From: AAAI Technical Report FS-96-02. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Learning Visual Routines with Reinforcement Learning
Andrew Kachites McCallum

Department of Computer Science
University of Rochester

Rochester, T

7 14627-0226

(716) 275-2527
FAX: (716) 461-2018

mccallum@cs.rochester.edu

Abstract

Reinforcement learning is an ideal framework to learn
visual routines since the routines are made up of se-
quences of actions. However, such algorithms must be
able to handle the hidden state (perceptual aliasing)
that results from visual routine’s purposefully nar-
rowed attention.

The U-Tree algorithm successfully learns visual rou-
tines for a complex driving task in which the agent
makes eye movements and executes deictic actions in
order to weave in and out of traffic on a four-laned
highway. The task involves hidden state, time pres-
sure, stochasticity, a large world state space, and a
large perceptual state space.

U-Tree uses a tree-structured representation, and is
related to work on Prediction Suffix Trees (Ron,
Singer, & Tishby 1994), Parti-game (Moore 1993), G-
algorithm (Chapman & Kaelbling 1991), and Variable
Resolution Dynamic Programming (Moore 1991). U-
Tree is a direct descendant of Utile Suffix Memory
(McCallum 1995c), which used short-term memory,
but not selective perception. Unlike Whitehead’s Lion
algorithm, the algorithm handles noise, large state
spaces, and uses short-term memory to uncover hid-
den state.

Introduction

Work in animate vision (e.g. (Aloimonos, Bandopad-
hay, & Weiss 1988; Ballard & Brown 1992)) and re-
search on human eye movements (e.g. (Yarbus 1967;
Ballard et al. 1996)) has shown that vision is not a
passive process, but one in which the viewer actively
shifts attention to different parts of the scene. Fur-
thermore, indications are that the viewer chooses to
focus attention exactly on those parts of the environ-
ment that are relevant to the task at hand. The study
of Visual Routines (Ullman 1984) and Deictic Actions
(Agre & Chapman 1987) has been an effort to formal-
ize this approach.

This active approach to vision can greatly reduce the
computational burdens of perception, but is also raises
new problems. Perception becomes sequential process,

82

instead of parallel. The agent must choose a sequence
of perceptual actions to redirect its purposefully nar-
rowed attention to the relevant parts of the environ-
ment. At each step, the agent must choose where to
move the eyes, where to focus covert attention, and
which perceptual computations will be performed on
the available sensory data. Learning a strategy for per-
ceptual actions becomes an integral part of learning to
perform the task.

Reinforcement learning (RL) is an ideal framework
in which to learn these sequences of attentional shifts
because RL’s chief strength is its ability to address the

issues of choosing sequences of actions. This match

between RL and visual routines has been recognized
in past work (Chapman 1990; Whitehead 1992), but
has only been applied with limited success.

One of the key difficulties of applying RL to visual
routines, (not addressed by this previous work), is the
hidden state problem (aka perceptual aliasing) that re-
sults from visual routine’s purposefully narrowed at-
tention. On the one hand, choosing to focus on only
a specialized few features in the current “perceptual
snapshot,” active vision greatly reduces perceptual
computation burdens; on the other hand, since a “per-
ceptual snapshot” in isolation does not provide enough
information to choose the next action, the agent must
use context over time (short-term memory) in order to
select its next action.

Although hidden state can appear without selective
perception, hidden state is especially likely to occur
with selective perception because the defining aspect
of selective perception is directable, focused (i.e. pur-
posefully narrowed or specialized, and thus limited)
attention.

The paper presents U-Tree, a reinforcement learning
algorithm that handles hidden state well, and has been
used to successfully learn tasks with visual routines.

The U-Tree Algorithm

U-Tree is a new reinforcement learning algorithm that
dynamically builds the agent’s internal state represen-
tation. It uses a robust statistical test on reward, called
a Utile Distinction test, to determine which short-term
memories and state features should be used because
they are relevant to the current task, and which should
be ignored because they are not relevant to reward.

A key feature of the algorithm is that it can simul-
taneously handle both “too much sensory data” and
“too little sensory data.” The algorithm uses selec-
tive attention to prune an unnecessarily large percep-
tual state space, and it also uses short-term memory to
augment a perceptual state space that, due to hidden
state, is missing crucial features.

The algorithm can be understood as an effort to
combine the advantages of (1) instance-based (or
“memory-based”) learning, from Parti-game (Moore
1993) and Nearest Sequence Memory (McCallum
1995b); (2) a utile distinction test, from Utile Distinc-
tion Memory (McCallum 1993); (3) the ability to rep-
resent variable amounts of short-term memory in dif-
ferent parts of state space, from Prediction Suffix Tree
Learning (Ron, Singer, & Tishby 1994); and (4) the
ability to select individual perceptual features, from
the G-algorithm (Chapman 1989).

Like Parti-game and Nearest Sequence Memory, the
algorithm makes efficient use of raw experience in or-
der to learn quickly and discover multi-term feature
conjunctions easily. Like Utile Distinction Memory,
the algorithm uses a robust statistical technique in or-
der to separate noise from task structure and build
a task-dependent state space. Like Prediction Suffix
Tree Learning, the algorithm uses a tree to represent
short-term memory in a way that is much easier to
learn than Hidden Markov models or partially observ-
able Markov decision processes. Like the G-algorithm,
the agent can select which individual features, or “di-
mensions of perception,” to attend to.

U-Tree is a direct descendant of Utile Suffix Memory
(USM) (McCallum 1995c), which also incorporates the
first three techniques mentioned above; the new feature
of U-Tree is it ability to divide a percept into compo-
nents, choose to ignore some of those components, and
thus to perform covert selective attention.

How it Works

U-Tree uses two key structures: a time-ordered chain
of raw-experience-representing “instances,” and a tree
in which those instances are organized.

The leaves of the tree represent the internal states of
the reinforcement learning agent. That is, the agent’s
utility estimates (Q-values) are stored in the leaves.

When the agent receives an observation, it determines
its current internal state by beginning at the root
of the tree, and successively falling down nested tree
branches until it reaches a leaf. At each non-leaf node,
1t chooses to fall down the branch labeled by a fea-
ture that matches its observations—working in much
the same way as an exemplar is classified by a decision
tree. When it reaches a leaf, the agent examines the
utility estimates found in the leaf in order to choose its
next action.

The key mechanism of U-Tree is the way in which
it grows this tree on-line to learn a task-relevant state
space. Deep parts of the tree correspond to finely dis-
tinguished parts of state space where many details and
short-term memories are significant; shallow parts of
the tree correspond to only loosely distinguish parts
of state space where only a few features or memories
are needed in order to determine what action to choose
next. Another key feature of the algorithm is that both
feature selection (selective perception) and short-term
memory (dealing with hidden state) are represented
uniformly in the same tree structure—thus capturing
the inherent similarity in addressing these two prob-
lems.

The Chain and the Tree

Like all instance-based algorithms, U-Tree records
each of its raw experiences. In reinforcement learning,
a raw experience is a transition consisting of action-
percept-reward triple, connected to its previous and
successive transitions in a time-ordered chain. The lin-
ear graph at the base of Figure 1 shows an example of
such a chain of instances.

U-Tree organizes, or “clusters,” these instances in
such a way as to explicitly control how many of their
features, and how much history, to consider significant
in making state-distinctions. All the instances in a
cluster are used together to calculate utility estimates
for that state. The structure that controls this clus-
tering is a modified version of a finite state machine
called Prediction Suffix Tree (PST) (Ron, Singer, &
Tishby 1994). A PST can be thought of as an order-
n Markov model, with varying » in different parts of
state space. U-Tree modifies this structure to allow
for the consideration of individual dimensions of per-
ception in isolation; it also adds to PST’s a notion of
actions and rewards.

A leaf of the tree acts as a bucket, holding a cluster of
instances that share certain features in common. The
features associated with a certain leaf are determined
by the nodes on the path from that leaf to the root
of the tree. Each interior node of the tree introduces
a new distinction; the distinctions are based on two
parameters: (1) a “perceptual dimension,” indicating

Actions: {u, v}

Observations:
Dimension 1: {A, B,C}
Dimension 2: {@, £,§}
Dimension 3: {+,-}

Figure 1: A U-Tree instance-chain and tree. The instance-chain is at the bottom; each instance circle is labeled
by the observation received at that time step, each instance transition is labeled by the action taken to make that
transition. In the tree, each branch is labeled by it’s history count and perceptual dimension label; beside each node
is the conjunction of features the node represents. The tree nodes drawn as squares are the agent’s internal states;
each contains a @-value for each action, although the figure only shows the policy action. The dashed-arrows show

which agent internal state holds each instance.

which individual feature (or dimension of perception)
will be examined in order to determine which of the
node’s branches an instance should fall down, and (2)
a “history index,” indicating at how many time steps
backward from the current time this feature will be
examined. By using a non-zero history index, tree
branches can distinguish between instances based on
past features, and can thus represent short-term mem-
ory.

Figure 1 depicts a tree and instance chain based on
a simple abstract task in which the agent can execute
two actions (labeled ‘u’ and ‘v’), and receives observa-
tions comprised of three features (labeled ‘Dimension
1’, ‘2°, and ‘3’). For example, in a simple navigation
task, actions ‘u’ and ‘v’ may correspond to turning
left or right; ‘Dimension 1’ may correspond to a range
sensor facing right, with ‘A’ indicating ‘one foot’, ‘B’
indicating ‘three feet’ and ‘C’ indicating ‘far’; ‘Dimen-
sion 2’ may correspond to a range sensor facing left,
and ‘Dimension 3’ may correspond to a bump sensor,
with ‘+’ indicating touching and ‘-’ indicating open.

Consider the moment at which the agent has just
experienced the sequence leading up to the starred in-
stance, {(observation ‘B$-’). In order to find the leaf
node in which the instance belongs, we begin at the
root of the tree, and see that it has branches labeled
‘0@’, ‘04’ and ‘0%’. Thus it adds a distinction based
on the value of ‘Dimension 2’ at zero time steps back-
ward. Since our instance has a ‘$’ for ‘Dimension 2,
we fall down the right-hand branch. The node at the
bottom of the right-hand branch has child branches la-
beled ‘1u’ and ‘1v’, and thus adds a distinction based
on the action taken one time step ago. Since, one time

84

step ago, the agent executed action ‘u’, (the transition
coming into the starred instance is labeled with action
‘w’), we fall down the left-hand branch. The node at
the bottom of that left-hand branch has child branches
labeled ‘1A’, ‘1B’ and ‘1C’, and thus adds a distinction
based on the value of ‘Dimension 1’ one time step ago.
Since, one time step ago, the agent observation was
‘C$+’, (that is the label on the instance to the left
of the starred instance), we fall down the right-hand
branch, which is labeled ‘1C’. Here we are at a leaf, and
we deposit the instance. Inside that leaf the agent will
also find the policy action to be executed—in this case
‘w’. The dashed line shows the association between the
instance and the leaf.

Building the Tree

The agent constructs this tree on-line during
training—beginning with no state distinctions (a sin-
gle agent internal state, the root node), and selec-
tively adding branches only where additional distinc-
tions are needed. In order to calculate statistics about
the value of an additional distinction, the agent builds
a “fringe,” or additional branches below what we nor-
mally consider the leaves of the tree. The instances in
the fringe nodes are tested for statistically significant
differences in expected future discounted reward. If the
Kolmogorov-Smirnov test indicates that the instances
came from different distributions, then we have deter-
mined that using this distinction will help the agent
predict reward (that is, in the history case, we have
found a violation of the Markov property), and these
fringe nodes become “official” leaves, and the fringe
is extended below them, (thus, in the history case,

Figure 2: The perception from the driver’s point of
view, showing the driver’s hood, the highway, and
trucks.

we have turn a non-Markov state into several Markov
states).

When deeper nodes are added, they are populated
with instances from their parent node—the instances
being properly distributed among the new children ac-
cording to the additional distinction. The depth of the
fringe is a configurable parameter. By using a fringe-
depth greater than one, U-Tree can successfully dis-
cover useful epistatic combinations of features, in the
form of multi-term conjunctions.

Further details on the algorithm are omitted here for
lack of space, but are discussed in (McCallum 1995a)
and (McCallum 1996).

U-Tree Learning Visual Routines for

Highway Driving
U-Tree has performed well in a difficult driving task in
which the agent weaves in and out of highway traffic,
using actions and perceptions based on visual routines.
The agent shares the road with both faster and slower
trucks. The agent has control of its steering, but no
control of its speed. I call the task “New York Driv-
ing.”

The agent navigates using five actions, which are
based on visual routines and deictic actions (Ullman
1984; Agre & Chapman 1987; Ballard et al. 1996).
These actions are: gaze-forward-left, gaze-forward-
center, gaze-forward-right, gaze-backward, and shift-
to-gaze-lane. The gaze-forward visual routines begin
by positioning the agent’s gaze immediately in front of
the agent in the left, center or right lane (relative the
agent’s lane), then the routines trace the gaze forward
along that lane until either an truck or the horizon is
reached. The gaze-backward action performs the same
lane-tracing behavior, except it begins immediately be-

85

hind the agent and traces backward; the lane in which
the agent traces backwards is the same lane (left, cen-
ter or right) in which the agent was looking previously.
(Thus, for example, there is no way to shift gaze from
forward right to backwards left with a single action.
The agent must execute gaze-forward-left, then gaze-
backward.) The shift-to-gaze-lane action is a deictic

~ action that causes the agent’s car to shift into the lane

at which the agent is currently looking. This action
works whether the agent is looking forward or back-
ward. As the last step of executing the shifi-to-gaze-
lane action, the agent’s gaze is placed at the forward
center of its new lane, as if it had executed an implicit
gaze-forward-center.

The agent’s sensory system delivers seven dimen-
sions of sensor information; these are: hear-horn, gaze-
object, gaze-side, gaze-direction, gaze-speed, gaze-
distance, gaze-refined-distance, and gaze-color. Hear-
horn is one of two values, indicating whether or not a
fast truck is on the agent’s tail, beeping its horn. Gaze-
object indicates whether the agent’s gaze is pointed at
a truck, the road or the shoulder. The only situa-
tions in which the agent’s gaze will fall on the road is
when it looks into a lane with no trucks in the speci-
fied direction. Gaze-side indicates whether the agent’s
gaze is left, center or right of the agent car position.
Gaze-direction indicates forward or backward. Gaze-
speed indicates whether the object the agent is looking
at is looming or receding. When looking forward, the
road and shoulder are always looming; slow trucks also
loom; fast trucks recede. Gaze distance gives a rough-
grained indication of the distance to the gaze point, in-
dicating far, near or “nose,” which is closer than near.
“Nose” covers distances from 0 to 8 meters, “near” dis-
tances from 8 meters to 12 meters, and “far” all the
further distances. Gaze-refined-distance provides the
agent with a finer grain distance measure, by dividing
each of the gaze-distance regions into two. Because it
is in a separate “dimension,” the agent can choose to
have finer grain resolution in some situations, but only
rough-grained resolution in others. Gaze-color is one
of six values—either red, blue, yellow, white, gray or
tan if looking at a truck, and yellow, white, gray or tan
if looking at the road or shoulder.

The reward function delivers one of three possible re-
wards at each time step. Whenever the agent scrapes
by a slower truck, it receives a negative reward of
—10.0; whenever a fast truck is honking its horn at the
agent, the agent receives a negative reward of —1.0;
otherwise, the agent receives positive reward of 0.1 for
making clear forward progress.

The environment has over 21,000 world states and
over 2,500 sensor states; and there is also much utile

non-Markov hidden state. In order to perform this task
well, a short-term memory of length three is required
in some contexts—thus, a naive fixed-sized history-
window approach to memory would result in an agent-
internal state space of size 25002. Performance on this
task strongly benefits from the selection of Utile Dis-
tinctions. U-Tree’s solution to this task results in an
agent-internal state space of only 143 states—quite a
bit more manageable. It also performs better than a
hand-coded policy written in two hours by an expert.

The details of the task, the sensory-motor system,
and the agent’s performance are discussed in in (Mc-
Callum 1995a) and (McCallum 1996).

Acknowledgments

This work has benefited from discussions with many
colleagues, including: Dana Ballard, Andrew Moore,
and Jonas Karlsson. This material is based upon work
supported by NSF under Grant no. IRI-8903582 and
by NIH/PHS under Grant no. 1 R24 RR06853-02.

References

Agre, P. E., and Chapman, D. 1987. Pengi: an imple-
mentation of a theory of activity. In AAAI 268-272.

Aloimonos, J.; Bandopadhay, A.; and Weiss, 1. 1988.
Active vision. International Journal of Computer Vi-

sion 1 (4):333-356.

Ballard, D. H., and Brown, C. M. 1992. Principles
of animate vision. Computer Vision, Graphics, and
Image Processing: Image Understanding 56(1):3-21.

Ballard, D. H.; Hayhoe, M. M.; Pook, P. K.; and Rao,
R. 1996. Deictic codes for the embodiment of cog-
nition. Brain and Behavioral Sciences. [To appear —
earlier version available as National Resource Labo-
ratory for the study of Brain and Behavior TR95.1,
January 1995, U. of Rochester].

Chapman, D., and Kaelbling, L. P. 1991. Learning
from delayed reinforcement in a complex domain. In
Twelfth International Joint Conference on Artificial
Intelligence.

Chapman, D. 1989. Penguins can make cake. Al
Magazine 10(4):45-50.

Chapman, D. 1990. Vision, Instruction, and Action.
Ph.D. Dissertation, MIT Artificial Intelligence Labo-

ratory.

McCallum, R. A. 1993. Overcoming incomplete per-
ception with utile distinction memory. In The Pro-
ceedings of the Tenth International Machine Learning
Conference. Morgan Kaufmann Publishers, Inc.

86

McCallum, A. K. 1995a. Reinforcement Learning with
Selective Perception and Hidden State. Ph.D. Disser-
tation, Department of Computer Science, University
of Rochester.

McCallum, R. A. 1995b. Instance-based state identifi-
cation for reinforcement learning. In Advances of Neu-
ral Information Processing Systems (NIPS 7), 377-
384.

McCallum, R. A. 1995c. Instance-based utile distinc-
tions for reinforcement learning. In The Proceedings
of the Twelfth International Machine Learning Con-
ference. Morgan Kaufmann Publishers, Inc.

McCallum, A. K. 1996. Learning to use selective at-
tention and short-term memory. In From Animals
to Animats:Proceedings of the Fourth International
Conference on Simulation of Adaptive Behavior. MIT
Press.

Moore, A. W. 1991. Variable resolution dynamic pro-
gramming: Efficiently learning action maps in multi-
variate real-valued state-spaces. Proceedings of the
Eighth International Workshop on Machine Learning
333-337.

Moore, A. W. 1993. The parti-game algorithm for
variable resolution reinforcement learning in multidi-
mensional state spaces. In Advances of Neural Infor-
mation Processing Systems (NIPS 6), 7T11-718. Mor-
gan Kaufmann.

Ron, D.; Singer, Y.; and Tishby, N. 1994. Learning
probabilistic automata with variable memory length.
In Proceedings Computational Learning Theory. ACM
Press.

Ullman, S. 1984. Visual routines. Cognition 18:97—
159. (Also in: Visual Cognition, S. Pinker ed., 1985).

Whitehead, S. D. 1992. Reinforcement Learning for
the Adaptive Control of Perception and Action. Ph.D.
Dissertation, Department of Computer Science, Uni-
versity of Rochester.

Yarbus, A. 1967. Eye Movements and Vision. Plenum
Press.

