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Abstract.
In this paper, we design an inexact primal-dual infeasible path-following algorithm for convex
quadratic programming over symmetric cones. Our algorithm and its polynomial iteration com-
plexity analysis give a unified treatment for a number of previous algorithms and their complexity
analysis. In particular, our algorithm and analysis includes the one designed for linear semidefinite
programming in “Math. Prog. 99 (2004), pp. 261–282”. Under a mild condition on the inexactness
of the search direction at each interior-point iteration, we show that the algorithm can find an ϵ-
approximate solution in O(n2 log(1/ϵ)) iterations, where n is the rank of the underlying Euclidean
Jordan algebra.
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1. Introduction

Our purpose in this paper is to propose (and establish
the polynomial iteration complexity for) an inexact primal-
dual path-following interior-point method (IPM) for a con-
vex quadratic programming (CQP) problem over the prod-
uct of cones of symmetric positive semidefinite matrices,
second-order cones, and nonnegative orthants. As these
cones are symmetric cones (which are cones of squares of
some Euclidean Jordan algebras), it is convenient to study
the problem in a unified manner under the framework of
Euclidean Jordan algebras, and this is the framework we
will adopt in this paper.

Recall that a Jordan algebra J is a finite dimensional
vector space (over the field of real or complex numbers)
endowed with a bilinear map ◦ : J × J → J satisfying the
following properties for all x, y ∈ J : (i) x ◦ y = y ◦ x, (ii)
x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) where x2 = x ◦ x. Moreover,
(J, ◦) is called an Euclidean Jordan algebra if there exists
a symmetric positive definite bilinear form ⟨·, ·⟩ on J which
is associative, i.e., ⟨x ◦ y, z⟩ = ⟨x, y ◦ z⟩ for all x, y, z ∈ J .
In other words, J has an inner product which is associative.
In this paper, our presentation of the theory on Euclidean
Jordan algebras will follow the book by Faraut and Korányi
[5].

Let J be the product of p Euclidean Jordan algebras
(Ji, ◦) with the identity element ei, i.e., xi ◦ei = xi for all
xi ∈ Ji. Thus we have J = {x = (xi)

p
i=1 : xi ∈ Ji, i =

1, . . . , p} with x ◦ y = (xi ◦ yi)
p
i=1 for all x,y ∈ J , and

the identity element of J is given by e = (ei)
p
i=1. The

associative inner product on J is induced naturally from

the associative inner products of the constituent Euclidean
Jordan algebras, i.e, ⟨x, y⟩ =

∑p
i=1⟨xi, yi⟩ for all x,y ∈

J . We let K be the cone of squares of J , i.e., K = {x2 :
x ∈ J }. Note that as we shall see in the next section,
K is a symmetric cone. That is, K is a closed, pointed
convex cone that is self-dual and its automorphism group
acts transitively on its interior.
We consider the following CQP problem over symmetric

cones:

(P ) min f(x) := 1
2 ⟨x, H(x)⟩+ ⟨c, x⟩

s.t. A(x) = b, x ∈ K,

where c ∈ J and b ∈ Rm are given data, A : J → Rm is
a given linear map, and H is a given self-adjoint positive
semidefinite (with respect to ⟨·, ·⟩) linear operator on J .
Note that the inner product ⟨·, ·⟩ will be defined explicitly
in (2). The dual problem of (P ) is given by

(D) max − 1
2 ⟨x, H(x)⟩+ bT y

s.t. AT y + z = ∇f(x) = H(x) + c, z ∈ K

where AT denotes the adjoint of A. Throughout the paper,
we made the following assumptions.
Assumption 1. The problems (P ) and (D) are strictly
feasible, i.e., there exists (x, y, z) satisfying the linear con-
straints in (P ) and (D) and x,z ∈ intK, where intK de-
notes the interior of K.
Assumption 2. The linear map A is surjective, which
implies that AAT is non-singular, and the pseudo inverse
of A is well defined as A+ = AT (AAT )−1.
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The problem (P ) includes the linear symmetric cone pro-
gramming problems considered in [21] as a special case
when H = 0. In particular, it includes linear semidef-
inite programming (SDP) problems when K is the cone
of symmetric positive semidefinite matrices, as well as the
following linearly constrained convex quadratic program-

ming (LCCQP): min
{

1
2x

THx + cTx : Ax = b, x ∈ Rn
+

}
,

where H is a given symmetric positive semidefinite ma-
trix. The design and iteration complexity analysis of (ex-
act) primal-dual IPMs for linear SDP problems have been
studied intensively in the last two decades, and the develop-
ment has been described in detail in the papers [19, 15, 21]
and the references therein. The word “exact” here means
that at each interior-point iteration, the search direction
∆w := (∆x,∆y,∆z) is computed exactly from the defin-
ing Newton-type linear system of equations B∆w = h.
In contrast, in inexact IPMs, the search direction is com-
puted only approximately and the required accuracy in the
residual vector h−B∆w is typically dependent on the cur-
rent complementarity gap, and primal and dual infeasi-
bilities. The main motivation for studying inexact IPMs
comes from solving large problems, where the linear sys-
tem of equations at each iteration is too large to be solved
by a direct solver based on matrix factorizations but must
be solved by an iterative linear solver such as the conju-
gate gradient method. The main advantage of an iterative
solver is that only matrix-vector products are needed and
it does not require computing and storing the entire coef-
ficient matrix of the linear system. But for computational
efficiency, the search direction is generally inexact in that
it is not computed to high accuracy (an exact solution is
deemed to be of machine accuracy). In order to guaran-
tee the global polynomial convergence of an inexact IPM,
the inexactness in the search direction must be controlled
appropriately. That is, it must be accurate enough for the
polynomial convergence to hold but at the same time the
accuracy required must not be too stringent so that the
iterative solver does not take unnecessarily large number
of steps to compute the direction.

The application of Euclidean Jordan algebras as the ba-
sic toolbox for analyzing complexity proofs of (exact) IPMs
for linear symmetric cone programming was started by Fay-
busovich [6] who extended earlier work of Nesterov and
Todd, and Kojima et al. Tsuchiya [28] latter also used
Jordan algebraic techniques to analyze primal-dual IPMs
based on those of [17] for linear second-order cone program-
ming. In [18], Muramatsu extended polynomial-time feasi-
ble IPMs for SDP to symmetric cone programming. Sub-
sequently, Alizadeh et al. [1, 20, 21] studied primal-dual
IPMs for linear symmetric cone programming extensively
under the framework of Euclidean Jordan algebras.

The study of inexact IPMs was started in the 1980’s
when attempts were made to solve large linear program-
ming (LP) problems. For LP and monotone linear comple-
mentarity problems, numerous papers have been devoted
to the design and analysis of inexact IPMs; see for exam-
ple [7, 11, 14] and the references therein. We should note

that some of the inexact methods proposed earlier on may
not be practically efficient as they require high accuracy on
the computed search direction. For example in [14], since
the iterates are required to maintain feasibility once it is
achieved, this implies that the linear system must be solved
to machine accuracy and the cost of solving the linear sys-
tem turns out to be as expensive as in an exact algorithm.
There are relatively fewer papers on the convergence anal-
ysis of inexact IPMs for LCCQP, the most recent ones we
are aware of are [13, 3]. For the computational aspects of
inexact IPMs for LP and LLCQP, we refer the readers to
[2, 4] and the references therein.

For linear SDP, the first theoretical complexity analy-
sis paper on inexact IPMs was published by Kojima et al.
[9], wherein the algorithms only allow inexactness in the
component corresponding to the complementarity equation
(the third equation in (10)). Later, Zhou and Toh [30] de-
veloped an inexact IPM allowing inexactness not only in
the complementarity equation but also in the primal and
dual feasibilities. Furthermore, primal and dual feasibilities
need not be maintained even if some iterates happen to be
feasible. The latter property implies that the linear system
at that particular iteration need not be solved to machine
accuracy. The work in [30] was subsequently extended to
convex quadratic SDP [12]. On the computational front,
the readers are referred to [26, 24] for the design and imple-
mentation of efficient inexact IPMs for linear SDP, and to
[25, 27] for the design of efficient inexact IPMs for convex
quadratic SDP. We should mention that for efficient com-
putation of the inexact directions, the design of efficient
preconditioners for the increasingly ill-conditioned linear
system at each iteration is the main challenge one must
overcome in an inexact IPM.

In this paper, we design an inexact primal-dual infea-
sible path-following algorithm for convex quadratic sym-
metric cone programming problems. Our algorithm and
its polynomial iteration complexity analysis give a unified
treatment of a number of previous algorithms and their
complexity analysis. In particular, for the case of linear
SDP, our algorithm includes an analogous algorithm de-
signed for linear SDP in [30]. It also extends the inexact
IPM for convex quadratic SDP in [12] to convex quadratic
symmetric programming, and hence it also includes the
LCCQP problem studied in [13]. Under a mild condition
on the inexactness of the search direction at each interior-
point iteration, we show that our algorithm can find an
ϵ-approximate solution in O(n2 log(1/ϵ)) iterations, where
n is the rank of the underlying Euclidean Jordan algebra.

The paper is organized as follows. In section 2, we pro-
vide some basic information on Euclidean Jordan algebras.
In section 3, we define the infeasible central path and its
corresponding neighborhood. In addition, we also estab-
lish some key lemmas that are needed for subsequent com-
plexity analysis. In section 4, we discuss the computation
of inexact search directions by an iterative linear solver.
We also present our inexact primal-dual infeasible path-
following algorithm and establish a polynomial complexity
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result for this algorithm. In section 5, we give detailed
proofs on the polynomial complexity result.

2. Euclidean Jordan Algebras

In this section, we present some basic results on Euclidean
Jordan algebras that are needed in the subsequent sections.
Our presentation is mainly adapted from [1, 5, 20, 21].
Let (J , ◦) be an Euclidean Jordan algebra (assumed to

have a unique unit element e). Recall that an idempotent
c is a nonzero element of J such that c2 = c. An idempo-
tent is said to be primitive if it is not the sum of two other
idempotents. A complete system of orthogonal idempo-
tents is a set of idempotents {c1, . . . , ck} where ci ◦ cj = 0
for any distinct i, j, and c1 + · · ·+ ck = e. For an element
x ∈ J , the degree of x is the smallest integer such that{
e,x, . . . ,xk

}
is linearly dependent. The rank of J is the

largest degree of x ∈ J . Let the rank of J be r, we can see
that the maximum possible number of primitive idempo-
tents in J is r. A complete system of orthogonal primitive
idempotents {c1, . . . cr} is called a Jordan frame.

Theorem 1. [5, Theorem III.1.2] Let J be an Eu-
clidean Jordan algebra with rank r and unit element e.
Then for any x ∈ J , there exists a Jordan frame {c1, . . . , cr}
and real numbers λ1, . . . , λr such that x = λ1c1+· · ·+λrcr.
The numbers λi, i = 1, . . . , r (counting multiplicities) are
uniquely determined by x, and they are called the eigen-
values of x.

For each x ∈ J , we will order its eigenvalues in a non-
increasing order, i.e., λ1 ≥ · · · ≥ λr. We said that x ∈ J
is positive semidefinite (definite) if all its eigenvalues are
nonnegative (positive), and write x ≽ 0 (x ≻ 0) if x is
positive semidefinite (definite).
From the result in Theorem 1, we can define the following

quantities for any x ∈ J :

tr(x) := λ1 + . . .+ λr, det(x) := λ1 . . . λr.(1)

By [5, Proposition II.2.2], det(x◦y) = det(x) det(y) for all
x,y ∈ J , and tr(e) = r, det(e) = 1.
In general, for a given x ∈ J , we can define f(x) for

any real valued continuous function f(·) which is defined
on an open set containing the set of eigenvalues Λ(x) :=
{λ1, . . . , λr} as follows:

f(x) := f(λ1)c1 + · · ·+ f(λr)cr.

It is easy to see that the following identities are well-defined:

x−1 := λ−1
1 c1 + · · ·+ λ−1

r cr, if λi ̸= 0 ∀ i

x1/2 := λ
1/2
1 c1 + · · ·+ λ1/2

r cr, if λi ≥ 0 ∀ i

∥x∥2 := max {|λ1|, . . . , |λr|}

log det(x) := log(λ1) + · · ·+ log(λr), if λi > 0 ∀ i.

In [5, Proposition III.4.2], it is shown that ∇ log det(x) =
x−1 and ∇2 log det(x) = Q(x−1). Note that (x1/2)2 = x

and x−1 ◦ x = e. If x−1 is well defined, we said that x is
invertible.
By [5, Proposition III.1.5], we may define the following

inner product on J :

⟨x, y⟩ = tr(x ◦ y) ∀ x,y ∈ J .(2)

From the associativity of tr(·) [5, Proposition II.4.3], we
know that ⟨·, ·⟩ is also associative, i.e., ⟨x◦y, z⟩ = ⟨x, y◦z⟩
for all x,y,z ∈ J . The norm ∥ · ∥ induced by the inner
product ⟨·, ·⟩ is given by

∥x∥ =
√

⟨x, x⟩ = (λ2
1 + · · ·+ λ2

r)
1/2.(3)

For any linear operator B defined on J , we let ∥B∥2 be the
operator norm induced by ∥ · ∥.
As “◦” is a bilinear map, for any x ∈ J , one can de-

fine the linear map L(x) : J → J such that L(x)y =
x ◦ y, and from the property of “◦”, one can verify that
L(x)L(x2) = L(x2)L(x) and ⟨L(x)z, y⟩ = ⟨z, L(x)y⟩. In
addition to L(x), there is another linear map Q(x) (called
the quadratic representation) associated with x which is
defined by

Q(x) := 2L2(x)− L(x2).

From the definition of Q(x), it is clear that ⟨Q(x)y, z⟩ =
⟨y, Q(x)z⟩. Thus we can see that both L(x) and Q(x) are
self-adjoint linear operators in J . Moreover, they satisfy
the properties stated in the following lemma.

Lemma 1. [21, Lemma 12] Given the spectral decom-
position x = λ1c1+ . . .+λrcr in a rank r Euclidean Jordan
algebra, we have that:

1. The operators L(x) and Q(x) commute and share a
common system of eigenvectors.

2. The eigenvalues of L(x) are given by {(λi + λj)/2 :
1 ≤ i, j ≤ r}. Hence ∥L(x)∥2 = ∥x∥2. Also, x ≽ 0
(≻ 0) iff L(x) is positive semidefinite (positive defi-
nite).

3. The eigenvalues of Q(x) are given by {λiλj : 1 ≤
i, j ≤ r}. Hence ∥Q(x)∥2 = ∥x∥22.

4. ∥x ◦ y∥ ≤ ∥x∥∥y∥.

The last inequality is obvious since ∥x◦y∥ = ∥L(x)y∥ ≤
∥L(x)∥2∥y∥ ≤ ∥x∥∥y∥. From the fact that ⟨·, ·⟩ is an inner
product, we also have the Cauchy-Schwarz inequality

|⟨x, y⟩| ≤ ∥x∥∥y∥.

Next we present some useful identities needed in the re-
maining part of the paper.

Lemma 2. The quadratic representation Q satisfies the
following properties:

1. Q(Q(x)y) = Q(x)Q(y)Q(x) [5, Prop. II.3.3].

2. Q(x−1/2)x = e, Q(x)−1 = Q(x−1), Q(x)x−1 = x
[5, Prop. II.3.1].
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3. tr(Q(x)y) = ⟨x2, y⟩.

4. det(Q(x)y) = det(x2) det(y) [5, Prop. III.4.2].

Note that from part 1 of the above lemma, we have

Q(x2) = Q(x)2, Q(x1/2) = Q(x)1/2 if x ≽ 0.

Recall that for an Euclidean Jordan algebra J , its cone
of squares is the set

K :=
{
x2 | x ∈ J

}
.

With K defined, we can now state one of the most cele-
brated result in Euclidean Jordan algebras on the Jordan
algebraic characterization of symmetric cones.

Theorem 2. [5, Theorem III.2.1, Theorem III.3.1]
A cone is symmetric if and only if it is the cone of squares
of an Euclidean Jordan algebra. Furthermore, K = {x ∈
J : x ≽ 0} and intK = {x ∈ J : x ≻ 0}.
For x,y ∈ J , we write x ≽ y (x ≻ y) if x − y ∈ K

(intK).
Next we state a lemma that will be used frequently in

the next few sections.

Lemma 3. [21, Proposition 21, Lemma 30] Let x, z,p ∈
intK. Define x̂ = Q(p)x and ẑ = Q(p−1)z, then

1. Q(x1/2)z and Q(z1/2)x have the same spectrum.

2. Q(x1/2)z and Q(x̂1/2)ẑ have the same spectrum.

3. λmax(x◦z) ≥ λmax(Q(x1/2)z), with equality holding
if L(x), L(z) commute.

4. λmin(x ◦ z) ≤ λmin(Q(x1/2)z), with equality holding
if L(x), L(z) commute; see also [22, Thm. 4].

Finally we give a brief description of the three basic sym-
metric cones focused in this paper.

Semidefinite cone. Let J = Sn, the vector space of n×n
real symmetric matrices. Define ◦ by

X ◦ Y :=
1

2
(XY + Y X) .

Then (Sn, ◦) is an Euclidean Jordan algebra with the unit
element being the identity matrix I. The cone of squares is
Sn
+, the set of all positive semidefinite matrices in Sn. For

any X ∈ Sn, it has an eigenvalue decomposition given by

X = λ1q1q
T
1 + . . .+ λnqnq

T
n ,

where the set {q1q
T
1 , . . . , qnq

T
n} is a Jordan frame, and we

have det(X) = λ1 · · ·λn and tr(X) = λ1 + · · ·+ λn. Thus

⟨X, Y ⟩ := tr(X ◦ Y ) = tr(XY ).

Also, we have

L(X) = X ~ I, Q(X) = X ~X(4)

where G~H denotes the symmetric Kronecker product of
two n× n matrices G and H defined by

(5) (G~H)(M) :=
1

2
(GMHT +HMGT ) ∀ M ∈ Sn.

We refer the reader to the appendix of [23] for some of its
properties.

Second-order cone. Let J = Rn, where we write any
vector x ∈ Rn in the form x = (x0; x̄) with x0 ∈ R and
x̄ ∈ Rn−1. Define x ◦ y := (xTy;x0ȳ + y0x̄). The unit
element is e := (1;0) ∈ Rn. The cone of squares is given
by

Qn = {x ∈ Rn : ∥x̄∥ ≤ x0} ,

which is a second-order cone. Note that ∥x̄∥ is the usual
Euclidean norm of a vector. For any x ∈ Rn, it has the
following eigenvalue decomposition

x = (x0 + ∥x̄∥)c1 + (x0 − ∥x̄∥)c2,

where

c1 =

{
( 12 ;

x̄
2∥x̄∥ ) x̄ ̸= 0

( 12 ;
1
2 ;0 ) x̄ = 0

and c2 = e − c1. Thus, we have λ1,2 = x0 ± ∥x̄∥, and
tr(x) = 2x0 and det(x) = x2

0 − ∥x̄∥2. For any x,y ∈ Rn,

⟨x, y⟩ := tr(x ◦ y) = 2xTy.

Also, we have

L(x) =

[
x0 x̄T

x̄ x0I

]
(6)

Q(x) = 2L2(x)− L(x2) = 2xxT − det(x)R.(7)

where R is a diagonal matrix with the (1, 1) entry equal
to 1 and the remaining diagonal entries equal to −1. If
det(x) ̸= 0, we have

x−1 = λ−1
1 c1 + λ−1

2 c2 =
1

det(x)
Rx(8)

Q(x−1) =
1

det(x)2
RQ(x)R.(9)

Nonnegative orthants. Let J = Rn, the n-dimensional
real vector space with x◦y := (xiyi)

n
i=1. The unit element

of J is e = (1, . . . , 1) ∈ Rn, and the cone of squares is
Rn

+ = {x : xi ≥ 0 ∀ i = 1, . . . , n}. Every x ∈ Rn has the
eigenvalue decomposition

x = x1e1 + · · ·+ xnen,

where ei is the ith unit vector in Rn. Thus we have tr(x) =
x1 + · · ·+xn, det(x) = x1 · · ·xn, and ⟨x, y⟩ := tr(x ◦y) =
xTy. Also, we have

L(x) = diag(x), Q(x) = diag(x2), Q(x−1) = diag(x−2).
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3. An infeasible central path and its
neighborhood

The perturbed Karush-Kuhn-Tucker (KKT) optimality con-
ditions for the problems (P ) and (D) are given as follows:
(10) −∇f(x) +AT y + z

A(x)− b

x ◦ z

 =

 0

0

νe

 , x, z ∈ K,

where ν is a positive parameter that is to be driven to
zero explicitly. The last equation of (10) is a relaxation
of the complementarity conditions x ◦ z = 0, x,z ∈ K.
When ν = 0, (10) gives the optimal conditions for (P ) and
(D). Let n = tr(e). For a nonzero ν, (10) is the optimality
condition for the log-determinant problems, that is, adding
the log barrier terms −ν log detx and ν log det z to (P )
and (D) respectively. Just like the case of a linear SDP,
linearizing the third equation in (10) may not lead to an
element in J . Thus it is necessary to “symmetrize” that
equation before linearizing it. That is, given an invertible
p ∈ K, the last equation of (10) is replaced by

(11) Hp(x,z) := Q(p)x ◦Q(p−1)z = νe.

It has been shown in [21, Lemma 28] that for x, z,p ∈ J ,
if x, z ≻ 0 and p invertible, then Hp(x,z) = νe if and
only if x ◦ z = νe.
In this paper, for x, z ≻ 0, we only consider p that is in

the commutative class defined by

C(x, z) = {p ∈ intK | L(Q(p)x), L(Q(p−1)z) commute}.

Note that if p ∈ C(x, z) and we let x̂ = Q(p)x, ẑ =
Q(p−1)z, then

Hp(x,z) = x̂ ◦ ẑ = Q(x̂1/2)ẑ.(12)

The class C(x, z) includes the common choices: p =
z1/2,p = x−1/2, a.k.a. Helmberg-Kojima-Monteiro (HKM)
direction [8, 10, 16], and Nesterov-Todd (NT) direction
p = w−1/2 where w is the NT scaling element satisfying
Q(w)z = x [23]. For the NT scaling element, an explicit
form of p is given by

p =

[
Q(x1/2)

(
Q(x1/2)z

)−1/2
]−1/2

(13)

=

[
Q(z−1/2)

(
Q(z1/2)x

)1/2
]−1/2

.

We can easily verify that

Q(w)z = Q(p−2)z = Q
(
Q(x1/2)(Q(x1/2)z)−1/2

)
z

= Q(x1/2)Q
(
(Q(x1/2)z)−1/2

)
(Q(x1/2)z) = Q(x1/2)e = x.

The last two equalities above use the properties of Q(·)
stated in Lemma 2. Moreover, for the NT scaling element,
we have

(14) Q(p−1)z = Q(p)Q(w)z = Q(p)x.

In this paper, we choose p to be the NT scaling element
rather than any other p ∈ C(x,z) as considered in [29]. The
main reason for considering only the NT scaling element is
that it simplifies the complexity analysis and also gives the
best iteration complexity. In addition, it is employed in
practical computations since it has certain desirable prop-
erties that allow one to design efficient preconditioners for
the augmented system (33a) for computing search direc-
tions; see [25] for details.
Let L = ∥H∥2. Note that L is a Lipschitz constant of

the gradient of f(x) defined in (P ), i.e.,

(15) ∥∇f(x)−∇f(y)∥ = ∥H(x)−H(y)∥ ≤ L∥x− y∥.

Let (x0, y0, z0) be an initial point such that

(16) x0 = z0 = ρe,

where ρ > 0 is a given constant. For given positive con-
stants γp ≤ γd such that γd + Lγp ∈ (0, 1), the constant ρ
is chosen to be sufficiently large so that for some solution
(x∗, y∗, z∗) to (P ) and (D), the following conditions hold:

(1− γp)x0 ≻ x∗ ≽ 0, (1− (γd + Lγp))z0 ≻ z∗ ≽ 0,(17)

tr(x∗) + tr(z∗) ≤ nρ.(18)

Recall that n = tr(e).
We define

µ0 = ⟨x0, z0⟩/n = ρ2,(19)

Rp
0 = A(x0)− b,(20)

Rd
0 = −∇f(x0) +AT y0 + z0.(21)

For θ, ν ∈ (0, 1], the following infeasible KKT system has
a unique solution under Assumptions 1 and 2:

(22)

 −∇f(x) +AT y + z

A(x)− b

Hp(x, z)

 =

 θRd
0

θRp
0

νµ0e

 , x,z ≻ 0.

Define the infeasible central path as:

P = {(θ, ν,x, y,z)|θ, ν > 0,x, z ∈ intK, y ∈ Rm, (22) holds} .

The primary idea of a primal-dual infeasible path-following
algorithm is to generate a sequence of points (xk, yk,zk)
such that (θk, νk,xk, yk,zk) ∈ P and (xk, yk, zk) converges
to a solution of (P ) and (D) when θk and νk are driven to
0. In practice of course, the points are never exactly on the
central path P but lie in some neighborhood of P. In our
inexact primal-dual infeasible path-following algorithm, we
consider the following neighborhood of P. Choose a con-
stant γ ∈ (0, 1) in addition to γp and γd, we define the
neighborhood to be:

N =


(θ, ν,x, y, z) ∈ (0, 1]× (0, 1]× intK × Rm × intK
θ ≤ ν, A(x)− b = θ(Rp

0 + ξp), ∥A+ξp∥ ≤ γpρ,

−∇f(x) +AT y + z = θ(Rd
0 + ξd), ∥ξd∥ ≤ γdρ,

∥Q(x1/2)z − νµ0e∥2 ≤ γνµ0.

 .
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Let θ0 = ν0 = 1. Then (16) implies that (θ0, ν0,x0, y0, z0) ∈
N .
From the definition of N and Lemma 3, it is easy to see

that we have the following lemma.

Lemma 4. Suppose (θ, ν,x, y,z) ∈ N and p ∈ C(x, z).
Then

(1− γ)νµ0e ≼ Hp(x,z) ≼ (1 + γ)νµ0e(23)

(1− γ)νµ0 ≤ ⟨x, z⟩/n ≤ (1 + γ)νµ0.(24)

Proof. (a) Define x̂ = Q(p)x and ẑ = Q(p−1)z, and

µ = νµ0. By Lemma 3 and (14), Hp(x,z) = Q(x̂1/2)ẑ

and Q(x1/2)z have the same spectrum. Hence

|λmin(Hp(x, z))− µ| = |λmin(Q(x1/2)z)− µ|

= |λmin(Q(x1/2)z − µe)| ≤ ∥Q(x1/2)z − µe∥2 ≤ γµ.

This implies that λmin(Hp(x, z)− (1− γ)µe)
= λmin(Hp(x, z)) − (1 − γ)µ ≥ 0, and hence Hp(x, z) ≽
(1 − γ)µe. The proof of the other right-hand side partial
order in (23) is similar, and we shall omit it.
The inequalities in (24) follows from (23) and the fact

that

tr(Hp(x, z)) = ⟨x̂, ẑ⟩ = ⟨Q(p)x, Q(p−1)z⟩
= ⟨x, Q(p)Q(p−1)z⟩ = ⟨x, z⟩.

Next, we present two lemmas that are needed for the
iteration complexity analysis in section 4.

Lemma 5. For any rp and rd satisfying ∥rd∥ ≤ γdρ and
∥A+rp∥ ≤ γpρ, there exists (x̃, ỹ, z̃) that satisfies the fol-
lowing conditions:

−∇f(x̃) +AT ỹ + z̃ = Rd
0 + rd ,(25)

A(x̃)− b = Rp
0 + rp ,(26)

(1− γp)ρe ≼ x̃ ≼ (1 + γp)ρe ,(27)

[1− (γd + Lγp)]ρe ≼ z̃ ≼ [1 + (γd + Lγp)]ρe .(28)

Proof. Take

x̃ = x0 +A+rp, ỹ = y0, z̃ = z0 + rd +∇f(x̃)−∇f(x0) ,

then (25)–(27) are readily shown. To show (28), we only
need to establish the following inequality:

∥rd +∇f(x̃)−∇f(x0)∥ ≤ ∥rd∥+ ∥∇f(x̃)−∇f(x0)∥
≤ (γd + Lγp)ρ.

Lemma 6. Given the initial conditions (16), (17) and (18),
for any (θ, ν,x, y,z) ∈ N , we have

θtr(x) ≤ 6νρn

1− (γd + Lγp)
, θtr(z) ≤ 6νρn

1− γp
.

Proof. This proof is adapted from that of Lemma 2 in
[30]. For (θ, ν,x, y, z) ∈ N , we have

−∇f(x) +AT y + z = θ(Rd
0 + rd), ∥rd∥ ≤ γdρ,

A(x)− b = θ(Rp
0 + rp), ∥A+rp∥ ≤ γpρ.

By Lemma 5, there exists (x̃, ỹ, z̃) satisfies conditions (25)–
(28). Also, the solution (x∗, y∗,z∗) to (P ) and (D) consid-
ered in (17) satisfies the following equations:

A(x∗)− b = 0,

−∇f(x∗) +AT y∗ + z∗ = 0.

Let

x̄ = (1−θ)x∗+θx̃−x, ȳ = (1−θ)y∗+θỹ−y, z̄ = (1−θ)z∗+θz̃−z.

Then we have

A(x̄) = 0, AT (ȳ) + z̄ = H x̄.

Hence ⟨x̄, z̄⟩ = ⟨x̄, H(x̄)⟩. Together with the fact that H
is positive semidefinite, we have

⟨(1− θ)x∗ + θx̃, z⟩+ ⟨x, (1− θ)z∗ + θz̃⟩(29)

= ⟨(1− θ)x∗ + θx̃, (1− θ)z∗ + θz̃⟩+ ⟨x, z⟩ − ⟨x̄, H(x̄)⟩

≤ ⟨(1− θ)x∗ + θx̃, (1− θ)z∗ + θz̃⟩+ ⟨x, z⟩.

By using (18), (24), (27), (28), (29), and the fact that
⟨x∗, z∗⟩ = 0, ⟨x∗, z⟩, ⟨x, z∗⟩ ≥ 0, we have that

θρ[(1− (γd + Lγp))⟨e, z⟩+ (1− γp)⟨e, z⟩]
≤ θ(⟨z̃, x⟩+ ⟨x̃, z⟩)

≤ ⟨(1− θ)x∗ + θx̃, z⟩+ ⟨x, (1− θ)z∗ + θz̃⟩

≤ ⟨(1− θ)z∗ + θx̃, (1− θ)z∗ + θz̃⟩+ ⟨x, z⟩

≤ θ(1− θ)(⟨x∗, z̃⟩+ ⟨x̃, z∗⟩) + θ2⟨x̃, z̃⟩+ ⟨x, z⟩

≤ θ(1− θ)(1 + γd + Lγp)ρ(⟨x∗, e⟩+ ⟨e, z∗⟩)

+θ2(1 + γp)(1 + γd + Lγp)ρ
2n+ (1 + γ)νµ0n

≤ 6νρ2n.

From here, the required results follow.

Remark. {(x, y,z) | (θ, ν,x, y, z) ∈ N} is bounded if
θ = ν, since from Lemma 6 we have ∥x∥ ≤ tr(x) ≤ O(ρn)
and ∥z∥ ≤ tr(z) ≤ O(ρn). Suppose we generate a sequence
{(θk, νk,xk, yk, zk)} ∈ N such that

νk ≥ θk, ∀k, and 1 = ν0 ≥ νk ≥ νk+1 ≥ 0.

If νk → 0 as k → ∞, then any limit point of the sequence
{xk, yk, zk} is a solution of (P ) and (D). In particular, if
θk = νk, then the sequence {xk, zk} is also bounded.
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4. An inexact infeasible interior-point
algorithm

Let η1, η2 ∈ (0, 1] be given constants such that η1 ≥ η2.
Given a current iterate (θk, νk,xk, yk, zk) ∈ N , we want to
construct a new iterate which remains in N with respect to
smaller θ and ν. To this end, we consider the search direc-
tion (∆xk,∆yk,∆zk) determined by the following linear
system:
(30) −H AT I

A 0 0

Ek 0 Fk


 ∆xk

∆yk

∆zk

 =

 −η1(R
d
k + rdk)

−η1(R
p
k + rpk)

Rc
k + rck

 ,

where for pk = w
−1/2
k (wk is the NT scaling element sat-

isfying Q(wk)zk = xk),

Ek = L(Q(p−1
k )zk)Q(pk), Fk = L(Q(pk)xk)Q(p−1

k ),

Rd
k = −∇f(xk) +AT yk + zk, Rp

k = A(xk)− b

Rc
k = (1− η2)νkµ0e−Hpk

(xk, zk).

Note that the last equation of (30) is equivalent to

Hpk
(xk, zk) +Hpk

(∆xk,zk) +Hpk
(xk,∆zk)

= (1− η2)νµ0e+ rck.(31)

The search direction (∆xk,∆yk,∆zk) computed from (30)
is an “inexact” Newton direction for the perturbed KKT
system (22). On the right hand side of (30), Rd

k, R
p
k and

Rc
k are the residual components for infeasibilities and com-

plementarity, whereas the vectors rdk, r
p
k, r

c
k are the residual

components for the inexactness in the computed search di-
rection.
Let {σk}∞k=1 be a given sequence in (0, 1] such that σ̄ :=∑∞
k=0 σk < ∞. We require the residual components in

the inexactness in (30) to satisfy the following accuracy
conditions:

∥A+rpk∥ ≤ γpρθkσk, ∥rdk∥ ≤ γdρθkσk,(32)

∥rck∥ ≤ 0.5(1− η2)γνkµ0.

Remark. In practice, we can solve (30) by the following
procedure:

1. Compute ∆yk and ∆xk from the following augmented
system: [

−H− F−1
k Ek AT

A 0

][
∆xk

∆yk

]

=

[
−η1(R

d
k + rdk)− F−1

k Rc
k

−η1(R
p
k + rpk)

]
(33a)

with the residual vectors rdk and rpk satisfying the con-
ditions in (32).

2. Compute ∆zk from

(33b) ∆zk = −F−1
k Ek∆xk + F−1

k Rc
k.

Here, we can see that ∆zk is obtained directly from (31)
with rck = 0. Thus, rck can be ignored in the system (30).
For a convex quadratic SDP problem, the dimension of the
augmented system (33a) is n2+m, which is typically a large
number even for n = 100. The computational cost and
memory requirement for solving (33a) by a direct solver is
at least Θ((n2+m)3) and Θ((n2+m)2) respectively, which
are prohibitively expensive for large scale problems. An
iterative solver would not require the storage or manipu-
lation of the full coefficient matrix. But the disadvantage
of using an iterative solver is the demand of good precon-
ditioners to accelerate its convergence. In practice, con-
structing cheap and effective preconditioners could be the
most challenging task in designing an efficient inexact IPM
for solving a convex quadratic SDP problem; see [25] for
details.
After computing the search direction in (30), we consider

the following trial iterate to determine the new iterate:

(θk(α), νk(α)) = ((1− αη1)θk, (1− αη2)νk),

(xk(α), yk(α), zk(α)) = (xk + α∆xk, yk + α∆yk,zk + α∆zk)

where α ∈ [0, 1]. To find the new iterate, we need to choose
an appropriate step length αk to keep the new iterate in N .
The precise choice of αk will be discussed shortly. Before
that, we present our inexact primal-dual infeasible path-
following algorithm.

Algorithm IIPF. Let ϵ > 0 be a given tolerance. Let
θ0 = ν0 = 1. Choose parameters η1, η2 ∈ (0, 1] with
η1 ≥ η2, γp, γd ∈ (0, 1) such that γp ≤ γd and γd+Lγp < 1.
Pick a sequence {σk}∞k=1 in (0, 1] such that σ̄ :=

∑∞
k=0 σk <

∞. Choose (x0, y0, z0) satisfying (16)–(18). Note that
(θ0, ν0,x0, y0, z0) ∈ N .

For k = 0, 1, . . .

1. Terminate when νk < ϵ.

2. Find an inexact search direction (∆xk,∆yk,∆zk) from
the linear system (30).

3. Let αk ∈ [0, 1] be chosen appropriately so that

(θk+1, νk+1,xk+1, yk+1, zk+1)

:= (θk(αk), νk(αk),xk(αk), yk(αk),zk(αk)) ∈ N .

Let α0, α1, . . . , αk−1 be the step lengths that have al-
ready been determined in the previous k iterations. For
reasons that will become apparent shortly, we assume that
the step lengths αi, i = 0, . . . , k − 1, are contained in the
interval

I :=
[
0,min{1, 1/(η1(1 + σ̄))}

]
.(34)
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Let the primal and dual infeasibilities associated with
(θk(α), νk(α),xk(α), yk(α),xk(α)) be

Rp
k(α) = A(xk(α))− b,

Rd
k(α) = −∇f(xk(α)) +AT yk(α) + zk(α).

We will show that Rp
k(α) and Rd

k(α) satisfy the first two
conditions in N when α is restricted to be in the interval
I given in (34).

Lemma 7. Suppose the step lengths αi associated with
the iterates (θi, νi,xi, yi, zi) are restricted to be in the in-
terval I for i = 0, . . . , k − 1. Then we have

Rp
k(α) = θk(α)(R

p
0 + ξpk(α))(35)

Rd
k(α) = θk(α)(R

d
0 + ξdk(α))(36)

where

∥A+ξpk(α)∥ ≤ γpρ, ∥ξdk(α)∥ ≤ γdρ, ∀ α ∈ I.

Proof. Note that Rp
k(α) has exactly the same form as in

the inexact interior-point algorithm considered in [30] for
a linear SDP. Using the result in [30], we have

Rp
k(α) = θk(α)(R

p
0 + ξpk(α)),

where

ξpk(α) = ξpk − αη1
(1− αη1)θk

rpk(37)

= −
k−1∑
i=0

αiη1
(1− αiη1)θi

rpi − αη1
(1− αη1)θk

rpk.

The quantity Rd
k(α) is different from its counterpart in a

linear SDP as it contains an extra term from the quadratic
term in f(x). Thus, we need to investigate the details.
Given that the current iterate belongs to N , we have

Rd
k(α) = −∇f(xk(α)) +AT yk(α) + zk(α)

=−∇f(xk) +AT yk + zk + α[−H(∆xk) +AT∆yk +∆zk]

= Rd
k − αη1(R

d
k + rdk)

= (1− αη1)θk(R
d
0 + ξdk)− αη1r

d
k

= (1− αη1)θk

(
Rd

0 + ξdk − αη1
(1− αη1)θk

rdk

)
= θ(α)(Rd

0 + ξdk(α)),

where

ξdk(α) = ξdk − αη1
(1− αη1)θk

rdk(38)

= −
k−1∑
i=0

αiη1
(1− αiη1)θi

rdi − αη1
(1− αη1)θk

rdk.

From (37) and (38), we see that since αi ≤ 1
η1(1+σ̄) for

i = 1, . . . , k − 1, we have

∥A+ξpk(α)∥ ≤ γpρ, ∥ξdk(α)∥ ≤ γdρ, ∀ α ∈ I.

Let

(39) ᾱk = min
{
1,

1

η1(1 + σ̄)
,
0.5(1− η2)γνkµ0

∥Hpk
(∆xk,∆zk)∥

}
.

Next, we check the last condition in N . The following
lemma generalizes the result of Lemma 4.2 in [29].

Lemma 8. For (θk, νk,xk, yk,zk) ∈ N and ∆xk,∆zk sat-
isfying (30), we have
(a)

Hpk
(xk(α),zk(α)) = (1− α)Hpk

(xk, zk)

+α(1− η2)νkµ0e+ α rck + α2Hpk
(∆xk,∆zk)

(b) For all α ∈ [0, ᾱk],

(1− γ)νk(α)µ0 ≤ λi

(
Q(xk(α)

1/2)zk(α)
)
≤ (1 + γ)νk(α)µ0.

(a) For all α ∈ [0, ᾱk], xk(α) ≻ 0 and zk(α) ≻ 0.

Proof. (a) The proof of part (a) is quite standard and
uses equation (31).
(b) First, we note that

λmin

(
Hpk

(xk(α), zk(α))
)

≥ (1− α)(1− γ)νkµ0 + α(1− η2)νkµ0 − α∥rck∥
−α2∥Hpk

(∆xk,∆zk)∥

= αγ(1− η2)νkµ0 − α∥rck∥ − α2∥Hpk
(∆xk,∆zk)∥

+(1− γ)νk(α)µ0

≥ 0.5α(1− η2)γνkµ0 − α2∥Hpk
(∆xk,∆zk)∥

+(1− γ)νk(α)µ0

≥ (1− γ)νk(α)µ0 for α ∈ [0 , ᾱk].(40)

Now let x̂k(α) = Q(pk)xk(α) and ẑk(α) = Q(p−1
k )zk(α).

From Lemma 3, we have

λmin

(
Q(xk(α)

1/2)zk(α)
)
= λmin

(
Q(x̂k(α)

1/2)ẑk(α)
)

≥ λmin(x̂k(α) ◦ ẑk(α)).

By noting that Hpk
(xk(α),zk(α)) = x̂k(α) ◦ ẑk(α) and

using (40), we have

λmin

(
Q(xk(α)

1/2)zk(α)
)
≥ (1− γ)νk(α)µ0 ∀ α ∈ [0 , ᾱk].

The proof that λmax

(
Q(xk(α)

1/2)zk(α)
)
≤ (1+γ)νk(α)µ0

for all α ∈ [0 , ᾱk] is similar, and we shall omit it.
(c) Let x̂k(α), ẑ(α) be defined as in part (b). Since pk ≻ 0,
we have that Q(pk)x ≻ 0 if and only if x ≻ 0. Thus it is
sufficient for us to prove that x̂k(α) ≻ 0 for all α ∈ [0, ᾱk].
Suppose that it is not. Then by the continuity of λmin(·),
there exist α∗ ∈ [0, ᾱk] such that λmin(x̂k(α

∗)) = 0 and
x̂k(α) ≽ 0 for all α ∈ [0, α∗]. Let v∗ = Q(x̂k(α

∗)1/2)ẑk(α
∗).

From the proof of part (b), we have that λmin(v
∗) ≥ (1 −

γ)νk(α
∗)µ0 > 0 and hence det(v∗) > 0. But from Lemma



Lu Li and Kim-Chuan Toh 207

2, we have det(v∗) = det(x̂k(α
∗)) det(ẑk(α

∗)) = 0. Thus
we get a contradiction, and hence xk(α) ≻ 0 for all α ∈
[0, ᾱk]. The proof that zk(α) ≻ 0 for all α ∈ [0, ᾱk] is
similar.

Lemma 9. Under the conditions in Lemmas 7 and 8, for
any α ∈ [0, ᾱk], we have

(θ(α), ν(α),x(α), y(α), z(α)) ∈ N .

Proof. The result follows from Lemmas 7 and 8.

Lemma 10. Suppose the conditions in (16), (17) and (18)
hold. Then

(41) ∥Hpk
(∆xk,∆zk)∥ =

O(1)

(1− (γd + Lγp))2
n2νkµ0.

The proof of Lemma 10 is non-trivial and we devote the
next section to its proof.
We are now ready to present the main result of this

paper, the polynomial iteration complexity of Algorithm
IIPF.

Theorem 3. Let ϵ > 0 be a given tolerance. Suppose the
conditions in (16), (17) and (18) hold. At each iteration
of Algorithm IIPF, set the step length αk = ᾱk. Then
νk ≤ ϵ for k = O(n2 ln(1/ϵ)).

Proof. From (39), Lemma 9 and Lemma 10, we know
that

αi ≥ ᾱ := min

{
1,

1

η1(1 + σ̄)
,
O(1)

n2

}
, i = 0, . . . , k.

Then we have

νk =
k−1∏
i=0

(1−αiη2) ≤ (1− ᾱη2)
k ≤ ε for k = O(n2 ln(1/ε)).

5. Proof of Lemma 10

For a given (θk, νk,xk, yk, zk) ∈ N , the purpose of Lemma
10 is to establish an upper bound for ∥Hpk

(∆xk,∆zk)∥.
Throughout this section, we shall consider only the NT di-

rection, where pk = w
−1/2
k , with wk satisfying Q(wk)zk =

xk.
To facilitate our analysis, we introduce the following no-

tation:

x̂k = Q(pk)xk, ẑk = Q(p−1
k )zk;

∆x̂k = Q(pk)∆xk, ∆ẑk = Q(p−1
k )∆zk;

Êk = EkQ(p−1
k ) = L(ẑk), F̂k = FkQ(pk) = L(x̂k).

From (14) we have

(42) ẑk = x̂k, Êk = F̂k.

Let the spectral decomposition of x̂k and ẑk be

(43) x̂k = ẑk = λk
1c

k
1 + . . .+ λk

rc
k
r .

From (23), we have

(44) (1− γ)νkµ0 ≤ (λk
1)

2 ≤ · · · ≤ (λk
r )

2 ≤ (1 + γ)νkµ0.

Let Ŝk := F̂kÊk = (Êk)
2. From Lemma 1, we know that

the eigenvalues of Ŝk are given by

Λ(Ŝk) =
{1

4
(λk

i + λk
j )

2 : 1 ≤ i, j ≤ r
}
.

From (44), we have

(45) ∥Ŝk∥2 ≤ (1 + γ)νkµ0, ∥Ŝ−1
k ∥2 ≤ 1

(1− γ)νkµ0
.

Now we state a few lemmas, which will lead to the proof
of Lemma 10.

Lemma 11. For any u ∈ J ,

∥Q(pk)u∥2 ≤ 1

(1− γ)νkµ0
∥Q(zk)∥2∥u∥2,

∥Q(p−1
k )u∥2 ≤ 1

(1− γ)νkµ0
∥Q(xk)∥2∥u∥2.

Proof. From Lemma 3, we know thatQ(z
1/2
k )xk,Q(x

1/2
k )zk,

Q(x̂
1/2
k )ẑk and Hpk

(xk, zk) all have the same spectrum.
Thus we have

(1− γ)νkµ0 ≤ λmin

(
Q(z

1/2
k )xk

)
≤ λmax

(
Q(z

1/2
k )xk

)
≤ (1 + γ)νkµ0(46)

(1− γ)νkµ0 ≤ λmin

(
Q(x

1/2
k )zk

)
≤ λmax

(
Q(x

1/2
k )zk

)
≤ (1 + γ)νkµ0(47)

Let vk = Q(z
1/2
k )xk. By (13), we have p

−2
k = Q(z

−1/2
k )v

1/2
k .

By (46) , we have

∥Q(pk)u∥2 = ⟨u, Q(p2
k)u⟩

= ⟨u,
[
Q(z

−1/2
k )Q(v

1/2
k )Q(z

−1/2
k )

]−1

u⟩ (Lem. 2, part 1.)

= ⟨u, Q(z
1/2
k )Q(v

−1/2
k )Q(z

1/2
k )u⟩

= ⟨Q(z
1/2
k )u, Q(vk)

−1/2Q(z
1/2
k )u⟩

≤ λmax(Q(vk)
−1/2)∥Q(z

1/2
k )u∥2

≤ 1

(1− γ)νkµ0
∥Q(z

1/2
k )u∥2

≤ 1

(1− γ)νkµ0
∥Q(zk)∥2∥u∥2.

The proof of the second inequality in the Lemma is similar
and we shall omit it.
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Lemma 12.

∥∆x̂k∥2 + ∥∆ẑk∥2 + 2⟨∆x̂k, ∆ẑk⟩ = ∥Ŝ−1/2
k (Rc

k + rck)∥2,

∥Hpk
(∆xk,∆zk)∥ ≤ 1

2

(
∥∆x̂k∥2 + ∥∆ẑk∥2

)
.

Proof. The last equation of (30) can be rewritten as

(48) Êk(∆x̂k) + F̂k(∆ẑk) = Rc
k + rck.

Multiplying (48) by Ŝ
−1/2
k from the left, we have

∆x̂k +∆ẑk = Ŝ
−1/2
k (Rc

k + rck).

From here, the first equation in the lemma follows.
For the second inequality, by Lemma 1, we have

∥Hpk
(∆xk,∆zk)∥ = ∥∆x̂k ◦∆ẑk∥

≤ ∥∆x̂k∥∥∆ẑk∥ ≤ 1

2

(
∥∆x̂k∥2 + ∥∆ẑk∥2

)
.

Lemma 13. We have

∥Ŝ−1/2
k (Rc

k + rck)∥2 = O(nνkµ0).

Proof. From (32) and (45), we have

∥Ŝ−1/2
k rck∥2 ≤ ∥Ŝ−1

k ∥2∥rck∥2 ≤ 0.25[(1− η2)γνkµ0]
2

(1− γ)νkµ0

=
[(1− η2)γ]

2νkµ0

4(1− γ)
.(49)

Observe that from (43),

Λ(Rc
k) = (1− η2)νkµ0 − Λ(x̂k)

2.

Thus

∥Ŝ−1/2
k Rc

k∥2 ≤ ∥Ŝ−1
k ∥2∥Rc

k∥2

≤ 1

(1− γ)νkµ0

r∑
i=1

(
(1− η2)νkµ0 − (λk

i )
2
)2

≤ nνkµ0

1− γ
(γ + η2)

2 (by (44)).(50)

The required result follows from (49) and (50). This com-
pletes the proof.

In the rest of our analysis, we introduce an auxiliary
point (x̃k, ỹk, z̃k) whose existence is ensured by Lemma 5.
From Lemma 7, we have the following equations at the kth
iteration:

−∇f(xk) +AT yk + zk = θk(R
d
0 + ξdk), ∥ξdk∥ ≤ γdρ,(51)

A(xk)− b = θk(R
p
0 + ξpk), ∥A

+ξpk∥ ≤ γpρ.(52)

Thus by Lemma 5, there exists (x̃k, ỹk, z̃k) such that

−∇f(x̃k) +AT ỹk + z̃k = Rd
0 + ξdk(53)

A(x̃k)− b = Rp
0 + ξpk(54)

(1− γp)ρe ≼ x̃k ≼ (1 + γp)ρe ,(55)

[1− (γd + Lγp)]ρe ≼ z̃k ≼ [1 + (γd + Lγp)]ρe.(56)

Lemma 14. Let

x̄k = xk −x∗− θk(x̃k −x∗), z̄k = zk −z∗− θk(z̃k −z∗).

The following equations hold:

⟨x̄k, z̄k⟩ = ⟨x̄k, Hx̄k⟩,(57)

⟨∆xk + η1θk(x̃k − x∗) + η1A+rpk, ∆zk + η1θk(z̃k − z∗) + η1r
d
k⟩

= ⟨∆xk + η1θk(x̃k − x∗) + η1A+rpk, H (∆xk + η1θk(x̃k − x∗))⟩.
(58)

Proof. By (51)–(54) and the fact that

Ax∗ − b = 0,

−∇f(x∗) +AT y∗ + z∗ = 0,

we have

Ax̄k = 0

AT (yk − y∗ − θk(ỹk − y∗)) + z̄k = H (x̄k),

which implies (57). Next, by (30), and (51)–(54), we have

A
(
∆xk + η1θk(x̃k − x∗) + η1A+rpk

)
= 0

AT
(
∆yk + η1θk(ỹk − y∗)

)
+ (∆zk + η1θk(z̃k − z∗))

+η1r
d
k = H (∆xk + η1θk(x̃k − x∗)),

which implies (58).

Let

T1 =
(
∥∆x̂k∥2 + ∥∆ẑk∥2

)1/2

(59)

T2 =
(
∥Q(pk)(x̃k − x∗)∥2 + ∥Q(p−1

k )(z̃k − z∗)∥2
)1/2

(60)

T3 =
(
∥Q(pk)A+rpk∥

2 + ∥Q(p−1
k )rdk∥2

)1/2

(61)

T4 = ∥Q(p−1
k )H (A+rpk)∥.(62)

Then we have the following lemma.

Lemma 15.

T1 ≤ 2η1(θkT2 + T3 + T4) +
√
T5,

where

T5 = ∥Ŝ−1/2
k (Rc

k + rck)∥2

+2η21θ
2
k⟨x̃k − x∗, z̃k − z∗⟩+ 2η21

(
θkT2T3 + T 2

3 + θkT2T4

)
.
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Proof. By (58), we have that

−⟨∆x̂k, ∆ẑk⟩ = −⟨∆xk, ∆zk⟩

= η1θk[⟨∆xk, z̃k − z∗⟩+ ⟨x̃k − x∗, ∆zk⟩]

+η1[⟨∆xk, r
d
k⟩+ ⟨A+rpk, ∆zk⟩]

+ η21θk[⟨x̃k − x∗, r
d
k⟩+ ⟨A+rpk, z̃k − z∗⟩]

+η21⟨A+rpk, r
d
k⟩+ η21θ

2
k⟨x̃k − x∗, z̃k − z∗⟩

−η1⟨A+rpk, H (∆xk + η1θk(x̃k − x∗))⟩

−⟨∆xk + η1θk(x̃k − x∗), H (∆xk + η1θk(x̃k − x∗))⟩.

Also, we have the following inequalities:

|⟨∆xk, z̃k − z∗⟩+ ⟨x̃k − x∗, ∆zk⟩|

= |⟨∆x̂k, Q(p−1
k )(z̃k − z∗)⟩+ ⟨Q(pk)(x̃k − x∗), ∆ẑk⟩|

≤ T1T2

|⟨∆xk, r
d
k⟩+ ⟨A+rpk, ∆zk⟩| ≤ T1T3

|⟨x̃k − x∗, r
d
k⟩+ ⟨A+rpk, z̃k − z∗⟩| ≤ T2T3

|⟨A+rpk, r
d
k⟩| ≤ T 2

3

|⟨A+rpk, H (x̃k − x∗)⟩| ≤ T2T4

|⟨A+rpk, H (∆xk)⟩| ≤ T1T4

−⟨∆xk + η1θk(x̃k − x∗), H (∆xk + η1θk(x̃k − x∗))⟩ ≤ 0.

In the above, we used the Cauchy-Schwartz inequality and
the fact that ac+ bd ≤

√
a2 + b2

√
c2 + d2 for a, b, c, d ≥ 0.

By Lemma 12, and the above inequalities, we have

T 2
1 = ∥Ŝ−1/2

k (Rc
k + rck)∥2 − 2⟨∆x̂k, ∆ẑk⟩

≤ 2
(
η1θkT1T2 + η1T1T3 + η21θkT2T3 + η21T

2
3

)
+2

(
η21θkT2T4 + η1T1T4

)
+∥Ŝ−1/2

k (Rc
k + rck)∥2 + 2η21θ

2
k⟨x̃k − x∗, z̃k − z∗⟩

= 2η1T1(θkT2 + T3 + T4) + T5.

The quadratic function t2 − 2η1(θkT2 + T3 + T4)t− T5 has
a unique positive root at

t+ = η1(θkT2 + T3 + T4) +
√
η21(θkT2 + T3 + T4)2 + T5,

and it is positive for t > t+, hence we must have T1 ≤ t+ ≤
2η1(θkT2 + T3 + T4) +

√
T5.

Lemma 16. We have

T 2
3 =

O(1)

(1− (γd + Lγp))2
n2νkµ0.

Proof. By (32), we have

(63) ∥A+rpk∥ ≤ θkγpρ, ∥rdk∥ ≤ θkγdρ.

By Lemma 11 and the fact that ∥Q(u)∥2 = λ2
max(u) ≤

[tr(u)]2 for any u ≽ 0 , we have

∥Q(pk)A+rpk∥
2 ≤ 1

(1− γ)νkµ0
∥A+rpk∥

2∥Q(zk)∥2

≤
γ2
pρ

2

(1− γ)νkµ0
θ2k∥Q(zk)∥2 ≤

γ2
pρ

2

(1− γ)νkµ0
θ2k[tr(zk)]

2

=
γ2
pρ

2

(1− γ)νkµ0

36

(1− γp)2
n2ν2kρ

2 =
O(1)

(1− γp)2
n2νkµ0.

Note that the last equality follows from Lemma 6. Simi-
larly, we have

∥Q(p−1
k )rdk∥2 ≤ 1

(1− γ)νkµ0
∥rdk∥2∥Q(xk)∥2

≤ γ2
dρ

2

(1− γ)νkµ0
θ2k∥Q(xk)∥2 ≤ γ2

dρ
2

(1− γ)νkµ0
θ2k[Tr(xk)]

2

=
γ2
dρ

2

(1− γ)νkµ0

36

(1− (γd + Lγp))2
n2ν2kρ

2

=
O(1)

(1− (γd + Lγp))2
n2νkµ0.

Again, we used Lemma 6. From here, the required result
follows.

Lemma 17. Under the conditions (16), (17) and (18),

⟨x̃k − x∗, z̃k − z∗⟩ ≤ 4nµ0.

Proof. The result follows from Lemma 11 in [30] and
(55)–(56).

Lemma 18. Under the conditions (16), (17), and (18),

θ2kT
2
2 = O(n2νkµ0).

Proof. First we note that for any invertible u ∈ J ,
Q(u)x ≻ 0 if x ≻ 0 [5, Prop. III.2.2]. Then for any x ≻ 0

(64) ∥Q(u)x∥ ≤ tr(Q(u)x) = ⟨Q(u)x, e⟩ = ⟨u2, x⟩.

Let vk = Q(z
1/2
k )xk. By (13), we have p

−2
k = Q(z

−1/2
k )v

1/2
k .

By the fact that 0 ≺ x̃k − x∗ ≼ (1 + γp)ρe, and (64), we
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have

∥Q(pk)(x̃k − x∗)∥ ≤ ⟨p2
k, x̃k − x∗⟩

= ⟨Q(p−2
k )p2

k, Q(p2
k)(x̃k − x∗)⟩

= ⟨p−2
k , (Q(p−2

k ))−1(x̃k − x∗)⟩

= ⟨Q(z
−1/2
k )v

1/2
k ,

[
Q(z

−1/2
k )Q(v

1/2
k )Q(z

−1/2
k )

]−1

(x̃k − x∗)⟩

= ⟨Q(z
−1/2
k )v

1/2
k ,

[
Q(z

1/2
k )Q(v

−1/2
k )Q(z

1/2
k )

]
(x̃k − x∗)⟩

= ⟨Q(v
−1/2
k )v

1/2
k , Q(z

1/2
k )(x̃k − x∗)⟩

= ⟨v−1/2
k , Q(z

1/2
k )(x̃k − x∗)⟩

≤ 1

λmin(vk)1/2
⟨zk, x̃k − x∗⟩

≤ 1√
(1− γ)νkµ0

⟨zk, x̃k − x∗⟩.

Similarly, from 0 ≺ z̃k − z∗ ≼ (1 + γd + Lγp)ρe, we have

∥Q(p−1
k )(z̃k − z∗)∥ ≤ 1√

(1− γ)νkµ0

⟨xk, z̃k − z∗⟩.

Therefore, we have

θ2kT
2
2 ≤ θ2k

(
∥Q(pk)(x̃k − x∗)∥+ ∥Q(p−1

k )(z̃k − z∗)∥
)2

≤ θ2k
(1− γ)νkµ0

(
⟨zk, x̃k − x∗⟩+ ⟨xk, z̃k − z∗⟩

)2

.

From (57) and the facts that ⟨x∗, z∗⟩ = 0, ⟨xk, z∗⟩,
⟨x∗, zk⟩, ⟨x̃k, z∗⟩, ⟨z̃k, x∗⟩ ≥ 0, we have

θk⟨x̃k − x∗, zk⟩+ θk⟨xk, z̃k − z∗⟩

= ⟨zk, zk⟩ − ⟨xk, z∗⟩ − ⟨x∗, zk⟩+ ⟨x∗, z∗⟩

+ θk
(
⟨x∗, z̃k − z∗⟩+ ⟨x̃k − x∗, z∗⟩

)
+θ2k⟨x̃k − x∗, z̃k − z∗⟩

− ⟨xk − x∗ − θk(x̃k − x∗), H(xk − x∗ − θk(x̃k − x∗))⟩

≤ ⟨xk, zk⟩+ θk
(
⟨x∗, z̃k⟩+ ⟨x̃k, z∗⟩

)
+ θ2k⟨x̃k, z̃k⟩

≤ (1 + γ)νkµ0n+ θk(1 + γd + Lγp)ρ(⟨x∗, e⟩+ ez∗)

+θ2k(1 + γp)(1 + γd + Lγp)ρ
2n

≤ 8νkµ0n.

Thus θ2kT
2
2 = O(n2νkµ0).

Lemma 19.

T 2
4 =

O(1)

(1− (γd + Lγp))2
n2νkµ0.

Proof. By Lemma 11, we have

T 2
4 ≤ 1

(1− γ)νkµ0
∥Q(xk)∥2∥H(A+rpk)∥

2

≤ 1

(1− γ)νkµ0
∥Q(xk)∥2L2∥A+rpk∥

2

≤
γ2
pρ

2L2

(1− γ)νkµ0
θ2k∥Q(xk)∥2

≤
γ2
pL

2

(1− γ)νk

O(1)

(1− (γd + Lγp))2
n2ν2kρ

2 (by Lem. 6)

=
O(1)

(1− (γd + Lγp))2
n2νkµ0.

The following proof directly leads to Lemma 10.

Lemma 20.

T 2
1 =

O(1)

(1− (γd + Lγp))2
n2νkµ0.

Proof. From Lemma 15 to Lemma 19 and the fact that
(a+ b)2 ≤ 2a2 + 2b2, we have

T 2
1 ≤

(
2η1(θkT2 + T3 + T4) +

√
T5

)2

≤ 8(θkT2 + T3 + T4)
2 + 2T5

≤ 8(θkT2 + T3 + T4)
2 + 2∥Ŝ−1/2

k (Rc
k + rck)∥2

+4θ2k⟨x̃k − x∗, z̃k − z∗⟩

+4θkT2T3 + 4T 2
3 + 4θkT2T4

≤ O(1)

(1− (γd + Lγp))2
n2νkµ0 +O(nνkµ0).

Thus, by Lemma 12 and Lemma 20, we have

∥Hpk
(∆xk,∆zk)∥ ≤ 1

2
T 2
1 =

O(1)

(1− (γd + Lγp))2
n2νkµ0.
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