
Efficient Sparse Matrix-Vector Multiplication on GPUs
using the CSR Storage Format

Joseph L. Greathouse Mayank Daga
AMD Research

Advanced Micro Devices, Inc., USA
{Joseph.Greathouse, Mayank.Daga}@amd.com

Abstract—The performance of sparse matrix vector mul-
tiplication (SpMV) is important to computational scientists.
Compressed sparse row (CSR) is the most frequently used
format to store sparse matrices. However, CSR-based SpMV on
graphics processing units (GPUs) has poor performance due to
irregular memory access patterns, load imbalance, and reduced
parallelism. This has led researchers to propose new storage
formats. Unfortunately, dynamically transforming CSR into
these formats has significant runtime and storage overheads.

We propose a novel algorithm, CSR-Adaptive, which keeps
the CSR format intact and maps well to GPUs. Our implemen-
tation addresses the aforementioned challenges by (i) efficiently
accessing DRAM by streaming data into the local scratchpad
memory and (ii) dynamically assigning different numbers
of rows to each parallel GPU compute unit. CSR-Adaptive
achieves an average speedup of 14.7× over existing CSR-based
algorithms and 2.3× over clSpMV cocktail, which uses an
assortment of matrix formats.

Keywords: Sparse matrix-vector multiplication (SpMV); gen-
eral purpose computation on graphics processing units
(GPGPU); compressed sparse row (CSR); AMD; performance
acceleration;

I. INTRODUCTION

Sparse matrices are extensively used in areas such as
linear algebra [27], data mining [14], and graph analytics
[11]. As such, accelerating sparse primitives is an important
goal with wide-reaching consequences. Sparse matrix-vector
multiplication (SpMV) is one of the fundamental primitives
that form sparse basic linear algebra subprogram (BLAS)
libraries [8] and is used extensively in iterative methods for
linear systems and eigenvalue problems. SpMV performance
is heavily dependent on the format used to store the sparse
matrix in memory. Compressed sparse row (CSR) has his-
torically been a frequently used format because it efficiently
compresses both structured and unstructured matrices, and
it is amenable to CPU-based algorithms [31].

Graphics Processing Units (GPUs) are routinely used to
accelerate regular linear algebra problems. However, SpMV
implementations that use CSR have shown disappointing
performance due to issues such as load imbalance, lack of
parallelism, and irregular, uncoalesced memory accesses [3].

The naı̈ve CSR-based parallel SpMV, known as CSR-
Scalar, assigns each row of the sparse matrix to a sep-

arate thread [10]. This works well on CPUs, but causes
uncoalesced, slow memory accesses on GPUs. In addition,
hardware resources may be underutilized when long rows
cause a thread to have more work than its neighbors.

Previous work has described an improved GPU-based
approach, CSR-Vector [3]. This algorithm assigns one unit
of single instruction, multiple data (SIMD) execution (a
wavefront, also known as a warp) to work on a single row
of the matrix. This allows wavefronts to access consecutive
memory locations in parallel, resulting in fast coalesced
loads. However, CSR-Vector can lead to poor GPU occu-
pancy for short rows. For example, a 64-wide SIMD unit
will have numerous unused execution resources on a row
with only 32 non-zero values.

Numerous proposals have claimed that new storage for-
mats are required for good GPU SpMV performance [3, 5,
18, 26, 28]. The conversion to these other formats has two
major issues - (i) changing software to use a new format
presents a large engineering hurdle, as enormous amounts
of software already use CSR, and (ii) using CSR matrices
for parts of the application and converting to a different
format for GPU-based SpMV incurs large runtime overheads
and requires extra storage space. These issues jeopardize the
widespread adoption of GPUs for sparse linear algebra.

We propose a novel algorithm called CSR-Stream to
compute SpMV on GPUs while keeping the CSR format
intact. CSR-Stream statically fixes the number of non-
zero values that will be processed by one wavefront and
streams all of these values into the local scratchpad memory.
This stream of loads is coalesced and effectively utilizes
the GPU’s DRAM bandwidth, alleviating the bottleneck of
CSR-Scalar. CSR-Stream also efficiently utilizes the GPU’s
parallel resources and mitigates the bottleneck of CSR-
Vector by dynamically determining the number of rows on
which each wavefront will operate.

CSR-Stream loses efficiency when a wavefront operates
on rows with a large number of non-zero values, and it
becomes inoperative if a row has more values than can be
allocated in the scratchpad. To overcome this limitation,
we dynamically determine whether to execute a set of
rows with CSR-Stream or with the traditional CSR-Vector,
which offers good performance on long rows. We call

SC14, November 16–21, 2014, New Orleans
978-1-4799-5500-8/14/$31.00 c©2014 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357280089?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0 1 2 3 4
0 1.1 ‐ 9.7 ‐ 6.6
1 ‐ 5.2 ‐ 3.9 ‐
2 ‐ ‐ 3.4 ‐ ‐
3 4.3 ‐ ‐ 4.8 ‐
4 ‐ 7.6 ‐ ‐ ‐

0 1 2 3 4 5 6 7 8
values 1.1 9.7 6.6 5.2 3.9 3.4 4.3 4.8 7.6

cols 0 2 4 1 3 2 0 3 1

row_delimiters 0 3 5 6 8 9

Matrix CSR Storage Format

(a)

1.1 9.7 6.6 5.2 3.9 3.4 4.3 4.8 7.6
0 2 4 1 3 2 0 3 1

1.1 9.7 6.6 5.2 3.9 3.4 4.3 4.8 7.6
0 2 4 1 3 2 0 3 1

1.1 9.7 6.6 5.2 3.9 3.4 4.3 4.8 7.6
0 2 4 1 3 2 0 3 1

cycle 1

cycle 2

cycle 3

t1 t2 t3 t5t4
values
cols

values
cols

values
cols

Ti
m
e

(b)

Figure 1. Example of the Compressed Sparse Row (CSR) sparse matrix storage format. (a) The CSR storage for the sparse matrix on the left. (b) An
illustration of how multiple CPU threads would concurrently access the CSR data structure when performing SpMV with one thread per row.

this combination CSR-Adaptive. We evaluate CSR-Adaptive
on an AMD FireProTM W9100 discrete GPU. Over the
set of sparse matrices we tested, CSR-Adaptive shows an
average performance increase of 14.7× over existing CSR-
based SpMV implementation and a speedup of 2.3× over
clSpMV’s cocktail, which is built from collections of other
GPU-amenable storage formats.

Our work makes the following contributions:
• We propose a new algorithm, CSR-Stream, to compute

sparse matrix-vector multiplication on GPUs using the
CSR storage format when the matrix rows are short.

• We develop CSR-Adaptive, an algorithm that dynam-
ically decides whether to use our CSR-Stream or the
traditional CSR-Vector for each row of the matrix.

• We demonstrate that our algorithm performs better than
previous GPU-based SpMV algorithms, both those that
use CSR as well as those that use other GPU-optimized
storage formats. This is the case even when discounting
the significant data transformation overheads required
by these other formats.

The remainder of this paper is arranged as follows. Sec-
tion II provides a background on various sparse matrix stor-
age formats and AMD GPUs. Section III details our CSR-
Adaptive algorithm. Section IV explains our experiments
methodology and Section V shows the results. We present
related work in Section VI, followed by future research
directions and our conclusions in Section VII.

II. BACKGROUND

A. Sparse Matrix-Vector Multiplication

Modern high-performance computing (HPC) systems rely
on SpMV for numerous tasks. SpMV operates on com-
pressed sparse matrices, which are primarily filled with
zeroes. This compression is especially important to the HPC
community because it allows extremely large matrices to be
used in modern computers that have relatively small amounts
of storage.

The storage format used for the sparse matrix defines the
SpMV algorithm, and it significantly impacts performance.
CSR is a widely used format that offers excellent compres-
sion of both structured and unstructured sparse matrices. The
performance of CSR-based SpMV is good on CPUs, and
several other sparse BLAS algorithms also support CSR. As

such, a great deal of existing software has been written to
use CSR.

Figure 1(a) illustrates the CSR storage format for an ex-
ample matrix. The non-zero values are stored in a values
array. Each non-zero value also has an entry in the cols
array in order to help describe its location in the matrix.
Finally, rather than holding the row index of every non-
zero value (as is done in the COO format), CSR has a
row_delimiters array that holds the indices for only
the first value of every row. This row-oriented compression
is the source of the format’s name.

Figure 1(b) shows how SpMV is commonly performed
on CPUs when using CSR, where each thread operates on a
separate row or chunk of rows. As the threads iterate over the
non-zero values, they pull sections of the CSR data structures
into their private caches, where the next few iterations can
access them. SpMV is traditionally bandwidth bound (i.e.,
its arithmetic intensity is very low), so good memory access
patterns greatly improves performance [12, 31].

B. Graphics Processing Units

GPUs have evolved over the last decade from relatively
fixed-function circuits to highly parallel general-purpose
processors. Modern GPUs concurrently execute thousands
of threads and quickly switch between them to hide long-
latency operations. In order to reduce hardware complexity
(and thus allow more parallel compute units in a chip),
GPUs bundle numerous threads together and require them
to execute in a SIMD fashion. In AMD GPUs, each of
these wavefronts contains 64 threads. Figure 2 shows an
illustration of a modern AMD GPU. Each of the parallel
compute units (CUs) itself has some number of parallel
execution resources. These resources are shared across a
wavefront, meaning that a wavefront which does not have
all of its threads active leaves some hardware unused.

GPUs are capable of utilizing large amounts of memory
bandwidth. Modern discrete GPUs can utilize 200-300 GB/s,
while CPUs of similar cost reach 30-60 GB/s. To further
increase usable bandwidth, modern GPUs also contain a
series of on-chip caches. In AMD GPUs, each compute unit
has a private L1 data cache that is connected to shared L2
caches and memory controllers through a crossbar.

The L1 caches can communicate up to 64 bytes to their
CU every cycle, but they have microarchitectural limitations

CU

CU

L1D

L1D C
R
O
S
S
B
A
R

L2
Cache

L2
Cache

Memory
Controller

Memory
Controller

DRAM

DRAM

DRAM

DRAM

. . .

. . .
CU

L1D

EX EX

EX EX
. . .

LDS

Figure 2. The memory and interconnect of AMD Graphics Core Next
GPUs. Each CU has a private L1 data cache (L1D) and a local data store
(LDS) that is shared amongst its execution units. L2 caches are associated
with memory channels and are shared across all CUs.

on the number of cache lines that can be accessed each cycle.
If a single wavefront’s access requires touching many lines,
the requests are serialized and L1 bandwidth is reduced.
The per-CU local data store (LDS, also known as shared
memory) is a software-addressed scratchpad cache. In AMD
GPUs, the LDS is highly banked and can quickly service
uncoalesced (scatter/gather) accesses. A workgroup is a
collection of wavefronts that execute on the same CU and
that are able to communicate through resources like the LDS.

C. Previous CSR-based GPU Algorithms

A simple CSR-based SpMV algorithm, as illustrated in
Figure 1, assigns a row to each thread. While this algorithm,
CSR-Scalar, works well on CPUs, it is ill-suited for GPUs
[3]. If each row contains a large number of non-zero values
(NNZ), then the threads will access entries in both values
and cols that are far apart. Such accesses cause each
thread in a wavefront to read from different L1 cache
lines and touch numerous DRAM pages. This serializes the
wavefront’s accesses and reduces the achievable bandwidth.

Figure 3 illustrates this problem on an AMD FireProTM

W9100 GPU using an experiment similar to the one de-
scribed by Bell and Garland [3]. We perform SpMV on a
dense matrix (stored in a sparse format) with a fixed number
of non-zero values, 16 million in this case. Each point on the
X axis has a different number of rows and thus a different
NNZ/row. This demonstrates how the performance of CSR-
Scalar plummets as the NNZ/row increases beyond a small
number. At 16 NNZ/row, each thread in a wavefront accesses
a different 64-byte segment of memory during a vector load,
resulting in poor memory system performance.

Bell and Garland described CSR-Vector, a CSR-based
SpMV algorithm where threads in a wavefront all work
on a single row [3]. For rows with many non-zero values,
this results in good performance by using large coalesced
memory accesses followed by a short reduction phase.
Unfortunately, many sparse matrices have few non-zeroes
per row. CSR-Vector performs poorly in this case, as there
is little parallel work in each wavefront to amortize the cost
of the reduction. This is demonstrated in Figure 3, where
the performance of CSR-Vector drops when the NNZ/row is

0
10
20
30
40
50
60
70
80

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

G
FL
O
PS

NNZ/Row
CSR‐Scalar CSR‐Vector ELLPACK

Figure 3. The SpMV performance on an AMD FireProTM W9100 GPU
using different sparse matrix formats. CSR-Scalar performs poorly for
almost all row lengths, while CSR-Vector performs well on long rows.
ELLPACK performs well on short rows, but requires changing the matrix
storage format.

small. (The performance of CSR-Vector is also low for the
longest rows in Figure 3; in this case, there are not enough
rows to completely utilize all of the CUs.)

D. Other Sparse Matrix Formats

Because of the poor GPU performance of these CSR
algorithms, the common consensus is that GPU-based SpMV
is best served by other storage formats. Bell and Garland
presented some of the first work in this direction when they
showed that the column-major ELLPACK format presented
much better performance for matrices with short rows [3].
This algorithm is also demonstrated in Figure 3. They further
described a hybrid ELLPACK+COO format that remedied
the difficult problems of using ELLPACK on long rows or
in matrices with variable NNZ/row.

Other formats have been proposed across the literature
[5, 18, 28]. To this end, Su and Keutzer described the
clSpMV framework, which automatically converts sparse
matrices into any of nine different formats (or a “cocktail”
format that uses different formats on subsets of the matrix)
[26]. The main limitation in each of these cases is the
expensive conversion from CSR to the new matrix format.

Existing CPU-centric software relies heavily on the CSR
format. As such, transforming the matrix to one of these
GPU-optimized formats has both space and time overheads.
While SpMV is often used in iterative algorithms, the
conversion time from CSR to even simple alternative formats
can still require hundreds or thousands of SpMV iterations to
amortize. Changing storage formats would require overwrit-
ing the original CSR data using costly in-place algorithms,
or the system must have enough available storage for both
copies. HPC applications are regularly limited by available
system memory, so the latter is a disagreeable proposition.

While the entire application could be rewritten to use
these other formats, this would likely require great effort.
Requiring different data structures between the CPU and
GPU also presents problems for heterogeneous processors
that include both types of cores [22]. It becomes harder to
share work between the heterogeneous units on these devices
if they do not use the same data structures.

The desire to continue to use CSR leads us to study algo-
rithms that can attain good performance on GPUs without
needing a new sparse matrix storage format.

III. A BETTER CSR-BASED SPMV FOR GPUS

The goal of this work is to describe a high-performance
CSR SpMV, no matter the NNZ/row. We begin by focus-
ing on matrices with “short” rows, since many interesting
physical systems are represented by such matrices [10].

A. CSR SpMV on Short Sparse Rows

For the purposes of discussion, we loosely define “short”
rows as those that have so few non-zeroes per row that CSR-
Vector performs poorly. Since CSR-Scalar performs poorly
almost everywhere, this is a region where CSR is believed to
be a bad storage format for GPUs. The problem for CSR-
Vector is a lack of parallel work, while the problem for
CSR-Scalar is poor memory coalescing. The first stage of
our CSR-based GPU SpMV solves both of these problems.

If a large sparse matrix has few non-zeroes per row, there
are, by definition, abundant rows upon which to work. CSR-
Scalar takes advantage of this fact by spreading these rows
to the parallel execution units. Each thread thus accesses
values from different rows, which will be stored far apart in
the row-major CSR format. GPU memory accesses perform
best when simultaneously accessing contiguous regions of
memory, rather than random or distant accesses. As such,
the uncoalesced accesses to both the cols and values
arrays hamper CSR-Scalar performance.

If we momentarily focus on sparse matrices where every
row has the same, small NNZ, we can solve this problem
using GPU hardware designed to simultaneously access non-
contiguous locations. We will generalize this solution later.

Modern GPUs contain software-addressed scratchpad
memories that are local to each parallel compute unit. These
are called LDS in AMD GPUs. The LDS is specifically
built to help with scatter and gather operations – it is highly
banked and allows many simultaneous accesses to different
locations without stalling [1]. The primary limitations of the
LDS are that data must be manually moved into the structure
and that kernels must define at compile time the amount of
LDS each workgroup will use.

These are not a problem if we are writing an algorithm
for a sparse matrix with a constant, small NNZ/row. By way
of example, if each row had 16 non-zero values, then a LDS
partition of 1024 entries will suffice to hold the values for 64
rows. AMD wavefronts are 64 threads wide, so this offers
enough parallelism to perform an algorithm like CSR-Scalar
fully in parallel using the LDS. The only step left is to move
data from the DRAM into the LDS, which can be done at
high performance by using the parallel threads to stream all
1024 values into the LDS.

The first step in our new CSR-based SpMV algorithm
is thus to have each workgroup perform many parallel,

input : values[], cols[], row delimiters[], x[]
output: output[]

1 local float LDS[NNZ PER WG];
2 startRow←workgroupID * ROWS PER WG;
3 stopRow←(workgroupID + 1) * ROWS PER WG;
4 localRow←startRow + localTid;
5 first col←row delimiters[startRow];
6 /* Stream from values[] and cols[] */
7 for i←localTid to NNZ PER WG - 1 do
8 LDS[i]←values[first col+i] * x[cols[first col+i]];
9 i + = THREADS PER WG;

10 end
11 /* Scalar-style reduction from LDS */
12 if startRow + localTid < stopRow then
13 temp←0, i←(row delimiters[localRow] - first col);
14 for i to row delimiters[localRow+1] - first col - 1 do
15 temp + = LDS[i++];
16 end
17 end
18 output[startRow + localTid] = temp;

Algorithm 1. Partial GPU CSR Algorithm. This algorithm assigns a
fixed number of rows per workgroup (ROWS PER WG) and assumes
that, at most, NNZ PER WG non-zero values are in those rows.

coalesced loads from the col and value arrays. This
quickly places values into the LDS, whereupon a scalar-
style reduction (with each thread working on a single row)
completes the SpMV at full speed.

The solution as currently described only works if the
NNZ/row is fixed and small. The second half of the algo-
rithm (the scalar reduction) statically knows which values
each thread should read from the LDS. If the NNZ/row
varies, this must change slightly. Instead of hard-coding
the LDS entries that each thread will access, we can use
the row_delimiters array to dynamically calculate each
row’s start and end point. The first LDS entry a thread
should access is defined by the difference between its
row_delimiters value and that of the first row in the
workgroup. The last value each thread will load is defined
similarly. This partial solution is shown in Algorithm 1.

This example code has neither of the major problems pre-
viously discussed. Unlike CSR-Scalar, the memory accesses
are fast and coalesced. Unlike CSR-Vector, there is enough
work for multiple threads even when there are few NNZ/row
because each workgroup operates on multiple rows.

B. Variable Number of Rows per Workgroup

Algorithm 1 works only if the non-zero values for the
fixed number of rows fits within the statically allocated LDS
space. If, for instance, a set of 64 rows has 1024 non-zeroes,
the algorithm would work even if each row was not exactly
16 values wide. It does not work when the 64 rows have
more than 1024 values. If 63 rows had 16 non-zero values,
but one row had 17, the current algorithm would not stream
that last remaining value into the LDS.

We solve this by dynamically calculating how many rows
will fit into the LDS. For example, assume there are 128
rows in a matrix, each with 16 non-zero values. In this

input : totalRows, row delimiters[]
output: row blocks[]

1 rowBlocks[0]←0, tempSum←0, last i←0, ctr←1;
2 for i←1 to totalRows - 1 do
3 /* Count non-zeroes in this row */
4 sum + = row delimiters[i] - row delimiters[i-1];
5 if sum == LOCAL SIZE then
6 /* This row fills up LOCAL_SIZE */
7 last i←i, row blocks[ctr++]←i, sum←0
8 else if sum > LOCAL SIZE then
9 if i - last i > 1 then

10 /* This extra row will not fit */
11 row blocks[ctr++] ← (i−1), i−−;
12 else if i - last i == 1 then
13 /* This one row is too large */
14 row blocks[ctr++] ← i;
15 end
16 last i←i, sum←0;
17 end
18 end
19 rowBlocks[ctr++] ← totalRows;

Algorithm 2. This CPU code calculates the number of rows of a CSR
matrix that can fit into LOCAL SIZE LDS entries.

case, two workgroups, both with 1024 LDS entries, would
each work on 64 rows. If the first row instead had 32
entries, and the remaining 127 rows had 16 entries, then
three workgroups would be needed. The first would operate
on 63 rows, the second on 64, and the third would work
on only on the last row. This has the benefit of dynamically
fitting the number of rows to the amount of LDS space,
which simplifies the work done on the GPU.

This new part of our algorithm splits the problem into row
blocks, where the non-zero values within a block fit into a
statically sized amount of local storage. Algorithm 2 shows
simple code for generating row blocks on the CPU, which
we found performs better than computing the information in
the GPU. The blocks need to be calculated only once when
generating the matrix, or whenever the NNZ/row changes,
rather than when the values in the matrix change. The
complexity of calculating the blocks is related to the number
of rows, not the number of non-zeroes in the matrix; this
generally takes less than 1% of the time that it takes to
generate the CSR data structure, as shown in Section V-C.
The row blocks can also be calculated while transferring the
matrix to the GPU’s memory, hiding the extra latency.

Algorithm 3 describes at a high level the GPU code that
utilizes these row blocks to perform SpMV. We refer to this
algorithm as CSR-Stream, since it streams values from the
memory into the LDS. We note that some of the finer details
of this algorithm (such as implementation-specific optimiza-
tions) are abstracted away in this pseudocode description.

Essentially, the CPU uses the row_delimiters struc-
ture to quickly calculate how many rows each workgroup
will access. After this, each GPU workgroup, which has
a static amount of LDS storage, uses its parallel threads
to efficiently load values from memory into the LDS in a

1 startRow ← row blocks[workgroupID];
2 nextStartRow ← row blocks[workgroupID + 1];
3 num non zeroes ← row delimiters[nextStartRow] -

row delimiters[startRow];
4 /* Omitted: Stream num_non_zeroes values

into LDS */
5 num rows ← nextStartRow − startRow;
6 thread start point = row delimiters[startRow + localTID];
7 thread end point = row delimiters[startRow + localTID + 1];
8 /* Perform reduction on num_rows, rather

than a static number. */
9 while rows done < num rows do

10 /* Omitted: Scalar reduction out of the
LDS for values between
thread_start_point and thread_end_point */

11 rows done + = workgroupSize;
12 end
13 output[startRow + localTid] = temp;

Algorithm 3. High-level pseudocode for CSR-Stream. We abstract away
many of the implementation-specific details for the sake of clarity.

coalesced manner. Finally, num_rows threads perform a
reduction of each row before writing the value to the output.

CSR-Stream may leave some threads inactive during the
reduction phase, but this rarely reduces the peak perfor-
mance. SpMV is heavily bandwidth bound, and the coa-
lesced loads that put data into the LDS result in efficient
bandwidth usage. The reduction can mostly be hidden under
the bandwidth-related stalls. Logarithmic reductions may be
preferable when there are many inactive threads.

C. Optimizing Very Long Rows

We do not use CSR-Stream to calculate extremely long
individual rows. If a single row has more non-zero values
than will fit into the LDS, a simple implementation of CSR-
Stream will not move these values into the local memory.

This could be solved by giving each of these very long
rows to a single CSR-Stream workgroup. The blocking code
in Algorithm 2 causes this to happen – very large rows are
assigned to a single row block. The workgroup handling that
block could continuously add the values from memory to the
previous values contained in the LDS. The final reduction
step would then finish adding these values together.

We found that it was better to find these long rows
and hand them off to the traditional CSR-Vector algorithm,
which only loads the exact number of needed values into
the LDS and performs a logarithmic (rather than linear)
reduction at the end. After all, CSR-Vector already results in
good performance for these long rows. This worked better
than expanding CSR-Stream to work on such long rows.

This then completes our CSR-Based GPU SpMV al-
gorithm, which we call CSR-Adaptive. CSR-Adaptive is
shown in Figure 4 and described in pseudocode in Algo-
rithm 4. When generating the CSR matrix on the CPU, a
row_blocks structure is also generated that holds the start
row for each block that fits into a workgroup’s LDS. We
adaptively decide that when the number of rows is small

Per Workgroup
Done in parallel on GPU

Small number
of rows in this
workgroup?

Run
CSR-Stream

Run
CSR-Vector

NoYes

Figure 4. High-level flow chart of the CSR-Adaptive algorithm. The
decision is made inside the single CSR-Adaptive GPU kernel.

1 startRow ← row blocks[workgroupID];
2 nextStartRow ← row blocks[workgroupID + 1];
3 num rows ← nextStartRow − startRow;
4 if num rows > SMALL VALUE then
5 /* Execute CSR-Stream */
6 else
7 /* Execute CSR-Vector */
8 end
Algorithm 4. Pseudocode for CSR-Adaptive. The calls to either CSR-
Vector or CSR-Stream do not require launching a new GPU kernel, since
this decision is made on the GPU.

(e.g., if there is only one row in this block), the CSR-Vector
algorithm is used to calculate the SpMV for that block.
Otherwise, CSR-Stream streams values from memory into
the LDS and then reduces the LDS values into the outputs.

CSR-Adaptive dynamically finds the right number of rows
for each workgroup and uses the best SpMV method for
rows of different length. In addition, the fundamental CSR
data structure for the matrix is unchanged.

The generation of the row_blocks structure is much
faster than transforming the CSR structure into another
format, and it takes very little extra space. If the number
of LDS entries per workgroup is 1024, it takes less than
0.1% the space of the values structure; it can be much
smaller if the rows are very long.

IV. EXPERIMENTAL SETUP

We test CSR-Adaptive on twenty different input matrices
that have been studied in previous works [3, 26]. These
sparse matrices, shown in Table I, demonstrate varied char-
acteristics and the average NNZ/row ranged from 3 - 2634.

We implemented both CSR-Stream and CSR-Adaptive
within the OpenCLTM version of the SpMV sample in
the Feb., 2014, version of the Scalable HeterOgeneous
Computing (SHOC) suite [6]. This allowed us to directly
compare our algorithms against the SHOC versions of CSR-
Vector, CSR-Scalar, and ELLPACK. We slightly modified
the implementation of CSR-Vector in order to increase the
performance of its parallel reduction step. We then also use
this as the vector algorithm in CSR-Adaptive.

In addition to the SpMV implementations in SHOC, we
also compare the performance of CSR-Adaptive against
clSpMV v0.1 [26] and ViennaCL v1.5.2 [25]. clSpMV
supports a number of different specialized matrix storage
formats: CSR (with both Scalar and Vector algorithms),
BCSR, DIA, BDIA, ELLPACK, SELL, BELL, SBELL, and

Table I
OVERVIEW OF SPARSE MATRICES USED FOR EVALUATION

Name Size Non-Zeroes (NNZ) NNZ / Row
Dense2 2K * 2K 4,000,000 2,000
Protein 36K * 36K 4,344,765 119
FEM/Spheres 83K * 83K 6,010,480 72
FEM/Cantilever 62K * 62K 4,007,383 64
Wind Tunnel1 218K * 218K 11,634,424 53
FEM/Harbor1 47K * 47K 2,374,001 51
QCD2 49K * 49K 1,916,928 39
FEM/Ship1 141K * 141K 7,813,404 55
Economics 207K * 207K 1,273,389 6
Epidemiology 526K * 526K 2,100,225 4
FEM/Accelerator 121K * 121K 2,624,331 22
Circuit 171K * 171K 958,936 6
Webbase 1,000K * 1,000K 3,105,536 3
LP 4K * 1,097K 11,284,032 2,634
circuit5M 5,558K * 5,558K 59,524,291 11
eu-2005 863K * 863K 19,235,140 22
Ga41As41H72 268K * 268K 18,488,476 69
in-2004 1,383K * 1,383K 16,917,053 12
mip1 66K * 66K 10,352,819 156
Si41Ge41H72 186K * 186K 15,011,265 81

COO. We compare against all of these but combine the
results into a single data point, “clSpMV Best Single,”
to improve readability. For each matrix, we run all ten
algorithms but only display the fastest in this bar. clSpMV
also supports a custom cocktail format, which splits the
matrix into blocks and applies different formats to each
block based on hardware-specific heuristics tuned by an
offline training run. Because clSpMV only has the capability
for single-precision computation, we perform all of our tests
(unless otherwise noted) using single-precision floating point
values.

ViennaCL supports three different versions of CSR-Scalar,
two of which zero-pad the data structure so that rows contain
multiples of four or eight values. This allows for faster
scalar loads, but could also result in significant storage
overheads. Nonetheless, we compare against all three in
addition to the other three formats supported by ViennaCL:
COO, ELLPACK, and the ELLPACK+COO HYB format.
Like clSpMV, we present the best of the ViennaCL results
in a single bar labelled “ViennaCL Best.”

We performed all of our experiments on an
AMD FireProTM W9100 GPU with ECC disabled. Table II
details its important characteristics. The host machine,
which we also use to measure matrix format conversion
times, uses an AMD A10-7850K APU with 32 GB of
DDR3-2133 SDRAM. The operating system was a 64-bit
version of CentOS 6.4, kernel version 2.6.32-358.23.2. The

1The Matrix Market files for these matrices contain elements whose value
are zero. The input functions for SHOC, clSpMV, and ViennaCL treat these
as non-zero values and thus perform some needless SpMV computation.
We do the same for consistency with previous works, but this would be
accounted for in production code.

2This matrix stores complex numbers, but only the real portions were
used in our tests. SHOC, clSpMV, and ViennaCL do the same.

Table II
OVERVIEW OF AN AMD FIREPROTM W9100 GPU

Compute Units (CU) 44
Processing Elements 2816
Core Clock Rate 930 MHz
GDDR5 Memory Clock Rate 1250 MHz
Memory Size 16 GB
Peak Memory Bandwidth 320 GB/s
L2 Cache Size 1024 KB
L1 Cache Size per CU 16 KB
Local Data Store (LDS) per CU 64 KB
Single Precision Peak Performance 5238 GFLOPS
Double Precision Peak Performance 2619 GFLOPS

GPU was programmed using OpenCLTM 1.2 [19] with the
AMD APP SDK v2.9 and AMD FirePro driver v14.20
Beta. We used 256 threads per workgroup, and all of the
performance numbers are an average of 100 runs.

V. EVALUATION

In this section, we first tune the row block size and then
present performance results of CSR-Adaptive compared to
prior SpMV implementations on the GPU using synthetically
generated and unstructured sparse matrices.

A. Tuning Block-size
As mentioned in Section III, CSR-Adaptive processes a

statically fixed NNZ per workgroup. The number of values,
the “block size,” will affect the performance due to changing
the parallelism in the kernel and latency hiding due to
LDS capacity constraints. In this section, we empirically
determine the best NNZ to be included in each block and
use that value for the number of entries assigned to the LDS.

Figure 5 illustrates the harmonic mean of the single-
precision SpMV performance for the matrices listed in Ta-
ble I for block sizes ranging from 512− 8192. These values
are normalized to the block size with best performance. We
did not use block sizes greater than 8192 because our GPU
only allows up to 32 KB of local data storage per workgroup.
As shown in the figure, we find that processing blocks of
1024 non-zero values performs the best.

Using a block-size of 1024 results in enough threads
in flight to efficiently hide memory latency on the GPU,
as well as sufficiently utilize LDS to improve memory
bandwidth. 1024 non-zero values utilize 4 KB of local data-
store in single-precision, which allows 16 workgroups to
be simultaneously executed. Larger block sizes reduce this
capability. In contrast, smaller blocks inefficiently use the
LDS, and threads access data from global memory most of
the time, leading to poor memory bandwidth utilization.

After tuning the block-size, we also determined the num-
ber of rows within a block that would serve as the cutoff
point between the CSR-Stream and CSR-Vector algorithm
(“SMALL VALUE” in Algorithm 4). We chose this value
to be two. In other words, if a row block contains one or
two rows, CSR-Vector will be used, while a row block with
more rows will use CSR-Stream.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
51
2

10
24

15
36

20
48

25
60

30
72

35
84

40
96

46
08

51
20

56
32

61
44

66
56

71
68

76
80

81
92

87
04

Re
la
tiv

e
Pe
rf
or
m
an

ce

Block Size

Figure 5. Performance of CSR-Adaptive with varying number of non-zero
values processed in a workgroup.

0
10
20
30
40
50
60
70
80

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

G
FL
O
PS

NNZ/Row
CSR‐Vector ELLPACK CSR‐Adaptive

Figure 6. SpMV performance on dense matrices with a fixed number of
non-zero values per row and variable number of rows.

B. Synthetically Generated Matrices

We explore the performance of various SpMV implemen-
tations using a collection of synthetically generated dense
matrices stored in different sparse storage formats. These
matrices have the same NNZ, 224 ≈ 16.7 million, but have
different number of rows and thus different NNZ/row. Each
row has the same NNZ as all other rows: the matrices
range from one row with 16 million non-zero values to
16 million rows with one non-zero value per row. This
is the same experiment used to generate Figure 3. In this
section, we look at three different SpMV implementations -
(i) CSR-Vector, (ii) ELLPACK, and (iii) CSR-Adaptive.
Figure 6 demonstrates how these implementations perform
with varying number of rows and NNZ/row.

As also discussed in Section II-B, Figure 6 shows that the
performance of SpMV is highly dependent on the matrix
characteristics. CSR-Vector performs best when there are
enough rows in the matrix to launch sufficient wavefronts
to fully occupy the GPU and when the rows have enough
non-zero values to keep the threads busy. CSR-Vector is
inefficient when either of these conditions are not true, as
demonstrated by the performance when the number of non-
zero values per row is >= 256K and <= 256, respectively.

ELLPACK performance peaks when the matrix consists
of enough rows to maximize the number of threads active
on a GPU. This is slightly different than CSR-Vector, since
ELLPACK needs enough rows to keep all threads active,
rather than workgroups. As such, ELLPACK needs more

0

10

20

30

40

50

60

70

80

90
De

ns
e2

Pr
ot
ei
n

FE
M
/S
ph

er
es

FE
M
/C
an
til
ev
er

W
in
d
Tu
nn

el

FE
M
/H
ar
bo

r

Q
CD

FE
M
/S
hi
p

Ec
on

om
ic
s

Ep
id
em

io
lo
gy

FE
M
/A
cc
el
er
at
or

Ci
rc
ui
t

W
eb

ba
se LP

ci
rc
ui
t5
M

eu
‐2
00

5

G
a4
1A

s4
1H

72

in
‐2
00
4

m
ip
1

Si
41

G
e4
1H

72

H
ar
. M

ea
n

G
FL
O
PS

 (S
in
gl
e
Pr
ec
is
io
n)

CSR‐Scalar CSR‐Vector ELLPACK ViennaCL Best clSpMV Best Single clSpMV Cocktail CSR‐Adaptive110.7

Figure 7. Performance of various implementations of SpMV in single precision using unstructured matrices.

rows to reach good performance. This is why the perfor-
mance of ELLPACK degrades for long rows with >= 1K
non-zero values. In these tests, ELLPACK coalesces memory
accesses well and yields good performance for matrices with
few NNZ/row. For these benchmarks, CSR-Vector performs
better for long rows and ELLPACK is better for short rows.
However, neither of these implementations is optimal for a
spectrum of non-zero values per row.

CSR-Adaptive bridges the gap and matches the perfor-
mance of CSR-Vector for long rows since it uses the same
algorithm. For short rows, however, it matches the perfor-
mance of ELLPACK by using the CSR-Stream algorithm.
In this case, both algorithms produce the same style of fast
coalesced memory accesses and become DRAM bandwidth
bound. For 512 NNZ/row, CSR-Adaptive performs better
than either of the other implementations.

C. Unstructured Matrices
In this section, we compare performance of CSR-Adaptive

against the SHOC suite’s CSR and ELLPACK implemen-
tations, the six algorithms supported by ViennaCL (CSR-
Scalar, CSR-Scalar-4, CSR-Scalar-8, COO, ELLPACK,
HYB), the ten individual algorithms used by clSpMV (CSR-
Scalar, CSR-Vector, BCSR, DIA, BDIA, ELLPACK, SELL,
BELL, SBELL, COO), and the clSpMV Cocktail format.
For each matrix, the best of the six ViennaCL algorithms
is denoted as “ViennaCL Best” and the best of the clSpMV
algorithms is denoted as “clSpMV Best Single”.

Figure 7 illustrates the performance of various imple-
mentations in single precision on the collection of un-
structured matrices listed in Table I. There is no single
format which is best for all the matrices. However, CSR-
Adaptive often equals or outperforms all other implemen-
tations and is the best individual format on average. The
major exceptions to this are Dense2, Protein, mip1
and FEM/Cantilever.
FEM/Cantilever is a strongly diagonal matrix and

benefits from the significant storage reduction offered by the

0

5

10

15

20

25

30

35

CSR‐Scalar CSR‐Vector ELLPACK ViennaCL
Best

clSpMV
Cocktail

clSpMV
Best Single

CS
R‐
Ad

ap
tiv

e
Sp
ee
du

p

Figure 8. Average speedup of CSR-Adaptive over other implementations.

specialized DIA format (this is the only matrix we tested that
could successfully use the DIA format). Dense2 and mip1
are best served by the BCSR storage format because they
can easily be blocked without requiring a great deal of zero-
padding. This reduces the amount of data that must be read
per non-zero value, yielding better performance. Protein
performs best with SBELL for similar reasons.

Even though these specialized format work well for
particular matrices, there are cases when CSR-Adaptive
achieves a speedups of 5-8× over the best of the ten
non-Cocktail clSpMV algorithms and the six ViennaCL
algorithms, as exemplified by Webbase, eu-2005 and
in-2004. Figure 8 presents the average speedup achieved
by CSR-Adaptive over other SpMV implementations, which
range from 34× for CSR-Scalar, to 2.3× for both clSpMV
Cocktail and Best Single.

Figure 9 compares the performance of CSR-Adaptive in
single and double precision. From the figure, we note that on
an average the double precision performance is 30% slower
than single precision. As shown in Table II, the double
precision throughput of the AMD FireProTM W9100 GPU
is 1/2 its single precision throughput. Therefore, only a 30%
slowdown corroborates that performance of SpMV is limited
to available bandwidth rather than computational throughput.

0
10
20
30
40
50
60
70
80

De
ns
e2

Pr
ot
ei
n

FE
M
/S
ph

er
es

FE
M
/C
an
til
ev
er

W
in
d
Tu
nn

el

FE
M
/H

ar
bo

r

Q
CD

FE
M
/S
hi
p

Ec
on

om
ic
s

Ep
id
em

io
lo
gy

FE
M
/A
cc
el
er
at
or

Ci
rc
ui
t

W
eb

ba
se LP

ci
rc
ui
t5
M

eu
‐2
00

5

G
a4
1A

s4
1H

72

in
‐2
00
4

m
ip
1

Si
41

G
e4
1H

72

Ha
r.
M
ea
n

G
FL
O
PS

Single Precision Double Precision

Figure 9. Performance of CSR-Adaptive in single and double precision
on AMD FireProTM W9100 GPU.

Memory Bandwidth: Figure 10 depicts the theoretical
memory bandwidth achieved by CSR-Adaptive compared
to previous CSR-based SpMV implementations and ELL-
PACK. The CSR bandwidth is derived using the formula for
total bytes transferred, as presented by Gropp et al., divided
by the measured runtime [12]. This formula assumes that the
CSR structure and vector are loaded from DRAM, but that
any subsequent accesses to the vector values are retrieved
from the cache. Essentially, it assumes a cache of infinite
size that only takes demand misses. The ELLPACK values
use a similar formula that assume an infinite cache and that
NNZ values must be loaded from each of the data and
indices arrays (which discounts needless loads of padding
zeroes). We do not compare against other storage formats
because they are difficult to theoretically characterize.

If the idealizations (infinite cache size, no padding values)
hold true, the bandwidths shown in Figure 10 should equal
the GPU’s stream bandwidth. The SHOC DeviceMemory
program, a good approximation of a GPU stream test, shows
that our GPU can transfer about 280 GB/s from its DRAM.
Due to protocol overheads and other inefficiencies, this test
fails to reach the peak theoretical bandwidth of 320 GB/s.
Figure 10 shows that, while no graph perfectly meets this
idealism, CSR-Adaptive can greatly increase the achievable
bandwidth compared to previous CSR-based algorithms. The
average bandwidth achieved by CSR-Adaptive is 189 GB/s,
roughly 68% of the maximum stream bandwidth. This is an
order of magnitude greater than the other implementations.

Matrices such as LP and circuit5M fall further below
the card’s maximum achievable bandwidth due to other
inefficiencies in the memory system. For example, accessing
a single 4-byte vector entry first requires loading a 64-byte
cache line from memory. This load, in a theoretical model
with an infinite-sized cache, would only require four or zero
bytes to be loaded from memory or cache, respectively.

Storage Format Generation: In addition to achieving
better performance than other implementations, another im-
portant benefit of CSR-Adaptive is that it maintains the
CSR data structure, which is commonly used and relatively

fast to generate. SpMV is often used in iterative algorithms
where the matrix is generated once and SpMV is performed
numerous times. If the data structure generation time is low
and the iteration count is high, the cost of generating the
matrix can be amortized. However, many of these algorithms
are input dependent; they may only run a small number
of iterations, making it difficult to amortize the matrix
generation overhead.

Figure 11 shows the overhead of converting from the
simple COO format to a number of other formats. Because
CSR is a common format, and most algorithms likely
strive to amortize the CSR generation cost, we normalize
all of this data to the time taken to convert from COO
to CSR. Data structure generation is generally considered
to be amortized when it takes a small fraction of the
total time spent in SpMV iterations. Let us assume that
N SpMV iterations are required to amortize the cost of
CSR generation. Amortizing the generation of a complex
format, therefore, will require Y × N SpMV iterations,
assuming the SpMV kernel runtimes do not change. This
multiplicative factor, Y , is the ratio of the generation times
of a complex format and CSR and is shown in Figure 11. The
figure demonstrates that generating the row-block structure
for CSR-Adaptive is extremely lightweight compared to
generating other complex formats. Hence, CSR-Adaptive is
especially useful for problems that iterate few times.

A concrete example is the matrix mip1. In this case,
BCSR is 38% faster than CSR-Adaptive. However, the
BCSR data structure takes 18× longer to generate than the
row-block values needed for CSR-Adaptive. In this case, it
actually takes BCSR 25× as many iterations compared to
CSR-Adaptive to amortize its data structure generation cost.
This means that BCSR is only beneficial if the algorithm
using this graph iterates a large number of times. For most
other matrices, in contrast, CSR-Adaptive takes less time to
generate the data structure and operates faster, making it the
better choice regardless of iteration count.

VI. RELATED WORK

Due to its importance in the computational sciences,
there exists a great deal of literature on accelerating SpMV.
Williams et al. study SpMV across a number of modern
parallel CPU architectures and found that the best perfor-
mance came from tuning the algorithm and data structures
to match the underlying hardware [32]. Tools like OSKI [30]
attempt to take advantage of this insight by automatically
optimizing the computation in order to increase cache hit
rates and reduce bandwidth demands.

Because of the copious DRAM bandwidth available to
GPUs, there has been significant interest in using these chips
to accelerate SpMV. Garland initially described CSR-Scalar
with a code example and an early variant of CSR-Vector
at a higher level [10]. That work presented no performance
values, but mentions the possibility of using the scratchpad

0

50

100

150

200

250

300

De
ns
e2

Pr
ot
ei
n

FE
M
/S
ph

er
es

FE
M
/C
an
til
ev
er

W
in
d
Tu

nn
el

FE
M
/H
ar
bo

r

Q
CD

FE
M
/S
hi
p

Ec
on

om
ic
s

Ep
id
em

io
lo
gy

FE
M
/A
cc
el
er
at
or

Ci
rc
ui
t

W
eb

ba
se LP

ci
rc
ui
t5
M

eu
‐2
00
5

G
a4
1A

s4
1H

72

in
‐2
00
4

m
ip
1

Si
41

G
e4
1H

72

Ha
r.
M
ea
n

G
B/
s

CSR‐Scalar CSR‐Vector ELLPACK CSR‐Adaptive

Figure 10. Theoretical memory bandwidth achieved by various CSR-based SpMV implementations on AMD FireProTM W9100 GPU assuming that all
vector accesses are cached.

1
2
4
8

16
32
64
128
256
512

1024

D
e
n
se
2

P
ro
te
in

FE
M
/S
p
h
er
es

FE
M
/C
an
ti
le
ve
r

W
in
d
 T
u
n
n
el

FE
M
/H
ar
b
o
r

Q
C
D

FE
M
/S
h
ip

Ec
o
n
o
m
ic
s

Ep
id
em

io
lo
gy

FE
M
/A
cc
e
le
ra
to
r

C
ir
cu
it

W
eb
b
as
e LP

ci
rc
u
it
5
M

eu
‐2
0
05

G
a4
1
A
s4
1
H
72

in
‐2
0
0
4

m
ip
1

Si
4
1G

e
41
H
72

G
e

n
er

a
o

n

m
e

vs
. C

O
O
→

C
SR Row Blocking ELLPACK BCSR Cocktail

Figure 11. Cost of generating sparse matrix data structures when starting in the COO format. These costs are normalized to converting from COO to
CSR. Note that ELLPACK could not be used for Webbase, circuit5m, eu-2005, in-2004 or mip1, so these numbers bars are not shown.
Similarly, BCSR could not hold circuit5M.

to manually cache elements of the vector. Nickolls et al.
demonstrated the benefits of this when the entries in a row
are near to each other [21]. Garland further mentions that
the scratchpad can be used to hold contiguous chunks of
memory (akin to CSR-Stream), but provides no details and
does not discuss how to handle long or variable-length rows.

Bell and Garland presented perhaps the best-known work
on GPU-based SpMV [3]. They describe CSR-Scalar and
CSR-Vector in depth and then discuss the limitations of
Garland’s previous proposal to use the scratchpad to hold
vector values for CSR-Scalar. They come to the conclusion
that the best GPU performance depends on the storage
format, and they advocate for the column-major ELLPACK
or a hybrid of ELLPACK and COO. These conclusions
carried forward to the cuSPARSE [20] and Cusp [4] libraries,
which both rely heavily on this hybrid format for SpMV.

Numerous works have proposed various other GPU-
optimized storage formats, including blocked and sliced
versions of CSR, ELLPACK, and COO [16, 23, 28]. This
has in turn led to the introduction of multi-format libraries
with auto-tuning frameworks to dynamically pick the storage
format which yields the best performance [5, 18, 26]. Spe-

cialized storage formats provide definitive advantages (e.g.,
DIA for strongly diagonal matrices). However, as described
in Section II-D, the requirement to change from CSR in
general presents difficulties.

There is also a selection of work dedicated to accelerating
CSR-based SpMV on GPUs. Baskaran and Bordawekar dis-
cuss a number of changes to CSR-Vector and show a nearly
2× performance increase by assuring access alignment and
by caching values [2]. Some of this performance comes from
zero-padding the CSR, which we tried to avoid in order to
reduce storage requirements. Reguly and Giles describe an
extension to CSR-Scalar that uses a fixed number of threads
per row in order to better coalesce the loads [24]. They
pick this number statically, which can result in reduced
performance compared to CSR-Vector for long rows and
underutilized execution units for short ones.

Gropp and Guo showed how to extend CSR-Vector to
better work on very long rows [13]. If they find very long
rows in a matrix, they statically allocate more than one
workgroup per row. At the end, workgroups that share the
same row communicate amongst each other to finalize their
reduction. This is not a portable technique, as OpenCLTM 1.x

does not guarantee coherence between workgroups. While it
may work on some devices, two workgroups within a single
kernel are not guaranteed to be able to communicate with
one another, even through atomics. Nonetheless, this is a
promising technique, and may increase the performance of
SpMV on matrices such as LP.

Feng et al. show another algorithm that loads more than
one row per workgroup, but they require changing the CSR
data structure by reordering and sorting the rows [9].

Koza et al. show an algorithm similar to CSR-Stream [15].
They statically allocate a number of rows, called a strip, to
each workgroup. Strips are then streamed into the scratchpad
before a parallel reduction step. Long rows cannot utilize the
GPU’s parallelism unless the number of LDS entries per row
is greater than or equal to the wavefront width. Otherwise,
two parallel threads that both need to write to the same LDS
location would need to synchronize to avoid a data race.
However, using many LDS entries per row can result in poor
performance on matrices with short rows, as this limits the
number of active workgroups while also resulting in many
wasted loads. These limitations mean their algorithm is often
slower than hybrid ELLPACK+COO for matrices with short
rows. High-level comparisons with their reported results
imply that CSR-Adaptive is much more effective for graphs
with short rows like Webbase and Epidemiology. They
must also store NNZ entries containing information about
which row within a strip each non-zero value belongs. They
hide this in unused upper bits of the values in the cols
array, but this is not a portable solution.

A recent work that uses a new storage format, yaSpMV,
showed very promising performance results on GPUs by
using a block-compressed COO [33]. Besides having sig-
nificant overhead for data structure generation (we found it
was higher than the conversions shown in Figure 11), the
authors also rely on non-portable communication between
workgroups [34]. Their code deadlocks on modern AMD
GPUs due to this. One workaround would be to launch
a different kernel for the inter-workgroup reduction, but
this will negatively affect performance without the use of
low-overhead work queues, such as those specified in the
Heterogeneous System Architecture (HSA) [17].

VII. FUTURE RESEARCH AND CONCLUSIONS

SpMV is a frequently used linear algebra primitive. CSR
is perhaps the most popular format to store sparse matrices.
Conventional wisdom says that other storage formats are
needed to achieve good SpMV performance on GPUs. In
this paper, we introduce a novel CSR-Stream algorithm to
optimize SpMV performance for matrices where existing
CSR implementations have exhibited poor performance.
We also describe CSR-Adaptive, which adaptively switches
between using CSR-Stream for rows with relatively few non-
zero values and the traditional CSR-Vector for rows with a
large number of non-zero values.

Our implementation eliminates both the space and time
overheads incurred by SpMV implementations that use other
formats, while at the same time, demonstrating comparable
or better performance. CSR-Adaptive achieves an average
speedup of 14.7× over existing CSR-based SpMV im-
plementations and a speedup of 2.3× over the clSpMV
Cocktail, which uses a variety of different formats. It does
this while also avoiding the overhead of transforming the
sparse matrix to those formats.

The GPU-accelerated CSR-based SpMV described here
opens a number of interesting research questions. It is now
possible to attain good SpMV performance on both CPUs
and GPUs using the same underlying storage format and data
structures. This is particularly interesting for heterogeneous
processors that have both types of cores [22]. Previously,
switching between the CPU and GPU would require a costly
data structure change. The removal of this constraint will
enable research to properly balance linear algebra workloads
across cores for power, performance, and energy.

We also believe that heterogeneous processors will help
alleviate some of the concerns raised in the literature about
the viability of GPU-based SpMV [7, 29]. GPUs on HSA-
complaint processors, for instance, will no longer have
the memory capacity constraints or interconnect bandwidth
limitations of discrete GPUs, opening up more applications-
level research into the best places to use GPU-based SpMV.

ACKNOWLEDGEMENTS

We thank Jonathan Gallmeier for providing the impetus
for this work. Thanks also to Arka Basu, Shuai Che, and
the anonymous reviewers for their feedback.

AMD, the AMD Arrow logo, FirePro and combinations
thereof are trademarks of Advanced Micro Devices, Inc.
Other product names used in this publication are for iden-
tification purposes only and may be trademarks of their
respective companies. OpenCL is a trademark of Apple, Inc.
used by permission by Khronos.

REFERENCES

[1] AMD Accelerated Parallel Processing OpenCLTM Pro-
gramming Guide, Nov. 2013.

[2] M. M. Baskaran and R. Bordawekar, “Optimizing
Sparse Matrix-Vector Multiplication on GPUs,” IBM
Research, Tech. Rep., 2009.

[3] N. Bell and M. Garland, “Implementing Sparse Matrix-
vector Multiplication on Throughput-oriented Proces-
sors,” in Proc. of the Conference on High Performance
Computing, Networking, Storage and Analysis (SC),
2009.

[4] ——, “Cusp: Generic parallel algorithms for sparse
matrix and graph computations,” 2012, version 0.3.0.
[Online]. Available: http://cusp-library.googlecode.com

[5] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-
driven Autotuning of Sparse Matrix-Vector Multiply

http://cusp-library.googlecode.com

on GPUs,” in Proc. of the Symp. on Principles and
Practice of Parallel Programming (PPoPP), 2010.

[6] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C.
Roth, K. Spafford, V. Tipparaju, and J. S. Vetter, “The
Scalable Heterogeneous Computing (SHOC) Bench-
mark Suite,” in Proc. of the Workshop on General-
Purpose Computing on Graphics Processing Units
(GPGPU), 2010.

[7] J. D. Davis and E. S. Chung, “SpMV: A Memory-
Bound Application on the GPU Stuck Between a Rock
and a Hard Place,” Microsoft Research, Tech. Rep.,
2012.

[8] I. S. Duff, M. A. Heroux, and R. Pozo, “An Overview
of the Sparse Basic Linear Algebra Subprograms:
The New Standard from the BLAS Technical Forum,”
Trans. on Mathematical Software, vol. 28, no. 2, pp.
239–267, 2002.

[9] X. Feng, H. Jin, R. Zheng, K. Hu, J. Zeng, and Z. Shao,
“Optimization of Sparse Matrix-Vector Multiplication
with Variant CSR on GPUs,” in Proc. of the Int’l Conf.
on Parallel and Distributed Systems (ICPADS), 2011.

[10] M. Garland, “Sparse Matrix Computations on Many-
core GPU’s,” in Proc. of Design Automation Conf.
(DAC), 2008.

[11] J. R. Gilbert, S. Reinhardt, and V. B. Shah, “High-
performance Graph Algorithms from Parallel Sparse
Matrices,” in Proc. of the Int’l Workshop on Applied
Parallel Computing, 2006.

[12] W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F.
Smith, “Toward Realistic Performance Bounds for Im-
plicit CFD Codes,” in Proc. of the Int’l Parallel Com-
putational Fluid Dynamics Conf. (PARCFD), 1999.

[13] D. Guo and W. Gropp, “Adaptive Thread Distributions
for SpMV on a GPU,” in Proc. of the Extreme Scaling
Workshop, 2012.

[14] E.-J. Im and K. Yelick, “Optimization of Sparse Matrix
Kernels for Data Mining,” in Proc. of the Workshop on
Text Mining, 2001.

[15] Z. Koza, M. Matyka, S. Szkoda, and Ł. Mirosław,
“Compressed Multiple-Row Storage Format for Sparse
Matrices on Graphics Processing Units,” SIAM Journal
on Scientific Computing, vol. 32, no. 2, pp. C219–
C239, 2014.

[16] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and
A. R. Bishop, “A Unified Sparse Matrix Data Format
for Modern Processors with Wide SIMD Units,” CoRR,
vol. abs/1307.6209, 2014.

[17] G. Kyriazis, “Heterogeneous System Architecture: A
Technical Review,” HSA Foundation, Tech. Rep., 2012.

[18] A. Monakov, A. Lokhmotov, and A. Avetisyan, “Auto-
matically Tuning Sparse Matrix-Vector Multiplication
for GPU Architectures,” in Proc. of the Int’l Conf.
on High Performance Embedded Architectures and
Compilers (HiPEAC), 2010.

[19] A. Munshi, “The OpenCL Specification,” 2012, http:
//www.khronos.org/registry/cl/specs/opencl-1.2.pdf.

[20] M. Naumov, L. S. Chien, P. Vandermersch, and U. Ka-
pasi, “CUSPARSE Library.” Presented at the 2010
GPU Technology Conference, 2010.

[21] J. Nickolls, I. Buck, M. Garland, and K. Skadron,
“Scalable Parallel Programming with CUDA,” Queue,
vol. 6, no. 2, pp. 40–53, 2008.

[22] S. Nussbaum, “AMD “Trinity” APU,” in Hot Chips,
2012.

[23] T. Oberhuber, A. Suzuki, and J. Vacata, “New Row-
grouped CSR format for storing the sparse matrices
on GPU with implementation in CUDA,” CoRR, vol.
abs/1012.2270, 2010.

[24] I. Reguly and M. Giles, “Efficient Sparse Matrix-
Vector Multiplication on Cache-based GPUs,” in Proc.
of Innovative Parallel Computing (InPar), 2012.

[25] K. Rupp, F. Rudolf, and J. Weinbub, “ViennaCL -
A High Level Linear Algebra Library for GPUs and
Multi-Core CPUs,” in Int’l Workshop on GPUs and
Scientific Applications (GPUScA), 2010.

[26] B.-Y. Su and K. Keutzer, “clSpMV: A Cross-Platform
OpenCL SpMV Framework on GPUs,” in Proc. of the
Int’l Conf. on Supercomputing (ICS), 2012.

[27] L. N. Trefethen and D. Bau, III, Numerical Linear
Algebra. Society for Industrial and Applied Math-
ematics, 1997.

[28] F. Vázquez, J.-J. Fernández, and E. M. Garzón, “A
New Approach for Sparse Matrix Vector Product on
NVIDIA GPUs,” Concurrency and Computation: Prac-
tice and Experience, vol. 23, no. 8, pp. 815–826, 2011.

[29] R. Vuduc, A. Chandramowlishwaran, J. Choi,
M. Guney, and A. Shringarpure, “On the Limits of
GPU Acceleration,” in Proc. of the USENIX Conf. on
Hot Topics in Parallelism (HotPar), 2010.

[30] R. Vuduc, J. W. Demmel, and K. A. Yelick, “OSKI: A
library of automatically tuned sparse matrix kernels,”
in Proc. SciDAC, J. Physics: Conf. Ser., 2005.

[31] R. W. Vuduc, “Automatic Performance Tuning of
Sparse Matrix Kernels,” Ph.D. dissertation, University
of California, Berkeley, 2003.

[32] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick,
and J. Demmel, “Optimization of Sparse Matrix-Vector
Multiplication on Emerging Multicore Platforms,” in
Proc. of the Conference on High Performance Com-
puting, Networking, Storage and Analysis (SC), 2007.

[33] S. Yan, C. Li, Y. Zhang, and H. Zhou, “yaSpMV:
Yet Another SpMV Framework on GPUs,” in Proc.
of the Symp. on Principles and Practice of Parallel
Programming (PPoPP), 2014.

[34] S. Yan, G. Long, and Y. Zhang, “StreamScan: Fast
Scan Algorithms for GPUs without Global Barrier
Synchronization,” in Proc. of the Symp. on Principles
and Practice of Parallel Programming (PPoPP), 2012.

http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

	Introduction
	Background
	Sparse Matrix-Vector Multiplication
	Graphics Processing Units
	Previous CSR-based GPU Algorithms
	Other Sparse Matrix Formats

	A Better CSR-based SpMV for GPUs
	CSR SpMV on Short Sparse Rows
	Variable Number of Rows per Workgroup
	Optimizing Very Long Rows

	Experimental Setup
	Evaluation
	Tuning Block-size
	Synthetically Generated Matrices
	Unstructured Matrices

	Related Work
	Future Research and Conclusions

