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Modeling suggests that gene circuit architecture
controls phenotypic variability in a bacterial
persistence network
Rachel S Koh and Mary J Dunlop*

Abstract

Background: Bacterial persistence is a non-inherited bet-hedging mechanism where a subpopulation of cells enters
a dormant state, allowing those cells to survive environmental stress such as treatment with antibiotics. Persister
cells are not mutants; they are formed by natural stochastic variation in gene expression. Understanding how
regulatory architecture influences the level of phenotypic variability can help us explain how the frequency of
persistence events can be tuned.

Results: We present a model of the regulatory network controlling the HipBA toxin-antitoxin system from
Escherichia coli. Using a biologically realistic model we first determine that the persistence phenotype is not the
result of bistability within the network. Next, we develop a stochastic model and show that cells can enter
persistence due to random fluctuations in transcription, translation, degradation, and complex formation. We then
examine alternative gene circuit architectures for controlling hipBA expression and show that networks with more
noise (more persisters) and less noise (fewer persisters) are straightforward to achieve. Thus, we propose that the
gene circuit architecture can be used to tune the frequency of persistence, a trait that can be selected for by
evolution.

Conclusions: We develop deterministic and stochastic models describing how the regulation of toxin and antitoxin
expression influences phenotypic variation within a population. Persistence events are the result of stochastic
fluctuations in toxin levels that cross a threshold, and their frequency is controlled by the regulatory topology
governing gene expression.
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Background
Gene expression is controlled by regulatory networks that
influence the mean levels, dynamics, and noise distribu-
tions of proteins expressed within a single cell. The out-
puts of these networks are under selective pressure; thus a
regulatory architecture that results in beneficial traits can
be selected for by evolution. A key question in systems
biology is how the architecture of a gene regulatory net-
work influences the dynamics of gene expression. This
question has been explored extensively using mathemat-
ical modeling [1]. However, a subtler question is how the
architecture of a gene circuit influences the variability in
gene expression, and what the implications are for

population fitness. Previous studies have shown that simi-
lar gene circuit architectures can produce vastly different
noise profiles [2,3]. It is clear from systems-level studies
that noise in gene networks can be controlled, or selected
for, by evolution [4-7]. For example, stress-response genes
in Saccharomyces cerevisiae have been shown to exhibit
significant stochastic variation [8]; similar results have
been found for genes that respond to environmental
changes [9]. Furthermore, genes that are lethal when
deleted exhibit much lower than average levels of stochas-
tic variation [10]. The regulatory architecture of a network
also plays an important role in controlling noise [1-4,11-
15]. This has been shown specifically for drug-induced
stress through several studies demonstrating that
increased phenotypic variability can provide a selective ad-
vantage [16-19]. The regulation of noise can have dramatic
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implications when it controls physiological processes im-
portant for stress response and survival.
Here, we explore the role of network architecture on

the noise properties of a regulatory circuit controlling
bacterial persistence. Persistence is a non-inherited
mechanism by which bacteria tolerate environmental
stress, such as treatment by antibiotics. Cells are able to
stochastically switch between a dormant state known as
persistence and a regular growth state. In the persistence
state, cell growth slows drastically and the cell is there-
fore immune to treatment by antimicrobial agents that
target growth. Examples include beta-lactams, which
interfere with cell wall biosynthesis and aminoglycosides,
which interrupt translation [20]. Because the cells are in
a dormant state, they can effectively evade the drugs.
When the cells switch back to the regular growth state,
they resume replication and are no longer tolerant to
antimicrobial agents. It is important to understand that
persistence is not a genetic change; both persisters and
normal cells have identical genetic code. Instead, persist-
ence is a transient state that a small subset of the popu-
lation enters due to phenotypic variation. By maintaining
subpopulations of normal and persister cells, the whole
population hedges against unlikely but catastrophic
events, while still maintaining near optimal growth at
the population level.
Persistence plays an important role in chronic infections.

High-persistence (or hip) mutants are found in Pseudo-
monas aeruginosa, Candida albicans, Escherichia coli, and
Mycobacterium tuberculosis [21,22]. At any given time, a
typical bacterial population will have between 10-7 and
10-5 cells in the persistence state [23]. High persistence
mutants result in 10-4 to 10-2 portion of cells in the per-
sistence state [20]. This suggests that although it is pos-
sible to increase the number of persisters through
mutations, their level has been tuned to balance tolerance
to environmental threats with a maximal growth rate.
Toxin-antitoxin modules play a key role in the formation

of persister cells. Previous work has shown that toxins can
induce the dormant state by inhibiting important cellular
processes, most commonly mRNA translation [24].
Though toxins have historically been associated with pro-
grammed cell death, recent studies show that toxin-
antitoxin loci can function to moderate global levels of
translation and replication in cells that must survive in
stressful environments [21]. For example, the toxins relE
and mazF cleave mRNA, thus inhibiting translation and
cell replication. This helps the cell cope with nutritional
stress; if there is a temporary shortage of nutrients, some
of the population will survive. The action of the toxin can
be countered by the presence of a small antitoxin molecule
which binds to the large toxin protein, disabling its func-
tion [25]. The toxin is stable relative to the antitoxin,
whose rapid degradation and production ensure a fast

dynamic response. This creates a two-state system, where
an excess of toxin will induce dormancy and persistence,
but enough antitoxin keeps the cell in its normal growth
state. Many pathogenic bacteria have multiple toxin-
antitoxin loci. For example, M. tuberculosis has 88 known
toxin-antitoxin systems [26]. There may be interactions
between these different toxin-antitoxin loci that further
complicate our current understanding of persistence.
The regulatory architecture of toxin-antitoxin systems is

highly conserved across bacterial species [27]. In most
cases, the antitoxin gene precedes the toxin gene, with the
two loci expressed on the same operon. Because of this,
the two genes share a regulatory structure, which can
serve to correlate noise in toxin and antitoxin expression.
In addition, the antitoxin protein is often a transcription
factor, which autorepresses the promoter that controls ex-
pression of the two genes. This negative feedback-based
inhibition results in low levels of protein expression, which
increases the potential for noise in the system. Without
feedback, higher toxin and antitoxin expression would
mitigate the effect of noise. This tradeoff in noise, which is
reduced due to coupled transcription, but elevated due to
negative feedback, is the focus of the present study.
The HipBA toxin-antitoxin system from E. coli is a

well-known persistence mechanism. The HipA toxin
causes cell stasis, but HipB can inactivate HipA and cre-
ate a non-toxic complex. A HipB dimer binds to two
copies of HipA, rendering it neutral through conform-
ational inactivation and sequestration [27]. Here, we use
the HipBA toxin-antitoxin system as a model for under-
standing the dynamics and regulatory processes that gov-
ern bacterial persistence. HipA is highly conserved
among Gram-negative bacteria [27], suggesting that
phenotypic variation in toxin-antitoxin expression is a
common mechanism for persistence.
The aim of this study is to identify the specific gene

expression dynamics that govern persistence. In particu-
lar, we ask how the regulatory architecture of the gene
circuit leads to noise, and whether this noise is subject
to evolutionary tuning. Knowledge of how, why, and
when cells switch to persistence can help guide studies
on treatment strategies to reduce or eliminate the num-
ber of cells that enter persistence.

Methods
We developed a model of the HipBA toxin-antitoxin sys-
tem native to E. coli. First, we created a deterministic
model of the system shown in Figure 1a by using the Law
of Mass Action to derive the system in Eq. 1 with para-
meters given in Table 1. The resulting system describes
the temporal dynamics of HipB and HipA expression. The
model considers the two genes, hipB and hipA, which are
expressed from the same operon. They are transcribed
into mRNA and subsequently translated into proteins. The
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HipB protein is both transcribed and degraded at a faster
rate than HipA because antitoxin proteins are relatively
unstable, with a lifetime of a few minutes [21]. HipB
dimerizes and then binds to two copies of HipA, which
sandwich the dimer [27]. This complex and the HipB
dimer can both bind to the promoter site to repress
mRNA transcription. Our model specifically focuses on

type II persisters, which are generated when cells enter the
persistence state stochastically from stationary phase [28].
Differential equations were simulated in Matlab (Math-
works, Inc.) using the ode15s function and analyzed using
custom scripts.
A represents the HipA protein; B is HipB. B2 is the

dimerized form of HipB. AB2A is the HipA-HipB toxin-
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Figure 1 (A) Biochemical network for the HipBA system. A is the HipA protein; B is the HipB protein. Dimerized HipB is denoted B2, while the
complex of HipA and HipB is AB2A. P, P’, and P” are the promoter states and M is mRNA. All chemical reactions for the simulations are given in Eq. 2;
parameters are listed in Table 1. (B) Summary of the dual negative feedback structure of the model. (C) Reduced order deterministic model has a
single stable equilibrium point. Nullclines for the reduced order model are plotted.

Table 1 Chemical reaction parameters for the HipBA system
Reaction Reactants Products Reaction Rate Value Units Range Tested Reference

transcription P M+ P α 60 hour^-1 6-600 [29,30]

transcription P' M+ P' αB2 6 hour^-1 0.6-60 [29,30]

transcription P'' M+ P'' αAB2A 6 hour^-1 0.6-60 [29,30]

HipB binds to promoter P + B2 P' θB2 1500 hour^-1/mol 150-15,000 approximated based on [31]

HipB unbinds P' P + B2 γB2 60 hour^-1 6-600 approximated based on [31]

HipB-HipA complex binds to promoter P + AB2A P'' θAB2A 1500 hour^-1/mol 150-15,000 [31]

HipBA unbinds P'' P + AB2A γAB2A 60 hour^-1 6-600 [31]

mRNA degradation M 0 δM 6 hour^-1 0.6-60 [32]

HipB translation M M+B βB 60 mol/hr/mRNA 6-600 [29,30]

HipA translation M M+A βA 12 mol/hr/mRNA 1.2-120 [29,30]

HipB degradation B 0 δB 18 hour^-1 1.8-180 [21]

HipA degradation A 0 δA 1.2 hour^-1 0.12-12 [31,32]

HipB dimerization B+ B B2 βB2 60 hour^-1 6-600 assumed monomeric
form to be uncommon

HipB dimer degradation B2 0 δB2 5 hour^-1 0.5-50 [21]

HipB-HipA complex association B2 + 2A AB2A μ 60 hour^-1/mol 6-600 approximated based on [31]

HipB-HipA complex dissociation AB2A B2 + 2A μR 60 hour^-1 6-600 approximated based on [31]

HipB-HipA complex degradation AB2A 0 δAB2A 1.2 hour^-1 0.12-12 [31,32]
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antitoxin complex. M is the mRNA transcript from
hipBA. P is the promoter of hipBA with no proteins
bound, P’ has B2 bound, and P” has AB2A bound. The
equations for the rate of change of P, P’, and P” describe
how the promoter switches between states with nothing,
B2, and AB2A bound. mRNA is transcribed from all
three promoter states at different rates and is also
degraded. HipA is translated from mRNA and degraded
by a protease. HipB is also translated from mRNA and
subsequently binds to a second copy of itself to form the
HipB dimer, which can bind to and repress the promoter.
Dimerization between two HipB molecules is modeled as
irreversible because unbinding is slow relative to the
binding rate [27,29]. Two copies of HipA bind to one
copy of the HipB dimer to form the HipB-HipA com-
plex, which can bind to and represses the promoter.
To analyze the possibility of multiple steady state solu-

tions, we developed a reduced order model and con-
ducted phase plane analysis. The dynamics of the
promoter states, mRNA, B, and B2 are fast relative to A
and AB2A. Thus, we assumed that the other states were
at equilibrium, and therefore time derivatives equal to
zero. The steady state concentrations of the fast variables
were used in a two-dimensional model that describes the
rate of change of A and AB2A. We next used a phase
portrait to plot the nullclines, which are the lines where
d[A]/dt = 0 and d[AB2A]/dt = 0. The points where the
nullclines cross are the equilibrium points of the system.
If the lines cross more than once, multiple equilibrium
solutions are possible. The full equations for the reduced
order model are given in the Additional file 1.
Next, we conducted two parametric studies to verify

that the system dynamics are monostable for a broad
range of biologically realistic parameter values. First, we
varied single parameters and checked for the existence of
multiple stable states. For each of the parameters in the

model we chose that parameter from a log normal distri-
bution using the range given in Table 1. All other para-
meters were held constant. Using this set of parameters,
the system was simulated for 500 distinct initial condi-
tions, which were generated randomly with initial mRNA
concentration varying uniformly between 0 and 100 and
all proteins varying uniformly between 0 and 1000. Pro-
moter concentrations were held constant for all simula-
tions. We then checked, numerically, whether starting
the system at different initial conditions generated any
solutions that were more than 1% away from any others.
This test was repeated 100 times for each of the 17
model parameters. We found no solutions that varied
more than 1% for different initial conditions, suggesting
that only monostable solutions exist.
Next, we allowed all system parameters to vary simul-

taneously. Specifically, all parameters were selected from
log normal distributions using the ranges given in
Table 1. Initial conditions were selected as described in
the single parameter study. We tested 1000 different
combinations of parameters and checked for the exist-
ence of multiple stable states using the 1% metric
described above. For all parameter combinations the sys-
tems converged to a single equilibrium point.
Stochastic simulations were performed using Gillespie’s

algorithm [33] using custom written C code with subse-
quent analysis in Matlab. The simulations were based on
the chemical reactions shown in Eq. 2 with the para-
meters listed in Table 1. The simulations were run to
generate 1000 hours of data in order to sample the vari-
ation of states the system can attain. The model begins
by setting the initial numbers of molecules in the system
and reaction rates, and then computes the probability of
switching to other states based on the chemical reactions
and rates. Random variables are used to generate noise
in the model and determine when and which reaction
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occurs based on probability distributions set by substrate
levels. The model iterates until the final simulation time
is reached. Thus, individual runs show variable levels of
each chemical state. In order to avoid biases due to ini-
tial transients, we considered only data after the system
reached steady state.

P!α M þ P
P′!αB2 M þ P′

P
00!αAB2A M þ P

00

P þ B2!θB2 P′

P′!γB2 P þ B2

P þ AB2A!θAB2A P
00

P
00!γAB2A P þ AB2A

M!δM 0
M!βB M þ B
M!βB M þ A
B!δB 0
A!δA 0
Bþ B!βB2 B2

B2!
δB2 0

2Aþ B2!
μ AB2A

AB2A!
μR 2Aþ B2

AB2A!
δAB2A 0

ð2Þ

Cells are defined as entering persistence when the
number of free HipA toxins exceeds the number of free
HipB antitoxins. We used the ratio of free HipA mole-
cules in the cell divided by the sum of free HipA and free
HipB molecules to quantify entry into persistence. Here-
after, we will refer to this quantity as R. When R exceeds
0.5 the cell is a persister; below this value the cell is in
the normal growth state. This threshold-based approach
is consistent with experimental findings from [31], where
the levels of HipA and HipB were controlled independ-
ently using a plasmid expression system and were found
to depend on the concentration of HipB.
The “uncoupled transcription” model replaces the ori-

ginal three promoter states P, P’, and P” with six pro-
moter states, three for hipB and three for hipA. In
addition, the mRNA transcripts MA and MB are now
two separate states in the model. Thus, the new model
has 12 state variables, but uses the same reaction con-
stants as the native system for the purpose of a con-
trolled comparison (Additional file 1).
The “no feedback” model removes repression of the

hipBA promoter by B2 and AB2A. To model this we con-
sidered only the P promoter state, eliminating the P’ and
P” states from the model. All other reactions and reac-
tion rates are the same as in the original system (Add-
itional file 1).

Results and discussion
In order to analyze the dynamics of persister formation in
the HipBA system we developed a mathematical model

based on the regulatory architecture known to control
HipB and HipA expression. We first asked how the dy-
namics of the system led to the formation of persister cells.
Next, we studied alternative network architectures to
quantify how entry into persistence depends upon gene
regulatory structure. In order to address these questions,
we developed a biologically realistic model. The system ex-
plicitly models promoter states, the binding and unbinding
of transcription factors, transcription, translation, complex
formation, and degradation. In contrast to previous models
[25,31], we consider dimerization, complex formation,
multiple modes of repression, and active degradation of
the toxin and antitoxins; these processes are modeled
based on the physiological findings from experimental
studies (Methods).
We first asked how the HipBA regulatory architecture

achieves distinct subpopulations of persister and normal
cells. A potential mechanism for generating two popula-
tions within a group of cells is bistability. There is experi-
mental evidence that isogenic populations can generate
bimodal distributions to allow for phenotypic diversity
[34,35]. This strategy is beneficial when only a subset of the
cells needs to express a particular mechanism, but those
cells need to be fully committed to their fate. Positive feed-
back is known to generate bistable states and can arise
from a double negative feedback loop [1]. Therefore, a po-
tential function of the HipBA regulatory network could be
to generate two stable states through the use of two nega-
tive feedback loops, which act in combination as a positive
feedback loop (Figure 1b). In principle, repression of the
promoter by the HipB dimer or HipB-HipA complex could
lead to a build up of the HipA toxin, and consequently per-
sistence, because the half-life of HipA exceeds that of HipB
[21,36]. Alternatively, the higher translation rate of HipB
could lead to an excess of antitoxins, leading to the normal
growth state. Stochastic fluctuations in gene expression
could cause the system to switch between these two states.
A previous study proposed a model for persistence based
on high cooperativity in a Hill function as a mechanism
that generates bistable dynamics [25].
Using our detailed mechanistic model of the biochemical

reactions governing HipB and HipA expression we found
that the system was monostable for biologically realistic
parameter ranges, therefore bistability is not the source of
co-existing persister and normal cells. To check for bistable
dynamics, we first used time scale separation to develop a
reduced order model (Methods, Additional file 1). The dy-
namics of HipA (A) and the HipB-HipA complex (AB2A)
were slow relative to the other states in the system. Thus,
we developed a reduced order model that assumed other
chemical reactants were at steady state relative to A and
AB2A. We then plotted the nullclines for A and AB2A on a
phase portrait and showed that, for realistic parameter
ranges, they intersect only once (Figure 1c). This single
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intersection point indicates that only one equilibrium solu-
tion exists, thus the system is not bistable.
In order to rule out the possibility that the absence of

bistability was the result of the specific parameters used
in the model, we conducted two parametric studies
(Methods). First, we varied single parameters within a
biologically realistic range (Table 1) and tested for bi-
stable behavior over a broad range of initial conditions.
In all cases, the solutions converged to a single mono-
stable equilibrium point. Next, we allowed all system
parameters to vary at once, and simulated many possible
combinations of parameters. Again, solutions for all
parameters converged to a single stable point. Through a
combination of reduced order system analysis and para-
metric studies, we find no evidence of bistability in our
model of the HipBA system.
An alternative mechanism by which cells can enter

persistence is through stochastic fluctuations in gene ex-
pression. Random noise in the expression of HipB and
HipA can generate phenotypic variability within the
population. By chance, some cells within the population
will have an excess of the toxin relative to the antitoxin

and will enter persistence. To explore the role of pheno-
typic variability in persister formation, we developed a
stochastic model based on the chemical reactions used
in the deterministic model. The probabilistic nature of
this model more accurately represents the natural fluc-
tuations in the HipBA system.
In order for the HipA toxin to be effective, an individ-

ual cell would have to have an excess of free HipA toxins
relative to the number of free HipB antitoxins. Thus, the
ratio of free HipA molecules to the total number of free
HipA and HipB molecules, which we define as R, sets a
threshold for persistence. When R exceeds 0.5 a cell has
an excess of toxin and can enter persistence. Recent ex-
perimental findings suggest that a threshold-based mech-
anism for persistence, as opposed to bistability, is an
accurate representation of the biological origins of per-
sistence [31]. The authors showed that the time spent in
the persistence state was proportional to the concentra-
tion of excess HipA. Our study examines the entry into
persistence, however the duration of the growth arrest
period is not calculated by the model, as the dynamics
are only valid for non-persister cells. Therefore, our
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model can be used to simulate the distributions of HipA
and HipB and this information can be used to calculate
entry into persistence, but not the duration of the growth
arrest state.
Figure 2a-b shows the total concentrations of HipA and

HipB from one simulation. The two protein levels are corre-
lated due to their cotranscriptional expression. However,
they are not perfectly in sync due to stochastic fluctuations
in translation and degradation, so the ratio R fluctuates over
time (Figure 2c). This phenotypic variation is the source of
persistence in the model; individual cells can enter the per-
sistence state due to natural variability in gene expression.

Persistence is a rare event and most of the variability in ex-
pression levels is under the threshold required to produce a
persister. This fact is underscored by Figure 2d, which shows
the distribution of R values for the system.
Next, we considered alternative architectures for the

HipBA system with the goal of understanding how the
regulatory topology affects noise and what the implica-
tions are for persistence. We first considered a case
where hipB and hipA expression are transcriptionally
uncoupled. In the natural system, hipB and hipA are on
the same operon and are transcribed together. When
transcribed independently, as shown in Figure 3a, the
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noise in the system increases, as does the mean of R
(Figure 3b-e). Both of these factors lead to increased per-
sistence as compared to the native system. We next con-
structed a model without the negative feedback loops. In
the new system, B2 and AB2A do not repress the pro-
moter as they do in the wild type system. Without feed-
back, expression of hipB and hipA is increased, as
transcription is no longer repressed. The system is still
noisy, but the mean of R and the noise in the system
both decrease (Figure 3b-e), so persistence events are
less common.
A system with increased persistence would be better

suited for conditions where extreme environmental
stress occurs frequently or for extended periods of time.
Although the population growth rate would be severely
compromised, cells would have an increased likelihood
of surviving extreme or long-term environmental stres-
ses, such as long-term nutrient deprivation or antibiotic
treatment. Conversely, a system with decreased persist-
ence would benefit from increased growth rates and
thrive in environments where stresses are few and far be-
tween. A previous model of persistence has shown that
the optimal frequency of persistence events is closely tied
to the frequency of environmental change [37]. The
regulatory topology of the HipBA network sets a fre-
quency of entry into persistence, which may be a strong
indicator of the frequency with which adverse environ-
ments are encountered.
Evolutionarily, it would be possible to achieve either of

the alternative circuit topologies discussed here through
straightforward mutation or duplication events. Given
that stochastic fluctuations in phenotypic states are the
likely source of persisters, it is necessary for the regula-
tory architecture to produce sufficient variability to
insure against rare but catastrophic environmental stres-
ses. This suggests that the HipBA toxin-antitoxin system
has evolved to allow a specific amount of noise, and thus
persistence, to balance between optimal growth and sur-
vival against environmental threats.

Conclusions
We have developed a model of the regulatory interactions
that control expression of the hipBA operon. The model
incorporates recent experimental findings on toxin-
antitoxin complex formation [27], includes active degrad-
ation of proteins [21,31,32], and repression of hipBA gene
expression by both the HipB dimer and the toxin-
antitoxin complex [27]. Using a deterministic model based
on the biochemical reactions we find that the system exhi-
bits monostable behavior for biologically realistic para-
meters. Thus, stochastic fluctuations in expression of
HipB and HipA are likely responsible for the spontaneous
formation of persisters. A stochastic model of the bio-
chemical system demonstrates that persister formation is

possible when R, the ratio of free HipA to free HipA plus
free HipB exceeds a threshold. By comparing two alterna-
tive gene circuit architectures we demonstrate that the
level of noise, and thus the frequency of persistence, is
highly dependent on the regulatory topology. Through
mutations it would be possible to achieve systems with ei-
ther higher or lower noise than the wild type system.
Populations must balance the tradeoff between frequency
of persistence and growth. We conclude that straightfor-
ward changes to the regulatory architecture and associated
parameters influence noise levels, which define the fre-
quency of persistence, suggesting that the wild type per-
sistence frequency can be the subject of evolutionary
tuning.
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