

Aspect-Orientation from Design to Code

Iris Groher
Siemens AG, CT SE 2

Otto-Hahn-Ring 6
81739 Munich, Germany

groher@informatik.tu-darmstadt.de

Thomas Baumgarth
Siemens AG, CT SE 2

Otto-Hahn-Ring 6
81739 Munich, Germany

thomas.baumgarth@siemens.com

ABSTRACT
The AO paradigm focuses mainly at the implementation phases of
the software lifecycle and is missing standardized concepts for
early stages of the development lifecycle. The term Early Aspects
refers to crosscutting properties at the requirements and
architecture level and this paper addresses the separation of
crosscutting concerns at the architecture design phases by offering
AML (Aspect Modeling Language), a notation for aspect-oriented
architecture design modeling that is standard UML conform.
Within the notation, crosscutting artifacts are clearly encapsulated
and completely kept apart from the business logic to foster their
reuse. A clear separation of the AO language dependent from AO
independent parts simplifies the support of a number of different
AO languages and concepts. To extend the support beyond the
architecture phase a code generator is presented addressing low-
level design support by offering an automated mapping from
design models to programming models to prevent inconsistencies
among design and implementation.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Computer-aided software
engineering (CASE)

General Terms
Architecture, Design, Languages

Keywords
AOSD, aspect, crosscutting concerns, early aspects, architecture
design modeling, UML

1. INTRODUCTION
Separation of concerns [1] is one of the fundamental principles in
software engineering. It states that a given problem involves
different kinds of concerns, which should be identified and
separated in order to manage complexity and to achieve required
engineering quality factors such as adaptability, maintainability,
extensibility and reusability. OO software development proved its
usefulness regarding the separation of functional concerns of a
system. Concerns that crosscut these functional decompositions
do not fit equally well into the OO model and have a potentially
harmful impact on engineering quality factors mentioned above.
Aspect-oriented programming [2] addresses these concepts at the
implementation level and offers low-level support for separation
of concerns. Aspects are implemented as first-class elements that
are expressed in terms of their own modular structure, thus
enabling the modularization of crosscutting concerns.

Early Aspects refer to crosscutting properties at the requirements
and architecture level ([3]). The term denotes aspect-orientation
within the early development stages of requirements engineering
and architecture design. This paper focuses on the separation of
crosscutting concerns at the high level architecture and the low
level design while offering an approach for aspect-oriented
modeling and automated code generation. Typically, design
artifacts that crosscut an architecture cannot be encapsulated by
single components or packages and are typically spread across
several of them and therefore also make design hard to understand
and maintain. This work addresses the specification of
crosscutting concerns at the architecture level in order to maintain
the separation of concerns at an early stage in the software
development lifecycle. Crosscutting design artifacts can clearly be
encapsulated avoiding tangling and scattering.

An extension to UML [4] [5] is presented, without changing its
metamodel specification, to achieve standard UML conformity.
This helps developers to become acquainted with AO modeling
when they are already familiar with OO modeling and UML. A
key intention was to offer standard development tool support and
interchangeability between various tools. UML is customized by
using standard extension mechanisms only. To gain the benefits
of code and design reuse of AO software, the ability to reuse
aspect and business logic separately is needed. A notation is
presented where aspect and business logic are completely kept
apart. Thus, both are reusable and at the same time independent of
the implementation technology. Within this approach it is
assumed that the requirements have already been defined and
specified during previous development stages.

To ease the transition from design to implementation and to offer
low-level architecture design support, a code generator was
developed to support automatic generation of AO code skeletons
from design models. This helps developers to focus on models
having the code skeletons generated automatically to gain the
benefits they are used to in OOSD. Code generation improves
developer productivity, ensures syntactical correctness and
reduces errors when mapping a model to code. The presented
UML notation in combination with the code generator makes
AOSD more usable and more efficient for software development
by avoiding inconsistencies among design and implementation.
Developers can then concentrate on AO design having the code
skeletons generated automatically.

The remainder of this paper is organized as follows: Section 2
presents shortcomings of the current state of research on aspect-
oriented modeling and describes the need for AO architecture
design. Section 3 describes the syntax and semantics of the
developed notation. Section 4 presents the automated transition

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357279871?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

from design models to implementation models. We conclude with
a note of related work and a summary in Section 5 and 6.

2. PROBLEM STATEMENT
The architecture design is an important step within the software
development lifecycle. OO design has proved its strength when it
comes to modeling common behavior. However, OO design does
not adequately address design artifacts that crosscut an
architecture. They cannot be encapsulated by single components
or packages and are typically spread across several of them and
therefore also make design hard to understand and maintain.
Crosscutting concerns are present during all phases of a software
development lifecycle, leading to code tangling or code scattering
during the implementation phase and graphical tangling during
the design phase. AOSD is still lacking standardized concepts at
the design phase that would foster the specification of
crosscutting concerns at the high level architecture and low level
design. Development of large software systems follows processes
that all include activities like requirements engineering, analysis,
design and implementations. Following a design methodology
like OOD, and focusing on AOP at coding level causes a shift of
paradigms between OO design and AO code. This leads to
inconsistencies between design and implementation as the AO
paradigm is not seamlessly supported during the early stages of
the development lifecycle. To avoid the divergence of design
models and code, crosscutting concerns must be identified at the
requirements and architecture level and carried forward in the
implementation phase. Concepts are needed for a seamless
integration of AO design and implementation and will be a first
step towards an integrated AO development process. To make
AOSD more widely accepted, the different phases of an AOSD
lifecycle have to be integrated more smoothly by supporting the
AO paradigm in every phase. This work includes both, a design
notation as well as a code generator for automatic code generation
and validation of AO models. Supporting design models and their
transition to concrete implementations makes AOSD more usable,
more efficient and more accepted among software engineers.

When analyzing OO design, one can see that OO modeling tries
to adopt many of the OO programming features for design and
analysis. Classes, their structures, and their relationships are
identified and generalization and aggregation hierarchies are built.
OO design techniques are not sufficient when focusing on the AO
paradigm as crosscutting concerns also make design tangled and
therefore hard to understand and maintain. When developing an
AO modeling approach, the following requirements are obvious:

− A sufficient notation should be simple to understand
and straightforward to use for developers who are
familiar with common design notations (such as UML).

− Design modeling should be supported by powerful
CASE tools to improve developer productivity and to
ensure syntactical correctness of the AO model.

− Design notations should support modeling according to
the paradigms behind the most common AO approaches
and languages.

− Models should be easy to read and offer a clear
separation of concerns to avoid crosscutting concerns
spanning over many design elements.

− A direct mapping between the notation and supported
implementation languages should allow automatic code
generation based on the design model.

− The notation should be applicable in real-world
development projects and should be part of an
integrated AO development process.

This work can be seen as a step towards a standardized way to
capture aspects at the design phase of an AO development
process. Existing approaches and prototypes are well aware of the
fact that aspect-oriented modeling is a critical part of AOSD.
Obviously, to obtain an AO development lifecycle, the gap
between AO requirements engineering and AOP has to be filled.
This work makes a contribution to the problem of bridging this
gap.

3. ASPECT MODELING LANGUAGE
This work specifies an approach for AO modeling to address the
specification of crosscutting concerns at the architecture level in
order to maintain the separation of concerns at an early stage in
the software development lifecycle. A key intention is to offer
standard development tool support and interchangeability among
various CASE tools, thus an extension to UML was developed
without changing its metamodel specification to achieve standard
UML conformity. Using UML as a modeling language improves
developer productivity and offers high acceptance, as it is the
industry-standard modeling language for the software engineering
community. When using standard UML for aspect-oriented
modeling, developers do modeling by using familiar tools and
environments to gain all the benefits they are used to in OO
design. UML is an extensible modeling language that enables
domain-specific modeling which raises its suitability as a
modeling language for supporting aspect-oriented modeling.
Another important goal was to gain the benefits both of code and
design reuse of AO software, including the ability to reuse aspect
and base elements separately. Thus, aspects and base elements
should be completely kept apart and independent of the
implementation technology in order to simplify the replacement
of the AO language. A clear separation of the language dependent
crosscutting parts eases the support of many different AO
languages and concepts. This work focuses on adopting AspectJ
[6] [21] concepts for the implementation language dependent
parts of AML; the support of other AO concepts (such as Hyper/J
[18] [19] [23]) is considered and part of some future work.
AML considers the fact that crosscutting concerns tend to affect
multiple classes in a system. Sine a concern itself can consist of
several classes and since all of these classes may be associated
with the class the concern crosscuts, the module construct for a
concern should be higher-level than a class. Otherwise
associations modeled on class-level would supersede the logical
grouping of the classes belonging to one concern. This would
make the design models hard to read and lead to graphical
tangling of crosscutting concerns instead of a clear separation.

Aspect Package Base Package

Connector
<<use>><<use>>

Figure 1: Package Level (De) Composition

Figure 1 provides an overview of the notation and its focus on
package-level decomposition. AML includes a base package
(containing the business logic), an aspect package (containing the
crosscutting concern) and a connector to link aspects and base
elements. This separation enables high reusability of the aspect
and base elements since the connector is the only crosscutting
element. Focusing on UML packages as a central decomposition
unit leads to design models that are easy to read, as they avoid
graphical tangling. Additionally, the connector encapsulates the
underlying implementation technology (e.g. AspectJ). The aspect
can be modeled independently of any design it may potentially
affect. The connection between base design and aspect design is
specified separately. Support of different AO technologies is
therefore rather simple and straightforward, as it is only the
connector’s syntax that has to be changed.
The aspect package provides a graphical representation (class
diagram) of the static view of a particular crosscutting concern
and is, along with the base package, one of the OO parts of the
AO model. The base package contains the business logic of the
system and can be modeled without considering any crosscutting
concern that may potentially affect the system. Similar to the
aspect package, the base package can contain any valid UML
model that describes the business logic of the desired system.
There is no direct relationship among the aspect package and the
base package; their relationship is only defined through the
connector package containing the rules for the later recomposition
of aspects and base elements. As AspectJ is currently the best
known AO language, all connector semantics presented here have
been developed according to AspectJ’s connection model.

« in tro d u ce »
In tro d u c tio n

« a d v ice »
A d v ic e s

« p o in tcu t»
P o in tc u ts

Figure 2: AspectJ specific Connector

As shown in Figure 2, the AspectJ-specific connector package can
contain the following classes that conform to the concepts
AspectJ offers for the specification of weaving rules:

1. The Introduction class, which defines the rules for
AspectJ’s introduction mechanism.

2. The Pointcut class, which defines execution points in
the control flow of the program.

3. The Advice class, which defines the code to be executed
at the pointcuts defined in the Pointcut class.

All classes contain operations with special semantics to specify
how aspect and base elements have to be recomposed. The
complete syntax of the AspectJ specific connector will not be
presented here; the following example should provide a view of
how the notation can be used and shows some of the most
important constructs.
The example in Figure 3 shows how to model an aspect related to
tracing to give some guidelines and indications on how to use our
notation.

+getValues()

Server Client
<<use>>

Base Package

+initStream(in s : PrintStream)
+traceEntry()
+traceExit()

Trace

Tracing

Connector

+tracePointcut(in Server$$getValues : CALL)

«pointcut»
Pointcut

+Tracing$$Trace$$traceEntry(in tracePointcut : BEFORE)
+Tracing$$Trace$$traceExit(in tracePointcut : AFTER)

«advice»
Advice

<<use>> <<use>>

Figure 3: Tracing Design Example

Every time the user performs an invocation on the Server, the
action should be traced. Both, tracing aspect and business logic,
are independent from each other, no connection is modeled inside.
The connector, specifying the weaving rules, includes program
execution points (pointcuts) and actions performed at those points
(advices). The pointcut (tracePointcut) is triggered every time the
client invokes the Server.getValues() method. The action to be
performed before the method call is tracing the entry of the
method (Trace.traceEntry()) and after the method call is tracing
the exit of the method (Trace.traceExit()). As within Java [7] dots
are not allowed within operation names, it was soon discovered
that dots could not be used to separate packages from classes and
members. Therefore, we decided to separate them from each other
using “$$”. The “$” character can be found quite often within
AML and it has been chosen as it is rarely used by developers
within class or member names.
AML is a simple and powerful notation for aspect-oriented
modeling. In order to reduce errors when mapping models to code
and offer low-level architecture design support, a code generator
is developed which is presented in the next chapter.

4. CODE GENERATION
To extend the support beyond the architecture phase a code
generator is presented addressing low-level design support by
offering an automated mapping from abstract design models to
programming models. This low-level architecture design support
prevents inconsistencies among design and implementation and
helps developers concentrate on AO design having the code
skeletons generated automatically. AspectJ has been chosen to be
the target language, as it is the AO language that is mainly used at
present. The semantics of the connector have been designed
according to AspectJ concepts including concrete mapping rules
between model and code. Before generating code skeletons, the
model is validated for syntactical and semantical correctness. It is
even possible for developers to have the model validated without
generating code afterwards.
The development of the code generator is divided into two parts
(see Figure 4):

1. The model validation part validates an AO design
model for syntactical and semantical correctness (e.g.,
the existence of referenced pointcuts). It is possible for
developers to have the design model validated without
generating code afterwards.

2. The code generation part generates AspectJ source code
for a validated AO model.

Figure 4: Flowchart of an AO Development Process

The CASE tool Together [22] from Borland is an enterprise
development platform enabling application design, development,
and deployment. It is extensible through an open Java API
offering the possibility to develop custom software that plugs into
the Together platform in the form of modules. The open API is
composed of a three-tier interface that enables varying degrees of
access to the infrastructure of Together. Altogether, Together’s
open API offers a lot of very powerful concepts for the
manipulation of UML models and has therefore been chosen for
the development of the code generator. The tool automatically
validates and generates the OO parts of the model (aspect and
base elements), the validation and code generation of AO parts
(i.e. connector elements) is implemented as modules that plug into
the Together platform.

Aspect elements and base elements map to Java source code. The
aspect package and the base package are the OO parts of the
notation. Connector elements map to AspectJ source code. The
connector package consists of the AO part of the notation, linking
aspect package and base package. To ensure syntactical and
semantical correct AspectJ files that can then be compiled with an

AspectJ compiler mapping rules have been defined between the
notation and AspectJ concepts.

public aspect TracingAspect {

 pointcut tracePointcut () :

 call (* BasePackage.Server.getValues(..));

 before () : tracePointcut () {

 System.out.println (“Entering method…”);

 }

 after () : tracePointcut () {

 System.out.println (“Leaving method…”);

 }

}

Listing 1: Tracing Aspect with Copied Code

public aspect TracingAspect {

 pointcut tracePointcut () :

 call (* BasePackage.Server.getValues(..));

 before () : tracePointcut () {

 Trace t = new Trace (/*parameters*/);

 t.traceEntry (/*parameters*/);

 }

 after () : tracePointcut () {

 Trace t = new Trace (/*parameters*/);

 t.traceExit (/*parameters*/);

 }

}

Listing 2: Tracing Aspect with Instantiation

Listing 1 shows the aspect TracingAspect that is generated
when code parts of the crosscutting concern are copied into the
AspectJ file. The difference between Listing 1 and Listing 2 lies
in the specification of actions being performed at pointcuts. In
Listing 1, the code to be executed (declared inside the aspect
package) is copied into the AspectJ file, whereby in Listing 2 the
relevant classes are instantiated and the appropriate methods are
called. When instantiating classes (as shown in Listing 2), the
appropriate constructor and method parameters have to be
inserted by the user which is not necessary when copying the
code. The user can choose between the two options when
generating the code (copied code and instantiation).

The generation of AspectJ code is a one-time/one-way generation,
possible future extensions could support roundtrip engineering
including reverse engineering for aspect mining.

AO Modeling with
Together Model Validation Success?

No

Code GenerationYes

.java FilesManual
Implementation of

Functionality
AspectJ Compiler

.class Files

5. RELATED WORK
Related aspect-oriented design approaches proposed to provide
support for crosscutting concerns at the architecture design level
are based on Composition Patterns [12] [13] [14], Aspectual UML
[10] [11] and other UML based modeling approaches [15] [16]
[17].
The Composition Pattern approach combines UML templates
with a subject-oriented model. The notation focuses on package
level decomposition and “binds” crosscutting concerns with
business logic classes with the help of binding relationships
between the decomposed packages. The modeling language is
based on standard UML extension elements like stereotypes,
constraints or templates, which are supported on all standard
UML conform CASE tools. The Composition Pattern notation
does not provide an explicit notation for advice specifications,
instead advices are expressed through state diagrams. A designer
is forced to provide an additional state diagram for each execution
point. While modeling the notation requires switching between
object and state diagrams. The notation might be sufficient for
small designs, but gets complex and hard to read for larger
systems.
Aspectual UML separates the design in aspectual collaboration
modules and all linking rules in a separate “connector” package.
Compared to Composition Patterns, the notation enhances the
separation of base classes, crosscutting concerns and binding rules
in independent modules. However the UML notation of this
approach introduces two new relationships on package-level
(package inheritance and package adaption), which are unknown
to standard UML and will be problematic to realize in existing
CASE tools. With binding by delegation and advice weaving,
Aspectual UML provides two powerful binding concepts, but is
lacking other AO concepts like introduction and full support for
all AspectJ-like join point definitions.
Many of the other modeling approaches [15], [16], [17] are based
on class level decomposition. This decomposition level does not
seem ideal, since often several classes are involved in one
crosscutting concern. There is a danger that class level
decomposition may lead to redundant notations and graphical
tangling in the design models. [17] complies to standard UML,
however the tight coupling of specific notations to AspectJ
concepts, will make it difficult to support other aspect-oriented
languages (e.g. HyperJ). [15] remains unspecific, how advice or
pointcuts can be modeled, It mainly provides concepts for static
crosscutting of operations. [16] provides limited modeling
capabilities for crosscutting concerns e.g. advices can only be
expressed through state-chart diagrams.

6. SUMMARY AND FUTURE WORK
This work addresses the AO development process from the high
level architecture to the low level design by presenting an
approach for aspect-oriented modeling and automated code
generation. When considering the requirements defined in chapter
2, the following goals have been reached:

− An approach for high level architecture design, called
AML, has been developed to enable separation of
concerns at the design level of an AO development
process. Within this approach it is assumed that the
requirements have already been defined and specified
during previous development stages.

− Since AML is UML conform, any CASE tool that
supports UML modeling can be used.

− Aspects and base elements are completely kept apart;
they are connected via a special language-specific
connector element that encapsulates the underlying
implementation technology. Any desired AO
technology can be supported; it is just the connector’s
syntax and semantics that have to be specified.

− Both, aspects and base elements, can be reused
separately as the connector is the only crosscutting,
language-dependent part. This sort of encapsulation
offers a logical grouping of all classes belonging to one
concern and eases the readability of design models as
avoiding graphical tangling.

− To offer low-level architecture design support, a code
generator has been developed to improve productivity
and reduce errors when mapping model to code.

The work can be seen as a first step towards a simple and
powerful modeling approach that fosters support from existing
CASE tools since it is based on standard UML. AML in
combination with the code generator should make AOSD more
usable and more efficient for software development. The
assumptions about the usefulness of the notation and the AO code
generation have to be proven in the near future when using it in
business development projects.
After evaluating the prototype’s features in real world
development projects, some concepts may have to be added (e.g.
complex relationships between aspects). Another important
feature will be a complete CASE tool support including roundtrip
engineering for aspect mining. As Together plans to support the
development of modules offering roundtrip engineering features
in the next version, this should be included in the next version of
the code generator.
The connector package encapsulates the underlying
implementation technology. Currently, the syntax and semantics
of an AspectJ specific connector type are defined. This sort of
encapsulation eases the replacement of the AO language, the
support of different technologies and language concepts (such as
Hyper/J [18] [19] [23]) will be part of some future work. An
automated code generation for different languages is rather
straightforward, too. It is only the code generator’s mapping rules
that have to be changed.
There are still many issues to be solved until efficient AO
development support comparable to current OO support is
established. When offering an integrated development process,
the gaps between the early phases and AO programming have to
be filled as so far the paradigm focuses mainly at the
implementation level. There is still a lot of challenging research to
be done in the future until the paradigm is widely accepted and
developers are aware of the benefits AOSD offers.

7. ACKNOWLEDGMENTS
We thank all researchers who explored the idea of crosscutting
concerns to a state we could build on to gain a first experience in
development projects, especially the group around AspectJ,
Caesar [8] and Hyper/J. We also want to thank our colleagues at
Siemens for their valuable feedback.

8. REFERENCES

[1] E.W. Dijkstra. A Discipline of Programming. Prentice Hall,

Englewood Cliffs, NJ, 1976.
[2] G. Kiczales et al. Aspect-Oriented Programming. 2001
[3] Early Aspects Homepage, http://early-aspects.net
[4] J. Rumbaugh et al. The Unified Modeling Language

Reference Manual. Addison-Wesley, Massachusetts, USA,
1999.

[5] The Unified Modeling Language, version 1.4,
http://www.uml.org/

[6] AspectJ Homepage, http://www.eclipse.org/aspectj/
[7] Java Homepage, http://java.sun.com/
[8] CAESAR project, http://caesarj.org/
[9] E. Gamma et al. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, Massachusetts,
USA, 2001.

[10] S.Herrmann. Composable Designs with UFA. Submission to
AOSD 2002.

[11] S. Herrmann, M. Mezini. Aspect-Oriented Software
Development with Aspectual Collaborations. Submission to
ECOOP 2002.

[12] S. Clarke et al. Composition Patterns: An Approach to
Designing Reusable Aspects. Workshop on AO
Requirements Engineering and Architecture Design on
AOSD 2002, Enschede, Netherlands, 2002.

[13] S. Clarke, R. J. Walker. Separating Crosscutting Concerns
Across the Lifecycle: From Composition Patterns to Aspect J
and Hyper/J

[14] S. Clarke, R. J. Walker. Towards A Standard Design
Language for AOSD

[15] J. Suzuki, Y. Yamamoto, Extending UML with Aspects:
Aspect Support in the Design Phase, Submission for
Workshop at ECOOP 1999

[16] J.L. Herrero, F. Sanchez, F. Lucio, M. Torro, Introducing
Separation of Aspects at Design Time, Submission for
Workshop at ECOOP 2000

[17] R. Pawlak et al. A UML Notation for Aspect-Oriented
Software Design. Workshop on AO Requirements
Engineering and Architecture Design on AOSD 2002,
Enchede, Netherlands, 2002.

[18] Hyper/J, http://www.alphaworks.ibm.com/tech/hyperj/
[19] Hyperspaces, http://www.research.ibm.com/hyperspace/
[20] I. Jacobson et al, Unified Software Development Process.

Addison-Wesley Professional, February 1999.
[21] G. Kiczales. E.Hilsdale, J. Hugunin, M. Kersten, J. Palm and

W. Griswold. An overview of AspectJ. In Proc. Of 15th.
ECOOP, LNCS 2072, p. 327-353, Springer-Verlag, 2001

[22] Together Homepage, http://www.borland.com/together/
[23] H. Ossher and P. Tarr. Multi-Dimensional Separation of

Concerns and the Hyperspace Approach. In Proceedings of
the Symposium on Software Architectures and Component
Technology: The State of the Art in Software Development.
Kluwer, 2000.

