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We explore the transition to in-phase synchronization in globally coupled oscillator arrays, and
compare results for van der Pol arrays with Josephson junction arrays. Our approach yields in each
case an analytically tractable iterative map; the resulting stability formulas are simple because the
expansion procedure identifies natural parameter groups. A third example, an array of Duffing-Van
der Pol oscillators, is found to be of the same fundamental type as the van der Pol arrays, but the
Josephson arrays are fundamentally different owing to the absence of self-resonant interactions.
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I. INTRODUCTION

The study of globally coupled oscillators arises in vari-
ous areas of physics [1, 2], including optics [3], supercon-
ducting electronics [4], and mechanics [5]. They are also
used in modeling biological systems such as the brain
[6, 7] and firefly populations [8]. Globally coupled os-
cillators are of some interest from a general theoretical
perspective as well: the all-to-all coupling endows the
dynamics with a symmetry which makes its analysis un-
usually tractable.

In this paper, we explore an analytic approach that has
recently led to dramatic progress in the study of Joseph-
son junction arrays [9, 10]. Traditionally, Josephson ar-
rays are treated as belonging to two separate classes, de-
pending on whether or not the junctions have negligible
capacitance. The new analysis derives accurate stabil-
ity conditions for both classes, expanding the success of
other methods for zero capacitance junctions [11, 12]. In
addition the method leads to surprisingly simple expres-
sions for the transition boundary. In effect, the structure
of the calculation identifies natural parameter groups, so
that an apparently opaque formula in terms of the origi-
nal system parameters is made transparent. The result is
a unified stability formula for the two classes of Joseph-
son arrays.

We examine whether this success can be extended to
other oscillator arrays. We apply the method to a glob-
ally coupled array of van der Pol oscillators. The result
for the stability boundary of the in-phase state is indeed
simple and in agreement with numerical simulations; nev-
ertheless, its structure is fundamentally different than the
corresponding Josephson one. We identify the source of
the distinction as a self-resonant interaction which is ab-
sent in the Josephson problem. We also analyze an array
of Duffing-Van der Pol oscillators, which has self-resonant
interactions, and get results virtually identical to the van
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der Pol array.

II. VAN DER POL OSCILLATORS

Balthazar Van der Pol originally derived his equation
to describe the dynamics of an electronic valve oscilla-
tor implemented with a triode vacuum tube [13]. Al-
though this particular technology has long since lost its
relevance, the van der Pol equation has not. Besides its
status as a fundamental nonlinear oscillator, it is widely
used to model the behavior of a number of different sys-
tems in various areas of science. Van der Pol himself
suggested that this oscillator can be used to model the
beating of the human heart [14] and since then it has been
a favorite choice in modeling biological phenomena [15].
In a very recent example [18], a variant of van der Pol
equation (known as FitzHugh-Nagumo equation [16, 17])
has been used to describe a behavior of synaptically cou-
pled neurons. Meanwhile, the most common use of the
van der Pol oscillator is in engineering, where it is used
extensively, for instance in the study of vibrations [1, 19].

In this section we study synchronization in an array
of globally coupled Van der Pol oscillators. We solve the
equations of motion perturbatively and use this scheme
to derive an iterated map. A synchronized solution is a
fixed point of that map, and by studying the stability
of the fixed point we derive an analytic formula for the
stability of in-phase state.

We assume that the oscillators are identical and glob-
ally coupled by a passive linear load typified by an
inductor-resistor-capacitor combination (Fig. 1). The
equations of motion for such a system take the form:

v̈k + ε(1 − v2
k)v̇k + vk = q̇ (1)

µ1q̈ + µ2q̇ + q =
η

N

N
∑

j=1

vj (2)

We assume that ε and η are small parameters of the same
order and η = εκ, where κ ∼ O(1). For a concrete phys-
ical picture, we can think of vk as the voltage across the
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FIG. 1: A global coupling scheme for a series array of N Van
der Pol oscillators (vp). The coupling is weak and the load
can be described by linear equations of motion.

kth oscillator and q as the charge on the coupling ca-
pacitor; the parameters µ1 and µ2 are then proportional
to the coupling inductance and resistance, respectively.
This is by no means a general way to couple oscillators
globally. Various coupling schemes have been proposed
in literature (see e.g. Ref. [2] and references therein).

It is convenient to rewrite Equation (1) by introducing
polar coordinates:

vk = rk cos θk

v̇k = −rk sin θk

so instead of N second order equations (1) we get 2N
first order equations

ṙk = ε
rk

2

(

1 − r2
k

4

)

− ε
rk

2
cos(2θk)

+ε
r3
k

8
cos(4θk) − sin(θk)q̇ (3)

θ̇k = 1 +
ε

2

(

1 − r2
k

2

)

sin(2θk)

−ε
r2
k

8
sin(4θk) − cos(θk)

rk

q̇ (4)

We expand solutions of this system in terms of ε: rk =

r
(0)
k + εr

(1)
k + ε2r

(2)
k + · · · , θk = θ

(0)
k + εθ

(1)
k + ε2θ

(2)
k + · · · ,

and q = q(0) + εq(1) + ε2q(2) + · · · . Convergence of this
expansion at time scale of order one is guaranteed by the
Poincaré expansion theorem [20]. We need accuracy to
this order (and not for large t) in order to construct an
iterative map. The zeroth order steady state solution is:

r
(0)
k = r0k , θ

(0)
k = t + θ0k, and q(0) = 0. (5)

where r0k and θ0k are integration constants. For sim-
plicity we drop the transient part of the solution q(0) as
we are interested only in the stability of steady state,
in-phase solution.

To first order in ε we find from (2)

q(1) =
κ

NZ

∑

j

r0j cos(t + θ0j − δ) (6)

and when we substitute this into the expressions for r
(1)
k

and θ
(1)
k we obtain:

ṙ
(1)
k =

r0k

2

(

1 − r2
0k

4

)

+
κ

2NZ

∑

j

r0j cos(θ0k − θ0j + δ) + P2π (7)

θ̇
(1)
k =

κ

2NZ

∑

j

r0j

r0k

sin(θ0j − θ0k − δ) + P2π (8)

where we use the symbol P2π to denote terms which are
2π-periodic; as we shall see, we don’t need to be more
specific. The constants Z and δ can be interpreted as
the impedance and phase shift of the (linear) load:

Z =
√

(1 − µ1)2 + µ2
2, δ = arctan

µ2

1− µ1
(9)

Equations (7, 8) can be integrated directly, so the solu-
tion through first order in ε is:

rk(t) = r0k + επ
r0k

2

(

1 − r2
0k

4

)

t

+επ
κ

2NZ

∑

j

r0j cos(θ0k − θ0j + δ)t

+εP2π + O(ε2) (10)

θk(t) = θ0k + t + επ
κ

2NZ

∑

j

r0j

r0k

sin(θ0j − θ0k − δ)t

+εP2π + O(ε2) (11)

Since r0k = rk(0) + O(ε) and θ0k = θk(0) + O(ε) we may
use this solution to construct a 2N -dimensional map,
which is correct up to order ε2. An iteration of the map
corresponds to a translation in time from t = 0 to some
t = T . Choosing T = 2π + O(ε), the map assumes the
form:

rk(T ) = rk(0) + επrk(0)

(

1 − rk(0)2

4

)

+επ
κ

NZ

∑

j

rj(0) cos(θk(0) − θj(0) + δ)

+O(ε2) (12)

θk(T ) = θk(0) + 2π

+επ
κ

NZ

∑

j

rj(0)

rk(0)
sin(θj(0) − θk(0) − δ)

+O(ε2) (13)
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Note that to this order rk(T ) and θk(T ) are functions of
{rj(0)} and {θj(0)}, but do not depend on q(0) or q̇(0).
We therefore drop equations for the map q(0) → q(T )
and q̇(0) → q̇(T ) from further consideration.

To make further analytic progress, we want to choose
the period of strobing carefully. If T = 2π+επκ/Z sin δ+
O(ε2), then the in-phase synchronized state is a fixed
point of the map. Setting rk = r and θk = θ for all
k = 1, . . . , N , we find that

r = 2
√

1 + κ/Z cos δ (14)

while θ can assume any value on [0, 2π]. (The freedom
in θ does not reflect the existence of a family of periodic
solutions; rather, it amounts to fixing the value of the
phase at time t = 0.) The next step is to determine
the stability of the fixed point. We calculate the Jacobi
matrix of the map and find its eigenvalues at this point.
The eigenvalues are readily found to be, up to O(ε2):

λ1 = 1, λ2 = 1 − 2πε
(

1 +
κ

Z
cos δ

)

(15)

and

λi,i+1 = 1 − πε
(

1 + 2
κ

Z
cos δ

)

±πε

√

(

1 +
κ

Z
cos δ

)2

−
( κ

Z
sin δ

)2

(16)

with i = 3, 5, . . . , 2N − 1. The unity eigenvalue λ1 corre-
sponds to the requirement that the orbit is neutrally sta-
ble with respect to perturbations along the trajectory in
phase space. The synchronized solution is stable when all
the other eigenvalues of the map have magnitude smaller
than one.

Note that the expressions for the eigenvalues are inde-
pendent of the parameter N . This is a direct consequence
of the way we have scaled the parameters in the governing
Eqs.(1-2). It follows that the change of stability of the
in-phase state will occur for the same parameter values
regardless of the number of coupled oscillators.

To check our results we calculate numerically the Flo-
quet multiplier of the synchronized solution of the origi-
nal nonlinear system Eqs. (1, 2). In Fig. 2 we plot the nu-
merically determined Floquet multiplier of the in-phase
state as a function of the load parameter µ1, keeping the
other parameters fixed, and compare it with the largest
eigenvalue determined from Eqs.(15,16). The difference
between the two is of order O(ε2), so there is agreement
within the expected error.

We can write down a condition for the stability bound-
ary of the in-phase state as follows. We first note that
eigenvalue λ2 corresponds to perturbations within the
symmetric sub-space, while the degenerate eigenvalues
Eq. (16) corresponds to perturbations which introduce
phase differences. We get the condition for a symmetry
breaking instability by setting the modulus of the latter
equal to one, which yields (after some algebra):

2
κ

Z
cos2 δ + 2 cos δ +

κ

Z
= 0 (17)
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FIG. 2: An in-phase state becomes unstable as the modulus
of the leading eigenvalue becomes larger than one. Dots rep-
resent a numerical estimate of the eigenvalue, while the solid
line is its approximate analytical value (Eq. 16). Parameters
are set to ε = 0.1, κ = 1 and (a) µ2 = 0.8, (b) µ2 = 1.5.

if the eigenvalue is real, and

1 + 2
κ

Z
cos2 δ = 0 (18)

if the eigenvalue is complex.

III. DISCUSSION

This same approach can be used to study different
physical problems. As a first example we consider a sim-
ple variation of the system we just analyzed, which can
be implemented using a tunnel diode polarized so that
its operational point lies on the negative resistance part
of its voltage-current curve [21]. This oscillator is quan-
titatively described by the van der Pol equation. If we
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FIG. 3: Globally coupled Van der Pol oscillators.

couple a series array of these oscillators with a parallel
RLC load (Fig.3) the governing circuit equations become:

cük − (α − 3βu2
k)u̇k +

1

l
uk = Q̈L (19)

NLQ̈L + NRQ̇L +
N

C
QL =

∑

j

uj (20)

where N is number of coupled oscillators, QL is the
charge on the load, NR, NL and C/N are resistance, in-
ductance and capacitance of the load, respectively, l and c
are inductance and capacitance of individual Van der Pol
oscillators, and α and β are parameters characterizing the
tunnel diodes. With the substitutions t → τ = t/(lc),

uk → vk =
√

3β/αuk, and

QL → q =
1

c

√

3β

α
q

these equations are brought into dimensionless form:

v̈k + ε(1 − v2
k)v̇k + vk = q̈ (21)

µ1q̈ + µ2q̇ + q =
η

N

N
∑

j=1

vj (22)

where ε = αl, η = C/c, µ1 = LC/(lc) and µ2 = RC/
√

lc.
These equations are almost the same as Eqs.(1,2), except
that q̈ appears on the right hand side of Eq.(21) rather
than q̇. This minor structural difference leads to a sig-
nificant change in the synchronization properties of the
array. Assuming that ε and η are small and repeating
the previous procedure we readily derive the eigenvalues
of the in-phase solution:

λ1 = 1, λ2 = 1 − 2πε
(

1 +
κ

Z
sin δ

)

(23)

and

λi,i+1 = 1 − πε
(

1 + 2
κ

Z
sin δ

)

±πε

√

(

1 +
κ

Z
sin δ

)2

−
( κ

Z
cos δ

)2

(24)

Since by definition the phase angle δ ∈ [0, π], all eigen-
values except for λ1 are strictly smaller than one. Conse-
quently, the in-phase state is always stable, a prediction
which is verified by our extensive numerical simulations.
This is reminiscent of the coupled pendulum problem
originally studied by Christiaan Huygens who found that
the clocks always synchronized in anti-phase [5, 22].

On the other hand, if in the previous example we re-
place the Van der Pol oscillators with Duffing-Van der
Pol oscillators, we do obtain a dynamical transition. The
Duffing-Van der Pol equation,

v̈k − ε(1 − v2
k)v̇k + vk − εαv3

k = 0 (25)

has an additional cubic term, which in turn leads to an
additional term in eigenvalues

λi,i+1 = 1 − πε
(

1 + 2
κ

Z
sin δ

)

±πε

√

(

1 +
κ

Z
sin δ

)2

−
( κ

Z
cos δ

)2

+ αA(26)

Here A = 3κ/Z(2 cosδ + sin 2δ). The structure of the
calculation is identical to the one of the last section, and
we omit the details here. As expected, the spectrum of
eigenvalues (24) is just a special case of the new spectrum
(26), when α = 0. We tested these results numerically,
and confirmed that eigenvalues (26) predict correctly the
phase transition (Fig. 4).

These results suggest that the van der Pol and Duffing-
Van der Pol arrays are members of a larger class obeying
the same in-phase stability rules. On the other hand, as
we now show, the Josephson junction arrays appear to
belong to a fundamentally different class.

IV. JOSEPHSON JUNCTION ARRAYS

Figure 5 is a circuit schematic for a current-biased se-
ries array of Josephson junctions shunted by a parallel
load. The equations of motion in dimensionless form are
[9]:

βφ̈k + φ̇k + b sinφk + Q̇L = 1 (27)

µ1Q̈L + µ2Q̇L + QL = α
∑

j

φ̇j (28)

The parameter β is proportional to the junction capaci-
tance.
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FIG. 4: Results for the Duffing-Van der Pol array, showing
analytic (solid line) and numerically determined Floquet mul-
tipliers (dots) for the in-phase state. Parameters are set to
ε = 0.1, κ = 1 and (a) µ2 = 0.8, (b) µ2 = 1.5. Note that
small parameter approximation breaks down as parameter µ2

becomes smaller.
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FIG. 5: Globally coupled Josephson junction oscillators.

It is precisely this problem where Chernikov and
Schmidt originally applied the perturbation expansion we
will use. It was also for this problem where the extension
of their calculation to produce an iterative map was first
sketched, in Ref. [10]; it is in the latter that the simple
rendering of the stability formula was first noted. Unfor-
tunately, neither reference provides a sufficiently system-
atic derivation of the synchronization condition for our
purposes. We therefore present a streamlined but com-
plete derivation which (i) emphasizes how the method
identifies key parameter groups; and (ii) allows us to
identify important differences with the van der Pol cal-
culation.

As we will see, one obvious difference is that we need to
take the expansion out to second order to get non-trivial
results for the Josephson array. Even so, the in-phase
stability condition turns out to be simpler than for the
van der Pol array.

Taking b as the small parameter, we introduce the ex-
pansions

φk = φ
(0)
k + bφ

(1)
k + b2φ

(2)
k + . . . (29)

QL = Q
(0)
L + bQ

(1)
L + b2Q

(2)
L + . . . (30)

To zeroth order equations (27) and (28) are

βφ̈
(0)
k + φ̇

(0)
k + Q̇

(0)
L = 1 (31)

µ1Q̈
(0)
L + µ2Q̇

(0)
L + Q

(0)
L = α

∑

j

φ̇
(0)
j (32)

which have solutions Q
(0)
L = Q0 and φ

(0)
k = t + θk, where

Q0 and θk are constants. In first order, the differential
equations are

βφ̈
(1)
k + φ̇

(1)
k + Q̇

(1)
L = − sin(t + θk) (33)

µ1Q̈
(1)
L + µ2Q̇

(1)
L + Q

(1)
L = α

∑

j

φ̇
(1)
j (34)

The steady state solution to these equations is periodic,
so we can write it in the form:

φ
(1)
k = Ak sin t + Bk cos t (35)

Q
(1)
L = C sin t + D cos t (36)

By substituting these two solutions into (33) and (34) we
obtain a system of algebraic equations for the coefficients:

βAk + Bk = −D + cos θk (37)

−Ak + βBk = C + sin θk (38)

and

(1 − µ1)C − µ2D = −α
∑

j

Bj (39)

µ2C + (1 − µ1)D = α
∑

j

Aj (40)
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We note that the left hand side of Eq. (37-38) can be un-
derstood as a rotation of a vector (Ak , Bk) through some

angle ζ = arccos(β/G), where G =
√

1 + β2. Similarly,
after proper normalization by Z, equations (39-40) can
be interpreted as a rotation of the vector (C, D) by an
angle δ, where Z and δ are defined like in (9). Solving
these equations for the constants Ak and Bk yields, after
some algebra (cf Ref. [9], Appendix)

Ak = G−1 cos(θk + ζ)

− α

GZP

∑

j

cos(θj + ξ − δ + ζ) (41)

Bk = G−1 sin(θk + ζ)

− α

GZP

∑

j

sin(θj + ξ − δ + ζ) (42)

where

P =

√

(

β +
Nα

Z
cos δ

)2

+

(

1 +
Nα

Z
sin δ

)2

(43)

and

ξ = arctan
1 + Nα/Z sin δ

β + Nα/Z cos δ
(44)

Therefore, the first order solutions are

φ
(1)
k = G−1 sin(t + θk + ζ)

− α

GZP

∑

j

sin(t + θj + γ + ζ) (45)

Q
(1)
L =

α

ZP

∑

j

cos(t + θj + γ) (46)

where we substituted γ = ξ − δ. From the Eq. (34)
and its solution (46) we infer that γ has a physical in-
terpretation as the characteristic voltage phase shift of
the load. That is, if one removes the nonlinearity of the
Josephson junction (setting b = 0) and probes the sys-
tem with a unit amplitude sinusoidal current, the voltage
oscillations across the load will lag by γ radians (Fig. 6).
Also, by definition ζ is the voltage phase shift on a single
junction, due to a sinusoidal driving current, when b = 0
(Fig. 7). Finally, the second order equations of motion
are

βφ̈
(2)
k + φ̇

(2)
k + Q̇

(2)
L = − cos(t + θk)φ

(1)
k (47)

µ1Q̈
(2)
L + µ2Q̇

(2)
L + Q

(2)
L = α

∑

j

φ̇
(2)
j (48)

Substituting φ
(1)
k into (47) and solving yields

φ
(2)
k = − t

2G
sin ζ

+t
α

2GZP

∑

j

sin(θj − θk + γ + ζ)

+P
(2)
2π (49)

Putting this all together, we have the solution for φk:

φk = t + bP
(1)
2π − b2 t

2G
sin ζ

− b2 tα

2GZP

∑

j

sin(θj − θk + γ + ζ)

+ b2P
(2)
2π + O(b3) (50)

From this expression, we immediately deduce the N -
dimensional map φk(0) → φk(T ), good through order
b2:

φk(T ) = φk(0) + T − b2 π

G
sin ζ

+ b2 πα

GZP

∑

j

sin(φj(0) − φk(0) + γ + ζ)

+O(b3)

where we have used the fact that θk = φk(0) + O(b) and
T = 2π+O(b2). The in-phase state of the oscillator array
corresponds to the symmetric fixed point of the map with
φk(0) = φk(T ) = φ? for all k. It is straightforward to to
find the eigenvalues of the Jacobi matrix evaluated at
this fixed point, with result

λ1 = 1, λi>1 = 1 − b2 πα

ZPG
cos(γ + ζ) + O(b3) (51)

As a consequence, the stability condition for the in-phase
state takes on the very simple form

cos(γ + ζ) > 0 (52)

Numerical simulations [10] show that this condition ac-
curately describes the onset of synchronization for b < 1.
By substituting expressions for angles γ and ζ one recov-
ers the synchronization condition quoted by [9]. More-
over, by setting parameter β = 0 we obtain the well
known synchronization condition for noncapacitive junc-
tions [12, 24, 25].

It is worthwhile to consider this very simple result from
another perspective. We emphasized that it is possible to
give a direct physical interpretation of the phase angles.
This means that the two constituents of the stability con-
dition are determined by linear properties of the circuit,
while the (crucial) role of the nonlinearity is to act as a
catalyst. Furthermore, condition (52) does not depend
on internal structure of individual oscillators, but only
on phase shifts they induce when driven by a sinusoidal
signal. It is natural to speculate that this law should
apply to a broader class of oscillators.

V. CONCLUSION

The analytic scheme we have used is successful in cap-
turing the stability properties of the in-phase state of
various globally coupled arrays. It provides a clear and
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FIG. 6: Linear components of the full nonlinear problem in
Fig. 5. This is equivalent circuit for the Eqs. (33-34). The
angle γ is the phase shift by which the load voltageuL lags
behind the driving current i.

r

c
~ iu

FIG. 7: The phase ζ as defined in (37-38) is the voltage phase
shift on a single junction due to driving current, when b = 0.

straightforward analysis, and leads to simple looking re-
sults. The perturbation calculation can be relatively eas-
ily extended to higher orders in the small parameter. In
certain cases this scheme may be more readily applied
than standard methods, such as averaging. (Based on
our personal experiences, this is certainly true for the
examples studied here.) Nevertheless, there is no rigor-
ous mathematical study of this approach, and it remains
unclear what are its advantages (or shortcomings) rela-
tive to other analytic methods.

The different examples share much in common. In car-
rying out the calculation order by order, we are led to
define certain parameter groups which are in some sense

natural: the resulting formulas for the eigenvalues are
rather simple functions of these parameter groups. In all
cases the parameter groups can be interpreted physically
as impedances or phase shifts.

Despite the similarities, there appear significant dif-
ferences between the van der Pol and Josephson arrays.
In the latter case we are led to an impressively simple
stability condition involving only the phase shifts. The
van der Pol problem is somewhat more subtle; the sta-
bility condition depends on both the phase shift and the
impedance. There is no way to untangle these to yield a
correspondingly simple stability condition. The two seem
to fall into different classes.

In another sense, it is perhaps natural that the van
der Pol and Josephson arrays behave differently. In his
work on oscillator arrays [1], Blekhman underscores the
distinction between vibrators and rotors. The class of
vibrators is typified by the van der Pol oscillator, and the
class of rotors is typified by the “overturning” Josephson
junction. And indeed the Duffing-Van der Pol array (also
vibrators) is described by the same stability law as the
van der Pol array.

In the context of our calculations, the reason for this
essential difference can be traced to the presence or ab-
sence of near-resonant interactions. In the van der Pol
array, the zeroth order problem is just the undriven, un-
damped harmonic oscillator. These necessarily generate
oscillations in the passive load at the system’s resonant
frequency. In contrast, the zeroth order problem of the
Josephson array lacks any resonance. On the one hand
this leads to non-trivial interactions only at second order,
but it also leads to a separation of the roles of impedances
and phase shifts. As one sees from Eq.(51), while the
phase shifts (γ, δ, and ζ) directly determine the binary
issue of whether or not the in-phase state is stable, the
impedances (Z, P, and G) only affect the overall degree
of stability.
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