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Abstract

A quantum Hamiltonian describingN particles on a line interacting pairwise via an elliptic function potential in the presence
of an external field is introduced. For a discrete set of values of the strength of the external potential, it is shown that a finite
number of eigenfunctions and eigenvalues of the model can be exactly computed in an algebraic way. 2001 Elsevier Science
B.V. All rights reserved.

PACS:03.65.Fd; 71.10.Pm; 11.10.Lm

It is well known that the class of exactly solvable problems does not include most physical problems. The
development of computer science in the last decades has made possible the use of numerical methods to
approximate exact solutions in a wide variety of situations. Yet, the study of exactly solvable models still deserves
attention, not only because the knowledge of exact solutions can be used to test approximate methods, but also in
its own right, due to the simplicity and mathematical beauty of the models, and the wide range of connections with
other fields of physical and mathematical research.

This is illustrated by the renewed interest in the Calogero–Sutherland (CS) models of interacting particles in one
dimension, which have been recently applied to many different fields such us quantum spin chains with long range
interaction [1], random matrix theory [2], fractional statistics and anyons [3], Yang–Mills theories [4], quantum
Hall liquids [5], soliton theory [6], and black holes [7].

The first example of a non-trivial integrable quantum many-body problem was found by Calogero [8], and
consists of a system of identical nonrelativistic particles interacting pairwise through an inverse-square potential
v(r) = r−2, so that the Hamiltonian is

(1)HN = −
N∑

k=1

∂2
xk

+ g

N∑
j,k=1
j �=k

v(xj − xk).
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By integrablewe mean here that a complete commuting set of constants of motion can be explicitly constructed.
Soon afterwards, Sutherland [9] established the integrability of the model (1) with an inverse sine-square interaction
v(r) = sin−2(r).

The most general interaction potentialv for which the Hamiltonian (1) is known to be integrable is the
Weierstrass℘ function, which includes the rational and trigonometric cases as special limits. The integrability
of this potential was proved in the classical case by Calogero and Perelomov by means of a Lax pair
representation [10], and its explicit integration was performed by Krichever [11]. Olshanetsky and Perelomov [12]
later showed that all these models have an underlying algebraic structure based on root systems ofAN algebras, and
that integrable models associated to other root systems also exist. In the models treated in Ref. [12] the integrals
of motion are related to the radial parts of the Laplace–Beltrami operator on a symmetric space associated to the
given root system. These integrable models are obtained from the projection of free motion on a higher-dimensional
manifold.

However, integrable Hamiltonians are not necessarilyexactly solvable, i.e., one might not be able to find
explicitly their spectrum and eigenfunctions. The models with inverse-square and inverse sine-square interaction
are known to be exactly solvable, and much literature has in fact been devoted to the study of their eigenfunc-
tions [13], but the more general model with the Weierstrass℘ potential is considerably more difficult to handle. In
fact, very few explicit solutions are known in this case, and only for a low number of particles [14] (see also the
recent paper [15] for a promising new approach based on second quantization).

The exact solvability of the Calogero–Sutherland models related to classical root systems was established in
Refs. [16] and [17] by noting that the Hamiltonian can be mapped by a suitable gauge rotation to an element of the
enveloping algebra of a certain realization ofsl(N + 1) admitting finite-dimensional representations (cf. Eq. (11)
below). A generalization of this idea was used in Refs. [18] and [19] to construct deformations of the original
Calogero model for which only asubsetof the spectrum can be exactly computed. Following Refs. [20] and [21],
we shall call such modelsquasi-exactly solvable(QES). A somewhat different approach was followed by Hou
and Shifman [22], who obtained a deformation of theBN Calogero model by studying the motions of the zeros
of suitable solutions of the time-dependent Schrödinger equation of a well-known QES one-particle polynomial
potential. The quasi-exact solvability of theN -particle model thus constructed was again proved by mapping its
Hamiltonian to a polynomial in the generators of thesl(N + 1) algebra (11) by a suitable change of variables and
gauge transformation. This method was further developed and systematically applied to other families of QES one-
dimensional one-particle potentials by the authors, thereby obtaining several exactly and quasi-exactly solvable
rational and hyperbolic Calogero–Sutherland models [23].

In this Letter we shall present a model ofN particles on a line with elliptic pairwise interaction in an external
field for which afinite number of eigenfunctions and their corresponding energies can be computed algebraically.
Since the discrete spectrum is easily seen to be infinite (the potential diverges on the boundary of a compact
region), the model is quasi-exactly solvable. We shall only sketch here the main ideas behind the proof of these
results, referring the reader to Ref. [23] for a complete description of the method used.

Consider theN -body quantum Hamiltonian

(2)HN = −
N∑

k=1

∂2
xk

+ VN (x)

with potential

(3)VN (x) = cm

N∑
k=1

℘ (xk + iβ) + 4b(b − 1)

N∑
k=1

℘ (2xk) + a(a − 1)

N∑
j,k=1
j �=k

[
℘ (xj − xk) + ℘ (xj + xk)

]
,
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wherea andb are positive real parameters,m is a non-negative integer,

(4)cm = 2
(
2b + m + a(N − 1)

)(
2b + 2m + 2a(N − 1) + 1

)
> 0,

and℘ (z) ≡ ℘ (z|g2, g3) denotes the Weierstrass℘ function with invariantsg2, g3 ∈ R. If g2 andg3 satisfy the
inequalityg3

2 > 27g2
3, then℘ (z) has two fundamental periods 2α and 2iβ which are real and purely imaginary,

respectively [24]. In this case℘ (x + iβ) is real and regular (analytic) for all real values ofx, with real period 2α.
On the other hand,℘ (x) is real for realx and diverges as(x − 2nα)−2 whenx tends to an integer multiple 2nα of
the real period 2α. Thus, the configuration space for the Hamiltonian (2), (3) can be taken as the bounded region
of RN

(5)0 < xN < xN−1 < · · · < x1 < α.

Since the potential (3) is confining in this region, the spectrum ofHN is infinite and purely discrete, and the
boundary condition defining its eigenfunctionsψk(x) is their vanishing on the boundary of (5).

The potential (3) withcm = 0 is of CN type [12]

4b(b − 1)

N∑
k=1

v(2xk) + a(a − 1)

N∑
j,k=1
j �=k

[
v(xj − xk) + v(xj + xk)

]
,

with interaction potentialv(r) = ℘ (r). The term proportional tocm in (3) can be viewed as the contribution of an
external field with potential℘ (r + iβ).

We shall now show that, when the parameterm is a non-negative integer, one can algebraically compute a finite
number — depending onm, see (14) below — of eigenvalues and eigenfunctions of the Hamiltonian (2), (3). These
algebraic eigenfunctionshave the form

(6)ψk(x) = µ(x)χk(z),

where

(7)µ(x) =
∏
j<l

[
℘ (xj + iβ) − ℘ (xl + iβ)

]a
∏

j

[
℘ ′(xj + iβ)

]b
,

andχk(z) is a suitable completely symmetric polynomial of degree at mostNm in the variables

(8)zj = ℘ (xj + iβ), j = 1, . . . ,N.

The exact solutions of the rational and trigonometricCN — in fact,BCN — models also assume the form (6), but
in those casesµ can be factorized over the system of positive roots, i.e., it has the form

(9)µ =
∏
j<k

[
f (xj − xk)f (xj + xk)

]a
∏

k

[
f (2xk)

]b
,

wheref (x) = x in the rational case andf (x) = sinx in the trigonometric case. Moreover, in both casesµ coincides
with the ground-state wave function of the system. By contrast, the functionµ in (7) cannot be factorized over the
system of positive roots for any functionf (x), and is not the ground-state wave function of the Hamiltonian (2), (3).
As a matter of fact, it was shown in [25] that the most general potential allowing for the factorization (9) doesnot
include the elliptic case. These are some of the reasons why it has been so difficult to obtain explicit solutions of
the elliptic CS models, in contrast with their rational and trigonometric counterparts.

When the parametersa andb are positive, the functions (6) are regular in the region (5), and they automatically
vanish on its boundary on account of the identities℘ ′(iβ) = ℘ ′(α+ iβ) = 0 (see Ref. [24]). Thus, to show thatψk in
Eq. (6) is an eigenfunction ofHN we only have to check that it satisfies the Schrödinger equation(HN −Ek)ψk = 0
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in the open region (5). Equivalently,χk must be a solution of the equation( �HN − Ek)χk = 0, where thegauge
Hamiltonian �HN is defined by

(10)�HN = µ−1HNµ.

Note that, by the standard properties of the Weierstrass function [24],µ does not vanish in the region (5).
The quasi-exact solvability of the Hamiltonian (3) whenm is a non-negative integer can be established as follows.

Using the method developed in Ref. [23], it can be shown that�HN is a quadratic combination of the generators of
sl(N + 1) in the representation

(11)Dk = ∂τk , Njk = τj ∂τk , Uk = τk

(
m −

N∑
i=1

τi∂τi

)
j, k = 1, . . . ,N,

where

(12)τk =
∑

1�i1<i2<···<ik�N

zi1zi2 · · ·zik , k = 1, . . . ,N,

are the elementary symmetric functions of the variableszk [16]. When m is a non-negative integer, the
generators (11) obviously preserve the finite-dimensional polynomial space

(13)Mm = span

{
τ

l1
1 τ

l2
2 · · · τ lN

N : li ∈ N,

N∑
i=1

li � m

}
.

Since the gauge Hamiltonian�HN is a quadratic polynomial in the operators (11), it also preserves the space (13).
It follows that �HN has (at most)

(14)dimMm =
(

m + N

m

)

eigenfunctionsχk lying in Mm, which can be algebraically computed, along with their corresponding eigenvalues,
simply by diagonalizing the finite-dimensional matrix of�HN |Mm

. The elements ofMm, being polynomials in the
symmetric variablesτk of degree at mostm, are symmetric polynomials inz of degree not greater thanNm. It
follows from Eq. (10) that the physical Hamiltonian (2), (3) possesses (at most) dimMm algebraically computable
eigenfunctions of the form (6), (7), withχk(z) a symmetric polynomial of degree at mostNm, as claimed.

The algebrasl(N + 1), which plays a fundamental role in the partial integrability of the Hamiltonian (2), (3), is
sometimes called ahidden symmetry algebra[26], since in this approach the Hamiltonian need not be a Casimir
element. Note that the Hamiltonian (2), (3) must certainly have eigenfunctions which do not belong to the algebraic
sector (6), (7), since its discrete spectrum is infinite. An interesting open problem in this respect would be to
analyze the position in the spectrum and the degeneracy of the algebraic eigenvalues. It should also be emphasized
that, since the model (2), (3) is quasi-exactly solvable, it is not possible to give a procedure to diagonalize the
Hamiltonian forarbitrary values ofm andN . However, for anyspecificvalue of these parameters the Hamiltonian
can be diagonalized in the finite-dimensional subspaceµMm, and in this way a finite subset of its spectrum can
be exactly computed.

As a simple example, consider the problem forN = 2 andm = 2, for which the potential reads

V2(x1, x2) = 2(2b + a + 2)(2b + 2a + 5)
[
℘ (x1 + iβ) + ℘ (x2 + iβ)

]
(15)+ 4b(b − 1)

[
℘ (2x1) + ℘ (2x2)

] + 2a(a − 1)
[
℘ (x1 − x2) + ℘ (x1 + x2)

]
.

Note that this is intrinsically a two-body problem, since the potential (15) is not translation-invariant. The number
of algebraic eigenstates is (at most) dimM2 = 6, and the matrix of the restriction�H2|M2 with respect to the



116 D. Gómez-Ullate et al. / Physics Letters B 511 (2001) 112–118

Table 1
Algebraic eigenvaluesEi of the Hamiltonian (2), (15) and their numerical approximations

Exact Numerical

E0 −86.5484 −86.40

E1 −43.2786 −42.96

E2 −10.0288 −9.64

E3 12.5045 13.11

E4 46.2657 46.97

E5 81.0857 81.34

canonical basis{1, τ1, τ2, τ2
1 , τ1τ2, τ2

2 } of M2 is easily computed, with the result

(16)




0 g2(2a + 2b + 1) −2ag3 4g3 0 0
16a + 24b + 20 0 g2(b + 1/2) 4g2(a + b + 1) 2g3(1− a) 0

0 8a + 24b + 12 0 0 g2(2a + 2b + 5) −4g3(a + 1)

0 8a + 12b + 14 0 0 g2(b + 1/2) 2g3
0 0 8a + 12b + 14 16(a + 3b + 3) 0 g2(2b + 3)

0 0 0 0 8a + 24b + 28 0




.

The eigenvalues of this matrix are the algebraic energies of the physical HamiltonianH2, and its eigenvectors give
the components of the corresponding functionsχk in Eq. (6) with respect to the canonical basis ofM2.

Take, for instance, the following generic values of the coupling constants and the invariants of℘ (x):

(17)a = 2, b = 3/2, g2 = 3, g3 = 2/3,

for which the half-periods are approximately

α = 1.31523, iβ = 1.61809i.

The matrix (16) has six real eigenvalues, so that the Hamiltonian (2), (15) possesses six algebraic energies, which
have been listed in Table 1. In this table the (exact) algebraic eigenvalues ofH2 have been compared with a
numerical approximation of the six lowest energy levels obtained by solving the Schrödinger equation in the
triangle 0< x2 < x1 < α using a finite element method. The approximate agreement between the two columns
of Table 1 shows that the algebraic eigenvalues are in this case the lowest energy states of the system, although
there is no guarantee that this should still be true in the general case. The polynomialsχk corresponding to the six
algebraic eigenfunctions of the potential (15), (17), written in terms of the symmetric variablesτ1 = z1 + z2 and
τ2 = z1z2, are listed in Table 2. The fact thatψ0 = µχ0 is the ground state of the system is immediately apparent if
we note thatχ0 can be expressed in terms of the variableszk as

χ0 = 2.2349(z2 − 0.82835)(z2 − 0.54017) − 9.778z1(z2 − 0.79769)(z2 − 0.39212)

(18)+ 9.0382z2
1(z2 − 0.75385)(z2 − 0.32801).

For the values of the invariantsg2 andg3 given in (17), we have [24]

e3 = −0.72011� zk = ℘ (xk + iβ) � e2 = −0.240851.

We thus see from the previous expression thatχ0 is positive everywhere. Since, by (9),µ has no zeros in the open
triangle 0< x2 < x1 < α, it follows thatψ0 does not vanish in this triangle, and is therefore the ground state of the
potential (15).
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Table 2
Polynomialsχk corresponding to the algebraic eigenfunctionsψk = µχk of the Hamiltonian (2), (15). In all cases, the coefficient of 1 has
been normalized to unity

τ1 τ2 τ2
1 τ1τ2 τ2

2

χ0 −3.05847 7.16428 2.23486 −9.77802 9.03820

χ1 −3.30084 −10.91680 2.56123 13.46220 −24.88480

χ2 0.40412 5.10674 −2.29117 −0.77221 6.15988

χ3 −3.92728 −37.98890 2.04575 14.73410 94.26430

χ4 1.64224 −2.74560 −0.17611 −10.47200 −18.10750

χ5 3.89416 8.30786 3.66754 15.10020 14.89800
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