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The isotropic stationary process

Y (x) = θ + ε (x) .

The design points x1, ..., xN are taken from a compact design

space X = [a, b], b− a > 0.

The mean parameter E(Y (x)) = θ is unknown.

The variance-covariance structure C (d, r) depends on another

unknown parameter r.
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Fisher information matrices

In such model we have Fisher information matrices

Mθ(n) = 1TC−1 (r) 1

and (see Pázman (2004) and Xia et al. (2006))

Mr(n) =
1

2
tr

{
C−1 (r)

∂C (r)

∂r
C−1 (r)

∂C (r)

∂rT

}
.

For both parameters of interest M(n) (θ, r) =

(
Mθ(n) 0

0 Mr(n)

)
.
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Regularity assumptions on covariance structure

a) C (d, r) > 0 for all r and 0 < d < +∞,

b) for all r is mapping d → C (d, r) continuous and strictly de-

creasing on (0,+∞)

c) limd→+∞C (d, r) = 0.
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Example 1.

The power exponential correlation family C (d, r) = σ2 exp(−rdp),

0 < p ≤ 2, r > 0. This family is by far the most popular family of

correlation models in the computer experiments literature (see

Santner et al. (2003)). The exponential exp(−rd) and Gaussian

correlation functions exp(−rd2) are special cases of the power

exponential correlation family.
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Example 2.

The Matérn class of covariance functions

cov(d, φ, v) =
1

2v−1Γ(v)
(
2
√

vd

φ
)vKv(

2
√

vd

φ
)

(see e.g. Handcock and Wallis (1994)). Here φ and v are the
parameters and Kv is the modified Bessel function of the third
kind and order v.

The class is motivated by (a) the smoothness of the spectral
density, (b) the wide range of behaviors covered, (c) and the
interpretability of the parameters.

It includes the exponential correlation as a special case with
v = 0.5 and the Gaussian correlation function as a limiting case
with v →∞.
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Which design is good?

We employ the D-optimality: to maximize the determinant of

Fisher information matrix (FIM)

Classical interpretation: (Fedorov, Pázman, Pukelsheim) D-optimum

design minimizes the volume of the confidence ellipsoid for θ.

We need justification of D-optimality under correlation,

since

Correlation may lead to unexpected, counter-intuitive even para-

doxical effects in the design (e.g. Müller and Stehĺık, 2004 &

2007) as well as the analysis (e.g. Smit, 1961) stage of experi-

ments.
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Justification of D-optimality under correlation

a) The inverse of the FIM may well serve as an approximation

of the covariance matrix of maximal likelihood estimators

in special cases (Pázman (2004), Abt and Welch (1998), Zhu

and Stein (2005), Zhang and Zimmerman (2005)).

b) Although some simulation and theoretical studies shows the

limits of such an approximation of the covariance matrix of the

ML estimates, it can still be used as a design criterion if the

relationship between these two are monotone, since for the

purpose of optimal designing the only correct ordering is im-

portant. For instance, Zhu and Stein (2005) observes a mono-

tone relationship between them.
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Mθ(n) structure

Example 1: Exponential covariance structure exp(−rd)

For the sake of simplicity and without the loss of generality we

fix r = 1, X = [−1,1]. We have

Mθ(2) =
2ed

1 + ed

The D-optimal design is the maximal distant one.
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If we consider three-point-design with distances di = xi+1−xi, i =

1,2 then information

Mθ(3) = 1+
2 + 2e−d1−2d2 − 2e−d1 + 2e−2d1−d2 − 2e−2(d1+d2) − 2e−d2

e−2(d1+d2) − e−2d1 − e−2d2 + 1
.

In Stehĺık (2004) is proved that {−1,0,1} is D-optimal design

for θ.

The complexity of Mθ(n) increases significantly with n (see Stehĺık

(2007)).
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The equidistant designs

The structure of Mθ(n) for equidistant designs is much more

simple, i.e.

Mθ(2) =
2ed

1 + ed
, Mθ(3) =

−1 + 3ed

1 + ed
, Mθ(4) =

−2 + 4ed

1 + ed
.

Kisělák and Stehĺık (2007):

Mθ(k) =
2− k + ked

1 + ed
.

Note that limd→+∞Mθ(k)/Mθ(k − 1) = k
k−1, k ≥ 3.
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Mθ(n) is increasing with number of the design points
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Theorem 4 in Kisělák and Stehĺık (2007): The equidistant de-

sign for parameter θ is D-optimal.

This theorem is some extension of the Theorem 3.6 in Dette,

Kunert and Pepelyshev (2006). Therein is proved, that for r → 0

the exact n-point D-optimal design in the linear regression model

with exponential covariance converges to the equally spaced de-

sign.

14



A lower bound for Mθ(n)

LB(d) := n infx
xT C−1(d,r)x

xT x
.

Theorem 1 in Stehĺık (2007).

Let C (d, r) is a covariance structure satisfying a),b),c). Then

1) for any design {x, x + d1, x + d1 + d2, ..., x + d1 + ... + dn−1}
given by distances di, i = 1, ..., n−1 and for any subset of distances

dij , j = 1, ..., m the lower bound function (di1, ..., dim) → LB(d) is

increasing in the d’s. In particular, for any equidistant design

(∀i : di = d) the function d → LB(d) is increasing in d.

2) lim∀i:di→+∞Mθ(n)/Mθ(n− 1) = n
n−1.
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The proof is based on Frobenius Theorem and smoothness of

matrix inverse.

Illustrative example

Let us consider a power exponential covariance family with zero

nugget. For the sake of simplicity let us consider the equidistant

designs. We have

Mθ(2) =
2erdp

1 + erdp , Mθ(3) =
edpr

(
edpr − 4e2

pdpr + 3e(1+2p)dpr
)

e2dpr − 2e2
pdpr + e(2+2p)dpr

.

Then limd→+∞Mθ(k)/Mθ(k − 1) = 3
2.
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Estimation of the covariance parameter r.

Problem: One of the fundamental assumptions, the knowledge

of the covariance function, is in most cases almost unrealistic. ”It

seems to be artificial, that the first moment E(Y (x)) is assumed

to be unknown whereas the more complicated second one is

assumed to be known...” Näther (1985)

Mr is much more complex than Mθ

Example: Mr(2) = d2 exp(−2rd)(1+exp(−2rd))
(1−exp(−2rd))2

.

Two point optimal design for parameter r is collapsing (dD−optimal =

0)! This also holds for pair (θ, r)!
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Nugget effect

The distance of the two point D-optimal design for covariance

parameter r of exponential covariance can be tuned by the nugget

τ2 = lim
d→0

1

2
V ar(Y (x + d)− Y (x))

In Stehĺık, Rodŕıguez-D́ıaz, Müller and López-Fidalgo (2007) is

proved that the distance of D-optimal design is an increasing

function of the nugget τ2.
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The complexity of Mθ(n) increases very significantly with n (see

Stehĺık (2007)).

For n-point equidistant design the relation (n−1)Mr(2) = Mr(n)

is proved in Kisělák and Stehĺık (2007).

However, if the nugget τ2 > 0 then (n − 1)Mr(2) 6= Mr(n), but

equality can be reached in the limit τ2 → 0, e.g.

lim
α→1

Mr,1−α(3)/Mr,1−α(2) = 2 = Mr(3)/Mr(2).
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Comparisons of equally spaced designs

Hoel (1958) provided asymptotical comparisons made for equally

spaced sets of points. The sets of points that he selected for

consideration were the following:

(a) n equally spaced points in the interval (0, l)

(b) 2n equally spaced points in the interval (0, l)

(c) 2n equally spaced points in the interval (0,2l)

(d) two sets of observations of type (a)
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We consider ratios:

R1 =
[ M(n, d)

M(2n, d/2)

]−1

R2 =
[ M(n, d)

M(2n, d)

]−1

R3 =
[ M(n, d)

M(m runs)

]−1
.

These ratios are used in the three cases,

(A) when the only trend parameter θ is estimated, (B) when

the only correlation parameter r is estimated, (C) when the

both parameters (θ, r) are estimated.
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In Kisělák and Stehĺık (2007) we have observed the following

results:

(a) for all possible combinations of parameters of interest, i.e.

{θ}, {r} and {θ, r}, the interval over which observations are to

be made should be extended as far as possible (increasing

domain asymptotics)

(b) However doubling the number of observation points in a

given interval (infill domain asymptotics), when the only param-

eter θ is of interest and there are already a large number of

such points, gives practically no additional estimation informa-

tion. When {r} or {θ, r} are the sets of interest, doubling gives

the double information.

22



References

Abt M. and Welch W.J. (1998). Fisher information and maximum-

likelihood estimation of covariance parameters in Gaussian stochas-

tic processes, The Canadian Journal of Statistics, Vol. 26, No.

1, 127-137.

Dette, H., Kunert, J. and Pepelyshev, A. (2006). Exact optimal

designs for weighted least squares analysis with correlated errors,

accepted to Statistica Sinica.

Handcock M.S. and Wallis J.R. (1994). An Approach to Statis-

tical Spatial-Temporal Modeling of Meteorological Fields, JASA,

89, 368-378.

23



Hoel P.G. (1958). Efficiency Problems in Polynomial Estimation.

Annals of Math. Statistics, 29, 1134-1145.
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Thank you for your attention!
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