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We generalize the exp-function method recently proposed by He and Wu [Chaos, Solitons and
Fractals 30, 700 (2006)]. We apply this generalized method to the Korteweg-de Vries equation and
derive the known 2-soliton and 3-soliton solutions. We also discuss the efficiency, as well as the
drawbacks of the proposed method.
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1. Introduction

During the last decades, obtaining special solutions
of nonlinear integrable and nonintegrable partial dif-
ferential equations (PDEs) has been a most interest-
ing subject of extensive research. As a result, one can
find in the bibliography an enormous amount of books
and papers aimed at this direction, where several dif-
ferent kinds of methods are described, such as the in-
verse scattering method [1], Hirota’s method [1], the
Painlevé analysis [2 – 4], symmetry reductions [5], the
homogenous balance method [6], the tanh method [7],
the exp-function method [8], and several “ansatz”
methods (see for example [9, 10]).

One disadvantage of many of the methods men-
tioned above is that they can only lead to wave (or
trigonometric) solutions of the form u = u(x, t) =
u(x− ct), i. e. solitary waves. This is due to the fact
that the starting point of these methods is precisely the
assumption that the equation admits a solution of a spe-
cific form, which, in every case, embeds in the above
general form.

In this paper we generalize the exp-function method,
in order to be able to reveal n-soliton solutions for any
n ≥ 2. We then apply the proposed method to the fa-
mous Korteweg-de Vries (KdV) equation, where the
known 2-soliton and 3-soliton solutions are revealed in
a simple and straightforward way. We also discuss the
advantages, as well as the drawbacks of the proposed
generalized method.

2. The Basic Idea

Recently in [8], a new method was proposed for
finding special solutions of PDEs, which was called
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the “exp-function method”. The method is based on
the assumption that the solutions can be expressed in
the form

u(x, t) =
m

∑
i=0

aieiξ / n

∑
i=0

bieiξ , ξ = b(x− ct). (1)

By substituting relation (1) into the equation and bal-
ancing the highest-order terms we can determine m
and n. Consequently, substituting relation (1) into the
equation and equating to zero the coefficients of eiξ , we
can determine the coefficients ai, bi, b and c (some of
them may be arbitrary), or conclude with the fact that
the equation does not admit any solution of the above
form.

The above method appears to be new, although ideas
in this direction can be found in [11 – 13]. It also ap-
pears to be reasonable, since the majority of the solu-
tions of various PDEs that appear in the bibliography
consist of combinations of exponentials, trigonomet-
ric and/or hyperbolic functions, which embed in the
form (1).

Since many of the n-soliton solutions of various
equations are also combinations of exponential func-
tions, it is also reasonable to generalize relation (1) as

u(x, t) =
m1

∑
i=0

m2

∑
j=0

ai jeiξ1+ jξ2
/ n1

∑
i=0

n2

∑
j=0

bi jeiξ1+ jξ2 ,

ξi = bi(x− cit), i = 1,2,

(2)

or
u(x, t) =
m1

∑
i=0

m2

∑
j=0

m3

∑
k=0

ai jkeiξ1+ jξ2+kξ3
/ n1

∑
i=0

n2

∑
j=0

n3

∑
k=0

bi jkeiξ1+ jξ2+kξ3 ,

ξi = bi(x− cit), i = 1,2,3. (3)
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Consequently, substituting relations (2) or (3) into the
equation, we can determine (if possible) all coeffi-
cients.

Clearly, relations (2) and (3) can now reveal 2-soli-
ton and 3-soliton solutions, respectively. Moreover, we
can obviously generalize these relations and reveal in
the same way, provided they exist, n-soliton solutions
for any fixed n.

3. Application to the KdV Equation

In this section we apply the above procedure to the
famous KdV equation

ut −6uux + uxxx = 0, (4)

and derive the known 2-soliton and 3-soliton solutions.
All the computations are carried out by using MATHE-
MATICA.

3.1. 2-Soliton

We assume that (4) admits a solution of the form

u(x, t) = (a10eξ1 + a01eξ2 + a11eξ1+ξ2 + a21e2ξ1+ξ2

+a12eξ1+2ξ2)(1 + a1eξ1 + a2eξ2 + a3eξ1+ξ2)−2, (5)

where ξi = bi (x− cit), i = 1,2, which embeds in the
form (2). Substituting relation (5) in (4) we obtain the
relation

5
∑

i=0

5
∑
j=0

Ai jeiξ1+ jξ2

(1 + a1eξ1 + a2eξ2 + a3eξ1+ξ2)5 = 0,

where A55 = A00 = 0.
Relations A45 = 0 and A54 = 0 imply, respectively,

c1 = b1
2, c2 = b2

2. (6)

Consequently, relations A53 = 0, A35 = 0 and A44 = 0
yield, respectively,

a21 = −2a1a3b2
2,

a12 = −2a2a3b1
2,

a11 = −4a1a2(b1 −b2)2.

Then, relation A43 = 0 implies

a10 = −{
2a1

[
2a3b2

2(b1 + b2)2

+ a1a2(b1 −b2)2(b1
2 −2b2

2)]}{
a3(b1 + b2)2}−1,

while relation A34 = 0 yields

a01 = −{
2a2

[
2a3b1

2(b1 + b2)2

+ a1a2(b1 −b2)2(b2
2 −2b1

2)]}{
a3(b1 + b2)2}−1.

Finally, relation A42 = 0 implies

a3 =
a1a2(b1 −b2)2

(b1 + b2)2 , (7)

while the rest of relations Ai j = 0 are identically satis-
fied.

Thus, we conclude with the 2-soliton solution (5),
where

a10 = −2a1b1
2, a01 = −2a2b2

2,

a11 = −4a1a2(b1 −b2)2,

a21 = −2a1
2a2b2

2(b1 −b2)2

(b1 + b2)2 ,

a12 = −2a1a2
2b1

2(b1 −b2)2

(b1 + b2)2 ,

a3 is given by (7), c1 and c2 are given by (6), and a1,
a2, b1, b2 remain arbitrary.

3.2. 3-Soliton

We now assume that (4) admits a solution of the
form

u(x, t) =
f1(ξ1,ξ2,ξ3)
f2(ξ1,ξ2,ξ3)

, (8)

where ξi = bi(x− cit), i = 1,2,3, and

f1(ξ1,ξ2,ξ3) = a100eξ1 + a010eξ2 + a001eξ3

+ a110eξ1+ξ2 + a101eξ1+ξ3 + a011eξ2+ξ3

+ a210e2ξ1+ξ2 + a120eξ1+2ξ2 + a201e2ξ1+ξ3

+ a102eξ1+2ξ3 + a021e2ξ2+ξ3 + a012eξ2+2ξ3

+ a111eξ1+ξ2+ξ3 + a211e2ξ1+ξ2+ξ3 + a121eξ1+2ξ2+ξ3

+ a112eξ1+ξ2+2ξ3 + a221e2ξ1+2ξ2+ξ3

+ a212e2ξ1+ξ2+2ξ3 + a122eξ1+2ξ2+2ξ3 ,

f2(ξ1,ξ2,ξ3) =
(
1 + a1eξ1 + a2eξ2 + a3eξ3 + a4eξ1+ξ2

+ a5eξ1+ξ3 + a6eξ2+ξ3 + a7eξ1+ξ2+ξ3
)2

.

Clearly, relation (8) embeds in the form (3).
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Substituting relation (8) in (4) we obtain, after similar manipulations,

a100 = −2a1b1
2, a010 = −2a2b2

2, a001 = −2a3b3
2, a110 = −4a1a2(b1 −b2)2,

a101 = −4a1a3(b1 −b3)2, a011 = −4a2a3(b2 −b3)2, a210 = −2a1
2a2b2

2(b1 −b2)2

(b1 + b2)2 ,

a120 = −2a1a2
2b1

2(b1 −b2)2

(b1 + b2)2 , a201 = −2a1
2a3b3

2(b1 −b3)2

(b1 + b3)2 , a102 = −2a1a3
2b1

2(b1 −b3)2

(b1 + b3)2 ,

a021 = −2a2
2a3b3

2(b2 −b3)2

(b2 + b3)2 , a012 = −2a2a3
2b2

2(b2 −b3)2

(b2 + b3)2 ,

a111 = −8a1a2a3
[
b1

2(b2
6 + b3

6)−2b1
4(b2

4 + b3
4)+ b1

6(b2
2 + b3

2)+ b2
2b3

2(b2
2 −b3

2)2]

(b1 + b2)2(b1 + b3)2(b2 + b3)2 ,

a211 = −4a1
2a2a3(b1 −b2)2(b1 −b3)2(b2 −b3)2

(b1 + b2)2(b1 + b3)2 , a121 = −4a1a2
2a3(b1 −b2)2(b1 −b3)2(b2 −b3)2

(b1 + b2)2(b2 + b3)2 ,

a112 = −4a1a2a3
2(b1 −b2)2(b1 −b3)2(b2 −b3)2

(b1 + b3)2(b2 + b3)2 , a221 = −2a1
2a2

2a3b3
2(b1 −b2)4(b1 −b3)2(b2 −b3)2

(b1 + b2)4(b1 + b3)2(b2 + b3)2 ,

a212 = −2a1
2a2a3

2b2
2(b1 −b2)2(b1 −b3)4(b2 −b3)2

(b1 + b2)2(b1 + b3)4(b2 + b3)2 , a122 = −2a1a2
2a3

2b1
2(b1 −b2)2(b1 −b3)2(b2 −b3)4

(b1 + b2)2(b1 + b3)2(b2 + b3)4 ,

a4 =
a1a2(b1 −b2)2

(b1 + b2)2 , a5 =
a1a3(b1 −b3)2

(b1 + b3)2 , a6 =
a2a3(b2 −b3)2

(b2 + b3)2 ,

a7 =
a1a2a3(b1 −b2)2(b1 −b3)2(b2 −b3)2

(b1 + b2)2(b1 + b3)2(b2 + b3)2 ,

and ci = bi
2, i = 1,2,3, while a1, a2, a3, and b1, b2, b3

remain arbitrary.

4. Conclusions and Discussion

We proposed a generalization of the exp-function
method. Consequently, we applied this generalized
method to the famous KdV equation and revealed the
known 2-soliton and 3-soliton solutions.

The method consists only of algebraic manipula-
tions, which can be carried out by using any computer
algebra program, such as MATHEMATICA or MAT-
LAB. Moreover, since the existence of n-soliton solu-
tions is a general feature of integrable PDEs, the pro-

posed method could be used not simply to derive new
solutions, but actually to reveal new integrable cases.

One drawback of the proposed method is that the
balancing of the highest-order terms can actually lead
to infinite many cases that have to be treated sepa-
rately. We should mention though that, regarding the
derivation of one-soliton solutions, this problem can
be partially overcome, if auxiliary ordinary differen-
tial equations are used [14, 15]. Even for fixed mi
and ni [see relations (2) and (3)] the method becomes
rather complicated, depending on these values and the
equation itself, since equating to zero the coefficients
of the exponentials may imply a highly nonlinear
system.
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