_{0}
\end{align*}
$$

to have at least one ψ-bounded solution for every Lebesgue ψ-integrable function on \mathbf{R}_{+}. Here $0<t_{1}<t_{2}<\ldots<t_{n}<t$ are fixed moment of impulsive effect and $I_{j}: \mathbf{R}^{n} \longrightarrow \mathbf{R}^{n}$ is continuous with $\left\|I_{j}(x)\right\| \leq M$, a constant.
Let \mathbf{R}^{d} denote the Euclidean d-space. Elements of this space are denoted by $x=\left(x_{1}, x_{2}, \ldots, x_{d}\right)^{T}$ and their norm is given by $\|x\|=\max .\left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{d}\right|\right\}$. For $\mathrm{d} \times \mathrm{d}$ real matrices, we define the norm $|A|=$ Sup $_{\|x\| \leq 1}\|A x\|$. Let $\psi_{i}: \mathbf{R}_{+} \rightarrow$ $(0, \infty), \mathrm{i}=1,2, \ldots, \mathrm{~d}$ be continuous functions and let $\psi=\operatorname{diag}\left[\psi_{1}, \psi_{2}, \ldots, \psi_{d}\right]$

Definition 1.1 : A function $\phi: \mathbf{R}_{+} \rightarrow \mathbf{R}^{d}$ is said be ψ-bounded on \mathbf{R}_{+}if $\psi(t) \phi(t)$ is bounded on \mathbf{R}_{+}.

Definition $1.2:$ A function $\phi: \mathbf{R}_{+} \rightarrow \mathbf{R}^{d}$ is said to be Lebesgue $\psi-$ integrable on \mathbf{R}_{+}if $\phi(t)$ is measurable and $\psi(t) \phi(t)$ is Lebesgue integrable on \mathbf{R}_{+}.

Let A be a continuous $d \times d$ real matrix and the associated linear impulsive differential system be

$$
\begin{align*}
y^{\prime} & =A(t) y, \text { for a. a. } \mathrm{t} \in \mathrm{~J}, \mathrm{t} \neq \mathrm{t}_{\mathrm{j}} \tag{2}\\
\Delta y & =I_{j}(y), t=t_{j}, j=1,2, \ldots, n
\end{align*}
$$

If $y(t, s)$ is fundamental matrix of the system $y^{\prime}=A(t) y, t_{k-1}<t \leq t_{k}$ then the fundamental matrix solution $Y(t, s)$ of system (1) is defined by

$$
Y(t, s)=\left\{\begin{array}{l}
y(t, s), t_{k-1}<s<t<t_{k} \tag{3}\\
y\left(t, t_{k}\right)\left(I+I_{j}\right) y\left(t_{k}, s\right), t_{k-1}<s<t_{k}<t \leq t_{k+1} \\
y\left(s, t_{k+1}\right) \prod_{j=i}^{k+1}\left(I+I_{k+j}\right) y\left(t_{k+j}, t_{k+j-1}\right)\left(I+I_{k}\right) y\left(t_{k}, s\right) \\
, t_{k-1}<s \leq t_{k}<t_{k+1}<t \leq t_{k+i+1}
\end{array}\right.
$$

Let X_{1} denote the subspace of \mathbf{R}^{d} consisting of all vectors which are values of all ψ-bounded solutions of (1) and X_{2} be the closed subspace of \mathbf{R}^{d} supplementary to X_{1}. Also let P_{1}, P_{2} denote projections of R^{d} onto X_{1}, X_{2} respectively.

2 Main result

Theorem 2.1 :If $A(t)$ is piecewise continuous in t with points of discontinuity of first kind $t=t_{j}, j=1,2, \ldots, n$ at which it is continuous from the left, then the equation (1) has atleast one ψ-bounded solution on \mathbf{R}_{+}for every Lebesgue ψ-integrable function f on \mathbf{R}_{+}with $\int_{t}^{t+1}\|\psi(u) f(u)\| d u \leq C$ for almost all $t \geq 0$ if and only if there exist positive constant K , such that

$$
\begin{equation*}
\left|\psi(t) Y(t, s) P_{1} Y^{-1}(u, v) \psi^{-1}(u)\right| \leq K \text { for } 0 \leq v \leq u \leq s \leq t \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\left|\psi(t) Y(t, s) P_{2} Y^{-1}(u, v) \psi^{-1}(u)\right| \leq K \text { for } 0 \leq s \leq t \leq v \leq u \tag{5}
\end{equation*}
$$

Proof: Firstly we prove the 'if' part.
We consider the function
$\tilde{x}(t)=\int_{0}^{t} \psi(t) Y(t, s) P_{1} Y^{-1}(u, v) f(u) d u-\int_{t}^{\infty} \psi(t) Y(t, s) P_{2} Y^{-1}(u, v) f(u) d u$, for almost all $\mathrm{t} \geq 0, \mathrm{t} \neq \mathrm{t}_{\mathrm{j}}$

$$
\begin{aligned}
\tilde{x}(t) & =\int_{0}^{t} \psi(t) Y(t, s) P_{1} Y^{-1}(u, v) \psi^{-1}(u) \psi(u) f(u) d u \\
& -\int_{t}^{\infty} \psi(t) Y(t, s) P_{2} Y^{-1}(u, v) \psi^{-1}(u) \psi(u) f(u) d u, \text { for almost all } \mathrm{t} \geq 0, \mathrm{t} \neq \mathrm{t}_{\mathrm{j}}
\end{aligned}
$$

Using given condition and the fact that
$\int_{t}^{t+1}\|\psi(u) f(u)\| d u \leq C$ for almost all $t \geq 0$,
we get that $\tilde{x}(t)$ is bounded.
Set
$\begin{aligned} x(t)=\psi^{-1}(t) \tilde{x}(t)=\int_{0}^{t} Y(t, s) P_{1} Y^{-1}(u, v) f(u) d u & -\int_{t}^{\infty} Y(t, s) P_{2} Y^{-1}(u, v) f(u) d u \\ & , \quad t \neq t_{j}\end{aligned}$
and $x\left(t_{i}^{+}\right)=\psi^{-1}(t)\left[x\left(t_{i}\right)+I\left(x\left(t_{i}\right)\right)\right], t=t_{j}$
Then $\mathrm{x}(\mathrm{t})$ is $\psi(t)$-bounded and piecewise continuous on \mathbf{R}_{+}. Now

$$
\begin{aligned}
x^{\prime}(t) & =A(t)\left[\int_{0}^{t} Y(t, s) P_{1} Y^{-1}(u, v) f(u) d u-\int_{t}^{\infty} Y(t, s) P_{2} Y^{-1}(u, v) f(u) d u\right] \\
& +Y(t, s) P_{1} Y^{-1}(t, s) f(t)+Y(t, s) P_{2} Y^{-1}(t, s) f(t), t \neq t_{j} \\
& =A(t) x(t)+f(t), t \neq t_{j}
\end{aligned}
$$

which shows that $x(t)$ is a solution of (1).
Now we prove the converse part.
We define the sets
$C_{\psi}=\left\{x: \mathbf{R}_{+} \rightarrow \mathbf{R}^{d}: x\right.$ is ψ - bounded and piecewise continuous on $\left.\mathbf{R}_{+}\right\}$
$B=\left\{x: \mathbf{R}_{+} \rightarrow \mathbf{R}^{d}: x\right.$ is Lebesgue ψ-integrable on $\left.\mathbf{R}_{+}\right\}$
$D=\left\{x: \mathbf{R}_{+} \rightarrow \mathbf{R}^{d}: x\right.$ is uniformly continuous on all $\left(t_{k-1}, t_{k}\right] \subseteq \mathbf{R}_{+}, \forall k \geq$
$1, \psi$-bounded on $\mathbf{R}_{+}, x(0)$ in $X_{2}, x^{\prime}(t)-A(t) x(t)$ in $\left.B\right\}$
It is easy to prove that C_{ψ} is a real Banach space with the norm

$$
\|x\|_{C_{\psi}}=\sup _{t \geq 0}\|\psi(t) x(t)\|
$$

Also it is easy to prove that B is real Banach space with norm

$$
\|x\|_{B}=\int_{0}^{\infty}\|\psi(t) x(t)\| d t
$$

The set D is obviously a real linear space and $\|x\|_{D}=\sup _{t \geq 0}\|\psi(t) x(t)\|+\left\|x^{\prime}-A(t) x\right\|_{B}$ is a norm on D.
Now we show that $(D,\|\cdot\|)$ is a Banach space. Let $\left\langle x_{n}\right\rangle$ be the fundamental sequence in D . Then $\left\langle x_{n}\right\rangle$ is a fundamental sequence in C_{ψ}. Therefore, there exist a piecewise continuous and bounded function $x: \mathbf{R}_{+} \rightarrow \mathbf{R}^{d}$ such that $\psi(t) x_{n}(t) \rightarrow x(t)$ uniformly on \mathbf{R}_{+}.
Denote $\bar{x}(t)=\psi^{-1}(t) x(t) \in C_{\psi}$
Since $\left\|x_{n}(t)-\bar{x}(t)\right\| \leq\left|\psi^{-1}(t)\right|\left\|\psi(t) x_{n}(t)-x(t)\right\| \rightarrow 0$
implies $x_{n}(t) \rightarrow \bar{x}(t)$ as $n \rightarrow \infty$ uniformly on every compact subset of \mathbf{R}_{+}. Thus $\bar{x}(0) \in X_{2}$.
On the other hand $\left\langle f_{n}(t)\right\rangle$ where $f_{n}(t)=\psi(t)\left(x_{n}^{\prime}(t)-A(t) x_{n}(t)\right)$ is a fundamental sequence in L, the Banach space of all vector functions which are Lebesgue integrable on \mathbf{R}_{+}with the norm

$$
\|f\|=\int_{0}^{\infty}\|\psi(t) f(t)\| d t
$$

Thus there is a function f in L such that

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty}\left\|f_{n}(t)-f(t)\right\| d t=0
$$

Putting $\bar{f}(t)=\psi^{-1}(t) f(t)$, it follows that $\bar{f}(t) \in B$.
For a fixed, but arbitrary, $t \geq 0$, we have

$$
\begin{aligned}
\bar{x}(t)-\bar{x}(0) & =\lim _{n \rightarrow \infty}\left(x_{n}(t)-x_{n}(0)\right) \\
& =\lim _{n \rightarrow \infty} \int_{0}^{t} x_{n}^{\prime}(s) d s \\
& =\lim _{n \rightarrow \infty} \int_{0}^{t}\left[x_{n}^{\prime}(s)-A(s) x_{n}(s)+A(s) x_{n}(s)\right] d s \\
& =\lim _{n \rightarrow \infty} \int_{0}^{t}\left\{\psi^{-1}(s)\left[f_{n}(s)-f(s)\right]+\bar{f}(s)+A(s) x_{n}(s)\right\} d s \\
& =\int_{0}^{t}[\bar{f}(s)+A(s) \bar{x}(s)] d s
\end{aligned}
$$

It follows that $\bar{x}^{\prime}(t)-A(t) \bar{x}(t)=\bar{f}(t) \in B$ and $\bar{x}(t)$ is absolutely continuous on all intervals $J \subset \mathbf{R}_{+}$.
Thus $\bar{x}(t) \in D$. From $\lim _{n \rightarrow \infty} \psi(t) x_{n}(t)=\psi(t) \bar{x}(t)$, uniformly on \mathbf{R}_{+}and $\int_{0}^{\infty}\left\|\psi(t)\left[\left(x_{n}^{\prime}(t)-A(t) x_{n}(t)\right)-\left(\bar{x}^{\prime}(t)-A(t) \bar{x}(t)\right)\right]\right\| d t=0$.
It follows that $\lim _{n \rightarrow \infty}\left\|x_{n}-\bar{x}\right\|_{D}=0$. Thus $(D,\|\|$.$) is Banach space.$
Now we define $T: D \rightarrow B$,

$$
T(x)=x^{\prime}-A(t) x
$$

Clearly T is linear and bounded.
Let $T x=0$. Then $x^{\prime}=A(t) x$ for $t \neq t_{j}, x \in D$. This shows that x is ψ bounded solution of (2). Then $x(0) \in X_{1} \cap X_{2}=\{0\}$. Thus $x=0$ and so the
operator T is one-to-one.
Now let $f \in B$ and let $x(t)$ be a ψ-bounded solution of system (1). Let $z(t)$ be the solution of cauchy impulsive problem

$$
\begin{align*}
z^{\prime} & =A(t) z+f(t), \text { for a. a. } \mathrm{t} \in \mathrm{~J}, \mathrm{t} \neq \mathrm{t}_{\mathrm{j}} \\
\Delta z & =I_{j}(z), t=t_{j}, j=1,2, \ldots, n \tag{6}\\
z(0) & =P_{2} x(0)
\end{align*}
$$

Then $x(t)-z(t)$ is a solution of (2) with $P_{2}(x(0)-z(0))=0$ i.e. $x(0)-z(0) \in$ X_{1}. It follows that $x(t)-z(t)$ is ψ-bounded solution on \mathbf{R}_{+}. Then $\mathrm{z}(\mathrm{t})$ is ψ bounded solution on \mathbf{R}_{+}. It follows that $z(t) \in D$ and $T z=f$. Consequently the operator T is onto.
From a fundamental result of Banach: If T is a bounded one-to-one linear operator from one Banach space onto another, then the inverse operator T^{-1} is also bounded, we have that there is a positive constant $K=\left\|T^{-1}\right\|-1$ such that for $f \in B$ and for the solution $x \in D$ of (1)

$$
\sup _{t \geq 0}\|\psi(t) x(t)\| \leq K \int_{0}^{\infty}\|\psi(t) f(t)\|
$$

For $u \geq 0, \delta>0, \xi \in \mathbf{R}^{d}$, we consider the function $f: \mathbf{R}_{+} \rightarrow \mathbf{R}^{d}$

$$
f(t)= \begin{cases}\psi^{-1}(t) \xi & \text { for } u \leq t \leq u+\delta \\ 0 & \text { otherwise }\end{cases}
$$

Then $f \in B$ and $\|f\|_{B}=\delta\|\xi\|$
The corresponding solution $x \in D$ is

$$
x(t)=\int_{u}^{u+\delta} G(t, w) d w
$$

where

$$
G(t, w)= \begin{cases}Y(t, s) P_{1} Y^{-1}(w, v) & \text { for } 0 \leq v \leq w \leq s \leq t \\ -Y(t, s) P_{2} Y^{-1}(w, v) & \text { for } 0 \leq s \leq t \leq v \leq w\end{cases}
$$

Therefore

$$
\|\psi(t) x(t)\|=\left\|\int_{u}^{u+\delta} \psi(t) G(t, w) \psi^{-1}(w) \xi d w\right\| \leq K \delta\|\xi\|
$$

It follows that

$$
\left\|\psi(t) G(t, u) \psi^{-1}(u)\right\| \leq K\|\xi\|
$$

Hence

$$
\left|\psi(t) G(t, u) \psi^{-1}(u)\right| \leq K
$$

which is equivalent with (4), (5).
This completes the proof.

Theorem 2.2 : Suppose that

1. The fundamental matrix $Y(t, s)$ of (2) satisfies the conditions:
(a) $\lim _{t \rightarrow \infty} \psi(t) Y(t, s) P_{1}=0$
(b) $\left|\psi(t) Y(t, s) P_{1} Y^{-1}(u, v) \psi^{-1}(u)\right| \leq K$ for $0 \leq v \leq u \leq s \leq t$ $\left|\psi(t) Y(t, s) P_{2} Y^{-1}(u, v) \psi^{-1}(u)\right| \leq K$ for $0 \leq s \leq t \leq v \leq u$
where K is a positive constant and P_{1} and P_{2} are defined in introduction.
2. The function $f: \mathbf{R}_{+} \rightarrow \mathbf{R}^{d}$ is Lebesgue ψ-integrable on \mathbf{R}_{+}.

Then every ψ-bounded solution $\mathrm{x}(\mathrm{t})$ of (1) is such that

$$
\lim _{t \rightarrow \infty}\|\psi(t) x(t)\|=0
$$

Proof: Let $x(t)$ be a ψ-bounded solution of (1). Then there is a positive constant M such that $\|\psi(t) x(t)\| \leq M$ for almost all $t \geq 0$. Consider

$$
\begin{aligned}
y(t)=x(t)-Y(t, s) P_{1} x(0) & -\int_{0}^{t} Y(t, s) P_{1} Y^{-1}(u, v) f(u) d u \\
& +\int_{t}^{\infty} Y(t, s) P_{2} Y^{-1}(u, v) f(u) d u
\end{aligned}
$$

From the hypothesis, it follows that the function $y(t)$ is a ψ-bounded solution of (2).Then $y(0) \in X_{1}$. On the other hand, $P_{1} y(0)=0$. Therefore $y(0)=$ $P_{2} y(0) \in X_{2}$ and then $y(t)=0$ for almost all $t \geq 0$.
Thus we have,
$x(t)=Y(t, s) P_{1} x(0)+\int_{0}^{t} Y(t, s) P_{1} Y^{-1}(u, v) f(u) d u-\int_{t}^{\infty} Y(t, s) P_{2} Y^{-1}(u, v) f(u) d u$
Now, for given $\epsilon>0$, there exist $t^{\prime} \geq 0$ such that

$$
\int_{t}^{\infty} \mid \psi(u) f(u) \| d u<\frac{\epsilon}{2 K}, \text { for } \mathrm{t} \geq \mathrm{t}^{\prime}, \mathrm{t} \neq \mathrm{t}_{\mathrm{j}}
$$

Moreover, there exist $t^{\prime \prime}>t^{\prime}$ such that, for $t \geq t^{\prime}$

$$
\left|\psi(t) Y(t) P_{1}\right| \leq \frac{\epsilon}{2}\left[\|x(0)\|+\int_{0}^{t}\left\|Y^{-1}(u, v) f(u) d u\right\|\right]^{-1}
$$

Then, for $t \geq t^{\prime \prime}$ we have

$$
\begin{aligned}
\|\psi(t) x(t)\| & \leq\left|\psi(t) Y(t, s) P_{1}\right|\|x(0)\|+\int_{0}^{t^{\prime}}\left|\psi(t) Y(t, s) P_{1}\right|\left\|Y^{-1}(u, v) f(u)\right\| d u \\
& +\int_{t^{\prime}}^{t}\left|\psi(t) Y(t, s) P_{1} Y^{-1}(u, v) \psi^{-1}(u)\right|\|\psi(u) f(u)\| d u \\
& +\int_{t}^{\infty}\left|\psi(t) Y(t, s) P_{2} Y^{-1}(u, v) \psi^{-1}(u)\right|\|\psi(u) f(u)\| d u \\
& \leq\left|\psi(t) Y(t, s) P_{1}\right|\left[\|x(0)\|+\int_{0}^{t^{\prime}}\left\|Y^{-1}(u, v) f(u) d u\right\|\right] \\
& +K \int_{t^{\prime}}^{\infty}\|\psi(u) f(u)\| d u<\epsilon
\end{aligned}
$$

This shows that $\lim _{t \rightarrow \infty}\|\psi(t) x(t)\|=0$, which completes the proof.

Remark 2.3 : Above Theorem is no longer true if we assume that the function f is ψ-bounded on \mathbf{R}_{+}, instead of condition (2) of the Theorem. Even if the function f is such that

$$
\lim _{t \rightarrow \infty}\|\psi(t) f(t)\|=0
$$

Theorem (2.2) does not hold. We show it by following example
Example 2.4 : Consider the linear system (2) with $A(t)=O_{2}$.
Then fundamental matrix for (2) is given by $Y(t, s)=Y(t) x(s)$ where

$$
Y(t)= \begin{cases}I_{2} & \text { for } t<t_{1} \\ I_{2}+Y\left(t_{1}\right) & \text { for } t_{1} \leq t<t_{2} \\ I_{2}+Y\left(t_{2}\right) & \text { for } t \geq t_{2}\end{cases}
$$

where

$$
\begin{aligned}
I_{2} & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
Y\left(t_{1}\right) & =\left[\begin{array}{cc}
\frac{-1}{2} & 0 \\
0 & \frac{-3}{2}
\end{array}\right], \\
Y\left(t_{2}\right) & =\left[\begin{array}{cc}
\frac{-1}{3} & 0 \\
0 & \frac{-2}{3}
\end{array}\right]
\end{aligned}
$$

and t_{1}, t_{2} are moments of impulsive effects.
Let

$$
\psi(t)=\left[\begin{array}{cc}
\frac{1}{t+1} & 0 \\
0 & t+1
\end{array}\right]
$$

then

$$
\psi^{-1}(t)=\left[\begin{array}{cc}
t+1 & 0 \\
0 & \frac{1}{t+1}
\end{array}\right]
$$

Then $\left|\psi(t) Y(t, s) P_{1} Y^{-1}(u, v) \psi^{-1}(u)\right| \leq 1$
where

$$
P_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

i.e. first hypothesis of the Theorem (2.2) is satisfied with $K=1$.

Now we take $f(t)=\left(\sqrt{t+1},(t+1)^{-2}\right)^{T}$ then,

$$
\lim _{t \rightarrow \infty}\|\psi(t) f(t)\|=0
$$

But the solution of the system (1) are
$Y(t, s)=Y(t) x(s)$
where

$$
Y(t)= \begin{cases}K(t) & \text { for } t<t_{1} \\ K(t)+Y\left(t_{1}\right) & \text { for } t_{1} \leq t<t_{2} \\ K(t)+Y\left(t_{2}\right) & \text { for } t \geq t_{2}\end{cases}
$$

where

$$
K(t)=\binom{\frac{2}{3}(t+1)^{\frac{3}{2}}+C_{1}}{\frac{-1}{t+1}+C_{2}}
$$

and $Y\left(t_{1}\right), Y\left(t_{2}\right)$ are as defined above. It follows that the solution of system (1) are ψ-unbounded on \mathbf{R}_{+}.

References

[1] O. Akinyele, On partial stability and boundedness of degree k, Atti. Acad. Naz. Lincei Rend. Cl. Sei. Fis. Mat. Natur.,(8), 65 (1978),259-264.
[2] A. Constantin, Asymptotic properies of solution of differential equation, Analele Universitatii din Timisoara, Seria Stiinte Matamatice, Vol.XXX, fasc. 2-3,1992, 183-225.
[3] A. Dimandescu, Existence of ψ-bounded solutions for a system of differential equations, Electronic Journal of differential equations, 63 (2004), 1-6.
[4] P.N. Boi, On the ψ-dichotomy for homogenous linear differential equations, Electronic Journal of differential equations, 40 (2006), 1-12.
[5] T.G. Hallam, On asymptotic equivalence of the bounded solutions of two systems of differential equations; Mich. Math. Journal, 16 (1969), 353363.
[6] W.A. Coppel, Dichotomies in Stability Theory, Springer-Verlag Berlin Heidelberg New York, 1978.
[7] P.N. Boi, Existence of ψ-bounded solutions for nonhomogeneous linear differential equation, Electronic Journal of differential equations,52 (2007), 1-10.
[8] A.A.Soliman, On eventual stability of Impulsive System of diffrenetial equations,IJMMS 27:8 (2001)485-494.
[9] S. Ahmad and M.R.M. Rao, Theory of Ordinary Differential Equations, East-West Press Private Limited, New Delhi (India)1999.

Received: April 17, 2008

