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Abstract
The determination of detailed 3D structures of large and transient multicomponent complexes remains
challenging. Here I describe the approaches that were used and developed by our laboratory to achieve
structure solution of eukaryotic transcription complexes. I hope this collection serves as a resource for
structural biologists seeking solutions for difficult structure determination projects.

Introduction
Our laboratory studies the mechanisms of gene transcription
and its regulation in eukaryotic cells with a combination of
in vitro and in vivo approaches. We use integrated structural
biology to derive the molecular basis of gene transcription.
We also use functional genomics and computational biology
to investigate the principles of genome transcription and
RNA metabolism. We have recently reviewed structural
studies of transcription initiation by RNA polymerase (Pol)
II [1], the structural basis for mRNA chain elongation [2], and
structural studies of the transcriptional coactivator complex
Mediator [3]. We also summarized structural results in movies
that can be used for teaching the mechanisms of gene
transcription [4,5], and we compared the Pol II machinery
with the alternative transcription machineries of Pol I and
Pol III [6].

In my award lecture I concentrate on the most recent
work from the laboratory from both structural biology
and functional genomics. Here I summarize the technical
and methodological advances in structural biology that we
made over the years and that were necessary to enable
structure determination of large and transient multiprotein
transcription complexes. It turns out that a different approach
had to be taken for each new structure solution. I hope
the collection of examples put together here will serve as
a resource for structural biologists.
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Crystal shrinkage: core Pol II
As a postdoctoral fellow with Roger Kornberg at Stanford
University, I was concerned with the crystal structure
determination of the 10-subunit core Pol II enzyme from
yeast [7–9]. A prerequisite for structure determination of
the 10-subunit core Pol II enzyme was its availability in
large quantities. To this end, the Kornberg laboratory used
large-scale yeast fermentation and affinity purification of
the endogenous enzyme based on an antibody from the
Burgess laboratory [10]. Crystals of the core Pol II had
been obtained in the mid-nineties but their diffraction was
poorly reproducible and the resolution insufficient for high-
resolution structure determination [10].

The trick to obtain better diffraction was to induce crystal
shrinkage with a special crystal treatment and cryo protection
protocol [7,8]. I had by accident come across the phenomenon
of crystal shrinkage during my doctoral work on crystals of a
transcription factor–DNA complex [11], and first thought
that I had discovered something really new. However, I
then found in the literature that shrinkage of haemoglobin
crystals had been described by Max Perutz already in the
fifties. Crystal shrinkage was the key to solve the core Pol
II structure, but phasing also turned out to be difficult.
In particular, it required a search for non-standard heavy
metal derivatives such as water-soluble iridium and rhenium
compounds [7]. Furthermore, model building was facilitated
by incorporating selenomethionine into the endogenous
yeast complex [12]. Crystal shrinkage dramatically improved
diffraction, but only later we learned how. In the core Pol II
enzyme, the so-called clamp domain is mobile, but is trapped
by crystal contacts. Crystal shrinkage led to a further opening
of the clamp and additional crystal contacts by the clamp,
giving a more stable lattice.
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Combining samples: complete Pol II
When I started to set up our laboratory at the University
of Munich (LMU), our first project was to arrive at the
atomic structure of the complete Pol II enzyme comprising
all 12 subunits. Pol II contains, in addition to its 10-subunit
catalytic core, a subcomplex of two subunits called Rpb4
and Rpb7. For a long time, it was difficult to obtain Pol II
with stoichiometric amounts of Rpb4/Rpb7. We therefore
reconstituted the complete 12-subunit Pol II from the
endogenous 10-subunit yeast core enzyme and a recombinant
Rpb4/Rpb7 subcomplex that we obtained after co-expression
of their subunits in E. coli [13]. The resulting complex was
homogeneous and crystallized. However, the resolution was
limited to approximately 4 Å (1 Å=0.1 nm), preventing
model building. We therefore crystallized the recombinant
Rpb4/Rpb7 subcomplex in isolation, and obtained a high-
resolution structure [14]. This structure was combined with
the structure of the core enzyme to arrive at an atomic model
for the complete Pol II that could be refined [14]. This
structure served as a reference for solving many different
complexes of Pol II with nucleic acids and additional factors
in the years afterwards.

Crystal soaking: Pol II–TFIIS complex
The first structure of a Pol II complex with an additional
protein factor could be obtained by soaking an entire
recombinant factor, the elongation factor TFIIS, into
preformed crystals of the complete Pol II [15]. We
were encouraged to do this because the complete Pol II
crystals showed a high solvent content, approximately 80 %
compared with only approximately 50 % for core Pol II
crystals. We reasoned that the solvent channels were large
enough to allow for passage of an entire protein. However,
we were lucky that the binding site of TFIIS on the Pol
II surface was not involved in crystal contacts, allowing
TFIIS to be accommodated in preformed crystals. Structure
determination was enabled by difference Fourier analysis
using model phases from Pol II. The resulting difference
Fourier map clearly reveals TFIIS. Encouraged by these
successes we tried to soak additional factors into preformed
crystals, but were never lucky again. In the course of this
work, we developed methods to follow protein binding
in crystals using fluorescently labelled TFIIS [16]. Similar
labelling approaches we used later to monitor the presence of
nucleic acids in Pol II complexes. Indeed, nucleic acids tended
to be lost from crystals unless present also in cryo-preserving
solutions [15].

Covalent linkage: Pol II–TFIIB complex
The complex of Pol II with the initiation factor TFIIB was not
stable in solution, preventing the formation of crystals that
were suited for structure determination. To solve the structure
of the Pol II–TFIIB complex, we prepared a recombinant
Rpb4/Rpb7 variant in which the Rpb4 C-terminus was
covalently fused to TFIIB. We then combined the fusion

protein with endogenous core Pol II for crystallization
[17]. The covalent, flexible linker ensured that TFIIB was
recruited stoichiometrically near its binding site on the Pol
II surface. To design this fusion protein, we made use of
prior information. It had been shown that the N-terminal
domain of TFIIB was located on the dock domain of the
polymerase near the Rpb4/Rpb7 subcomplex [18,19]. Our
resulting Pol II–TFIIB complex structure was important for
obtaining models of the closed and open promoter complexes
that first revealed the course of DNA over the polymerase
surface during transcription initiation.

Later we were able to improve the resolution of the Pol
II–TFIIB complex by adding a DNA scaffold and a short, 6-
nucleotide RNA, mimicking an initially transcribing complex
[20]. In this complex, a covalent linkage of TFIIB to Pol II
was no longer required, likely because the presence of nucleic
acids increased the affinity of TFIIB to Pol II. The resulting
structure of a minimal initially transcribing complex together
with functional data provided evidence for allosteric control
of eukaryotic transcription. In particular, TFIIB bound on
the polymerase surface far away from the catalytic site but
allosterically changed the catalytic centre of Pol II such that
RNA synthesis activity was stimulated [20].

Cross-linking: Pol II–TFIIF complex
Despite extensive trials, we could not prepare crystals of Pol
II with another initiation factor, TFIIF. As we know now,
TFIIF is a highly modular factor and some regions of this
protein remain flexible even in the context of an initiation
complex containing other initiation factors. To locate TFIIF
on the Pol II surface, we used protein cross-linking and
identification of the cross-linked lysine residues by mass
spectrometry in collaboration with the laboratory of Juri
Rappsilber [21]. At the time, this study presented the largest
protein complex subjected successfully to such cross-linking
analysis and provided a proof of principle that other large
assemblies were amenable to this method.

We subsequently used the cross-linking-mass spectro-
metry approach in collaboration with Rudi Aebersold and
Franz Herzog to derive the architecture of a core Pol II
initiation complex [22], the middle module of the coactivator
complex Mediator [23], RNA Pol I [24], and the Pol I–Rrn3
complex [25]. Our later crystal structure of Pol I provided
independent proof of the correctness of the cross-linking-
based structural approach [26]. Similarly, the cross-linking-
based position of TFIIF on the polymerase surface was
correct, as confirmed later by electron microscopy [27]. By
now, cross-linking-based docking of protein structures is a
widely used method to elucidate the architecture of protein
assemblies.

Inhibitor trapping: Pol II translocation
intermediate
After successful addition of a nucleotide to the growing
RNA change, the polymerase must translocate to the next
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template position. Many Pol II elongation complex structures
with DNA template strand and RNA transcript were solved.
Among these was a structure that was pre-translocated,
containing the newly added 3’-terminal nucleotide of the
RNA in the nucleoside triphosphate (NTP)-binding site [28],
and many structures that were post-translocated, containing
a free NTP-binding site [2]. However, it remained unclear
which structural changes occurred during translocation from
the pre- to the post-translocated state.

When we soaked crystals of the complete Pol II elongation
complex with the inhibitor α-amanitin, we could trap a
novel conformation of Pol II that apparently represented a
translocation intermediate [29]. These results were consistent
with the idea that the polymerase is flexible and samples
different conformational states, and that the inhibitor binds
the translocation intermediate state, which is normally not
observed because it is transient. Unfortunately there are no
other well-characterized direct Pol II inhibitors that could be
used to trap additional conformational states.

Serendipity: backtracked Pol II
Many Pol II-nucleic acid complexes could be resolved
crystallographically by designing DNA–RNA scaffolds for
co-crystallization. However, one complex we obtained only
by serendipity, and not be design. We had tried to obtain
a backtracked complex structure by designing nucleic acid
scaffolds, but were unsuccessful. When we tried to prepare
Pol II elongation complexes with mismatched nucleotides
incorporated at the RNA 3’-end, we noted that incubation of
the complexes with CTP led to misincorporation of several
C residues. This was apparently followed by backtracking of
the enzyme on DNA and RNA, extrusion of the backtracked
RNA into a pore of the polymerase, and binding of the
backtracked single-stranded RNA to a defined surface that
we called the ‘backtrack site’ [30].

This study taught us that serendipity is much more than
just luck. We were lucky, yes, but we also needed to be open-
minded enough to realize that the unexpected, additional
electron density we observed in the experiment was actually
due to backtracked RNA. Indeed, obtaining new insights in
science often requires one to reflect on surprises, and to follow
unexpected observations. We often discard such information,
believing that we look at failed experiments.

Crystal design: polymerase–Spt4/Spt5
complex
The heterodimer Spt4/Spt5 (or DSIF) is the only known
polymerase-binding factor that is conserved in all three
kingdoms of life. Because preparation of the Spt4/Spt5
elongation factor was initially difficult, we turned to the
archaeal system to resolve its conserved complex with the
archaeal polymerase. We could prepare a complex of the
archaeal RNA polymerase with Spt4/Spt5, which however
did not crystallize. We therefore aimed at crystallizing only
the conserved dimer region of the factor with its conserved

target domain on Pol II, the so-called clamp domain, which
was identified in various species [31–34].

Based on the Pol II structure, we knew that the clamp
domain comprises three protein regions. We used the
structural information to design a recombinant fusion protein
that combined these three protein regions in the right order.
This enabled us to prepare a recombinant archaeal clamp
domain, which readily bound Spt4/Spt5 [35]. We could
indeed crystallize the clamp-Spt4/Spt5 complex. The complex
structure revealed the relative position of Spt4/Spt5 and the
clamp, and could be used to prepare models for Spt4/Spt5
bound to polymerases from all three kingdoms of life.

Identification of cores: Mediator
subcomplexes
In 2002, we set out to determine the structure of Mediator,
the central Pol II coactivator complex. Yeast Mediator
comprises 25 subunits, is highly modular, flexible, instable
and covalently modified, preventing structure determination
of the endogenous complex. We therefore decided to take a
long and winding road to eventually prepare a recombinant
Mediator. To achieve this, we took a bottom-up approach
and prepared individual subunits and their subcomplexes.
Briefly, we coexpressed one Mediator subunit with a putative
interacting subunit, and tried to obtain a complex after
purification. Such subcomplexes we subjected to partial
proteolysis in order to identify flexible regions in Mediator
subunits. Subcloning to eliminate such flexible regions led to
truncated subcomplexes with reduced flexibility. An iterative
approach often led to crystallizable portions of Mediator
and the determination of their structures [36–40]. We also
used this approach of iterative identification and removal
of flexible regions in protein complexes to crystallize the
Pol I subcomplexes A14/A43 [41] and A34.5/A49 [42] and
described our methods in detail [43]. Whereas proteins were
generally truncated at their termini, it may also be required
to predict and shorten a flexible internal loop, as exemplified
by our crystal structure determination of the Pol III inhibitor
Maf1 [44].

Switching species: Mediator head module
Proteins often fail to crystallize, but homologues from
a different species may nevertheless form crystals. This
approach of ‘switching species’ was used to solve the structure
of the TATA box-binding protein TBP over two decades
ago. In the case of the Mediator head module, which
comprises seven subunits, switching species was required to
obtain a high-resolution structure. We could prepare and
crystallize the Mediator head module of the budding yeast
S. cerevisiae, but the crystals were limited in resolution.
When we made the module from the fission yeast S. pombe,
the structure could be resolved and an atomic model was
refined [45] that enabled completion and adaptation of
an earlier, lower-resolution model obtained from the S.
cerevisiae protein [46]. Switching species can be beneficial
for crystallogenesis because homologous proteins often differ
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Figure 1 Current model of the yeast RNA polymerase II initiation complex bound by the Mediator head module

The model is obtained by superposition of the cryo-EM structures of an open promoter initiation complex [48] and the

cryo-EM structure of an initially transcribing Pol II complex with bound core Mediator [27]. The cryo-EM models relied on

prior crystal structure determinations of several subcomplexes. For details compare text.

in their surface properties and the nature of their flexible
regions.

Changing crystal packing: Pol I
In 2005, our group was able to grow crystals of a second
eukaryotic RNA polymerase, Pol I from S. cerevisiae, but we
only reported the crystal structure in 2013 [26]. The reason
why this structure determination took so long was that the
initial crystals were difficult to reproduce and were diffracting
poorly [47]. After many unsuccessful rounds of optimizing
initial crystals, we switched species and prepared Pol I from
S. pombe. This was a major effort because we had to work out
a purification protocol for the endogenous protein complex,
without the benefit of overexpression. However, the S. pombe
enzyme did not yield good crystals. Eventually, we returned
to the S. cerevisiae enzyme and tried to obtain a different
crystal form, i.e. to crystallize the protein in a different crystal
packing. We eventually succeeded by changing parameters at
essentially all steps from yeast cell fermentation to protein
purification and crystallization [26]. The crystals with the
alternative packing led to better and more reproducible
diffraction that enabled experimental phasing and structure
determination.

Advent of cryo-EM: initiation complexes
Our crystallographic studies used a different approach for
each new complex. For most projects, many things had
to be tried before the desired structures could be resolved
crystallographically. And there were generally no signs which
route would be the fastest. Many higher-order complexes
also failed to crystallize despite extensive trials. It is thus

a great relief that cryo-electron microscopy (cryo-EM) has
recently advanced to a level where it can be viewed as an
alternative method to resolve detailed structures of large
protein complexes. This became possible with the recent
development of direct electron detectors and improved image
processing software.

We could indeed use cryo-EM and single particle
reconstruction not only to confirm the locations of TFIIB
and TFIIF on Pol II, but also to locate TFIIA, TFIIE
and TBP on initiation complexes [27,48]. We additionally
positioned the Mediator core comprising the head and
middle modules on the Pol II surface [27]. These studies
provided electron densities that were sufficiently detailed to
unambiguously place crystal structures of Pol II and domains
of the initiation factors. The structures of these pieces of the
3D puzzle were instrumental for structure determination of
the entire assembly. Cryo-EM also revealed that binary Pol
II-factor complexes resolved from crystals generally agreed
well with the larger assemblies obtained in solution after cryo-
preservation. As a result from these efforts, a model for the
yeast Pol II initiation complex with bound Mediator head
module has been obtained (Figure 1).

Conclusions
As can be seen from this summary, there is no general
recipe for structure determination of large assemblies. This
is true even for very closely related complexes of Pol
II with additional factors and nucleic acids. Instead each
structure determination project turned out to be different.
The conceptual challenge was however always the same,
namely to stabilize the transient nature of a complex, to
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arrive at a uniform state with a preferred conformation,
and to reduce flexibilities and remove mobile regions. We
generally used X-ray crystallography, because it was until
recently the only method that provided detailed information
on the 3D structure of large protein assemblies, and thus
mechanistic insights. The examples provided here emphasize
the many different approaches we developed and used to
arrive at samples that enabled formation of such crystals.
My hope is that this summary serves as a resource of ideas
for structural biologists who are desperate to tackle similar
technical challenges.

In the future, cryo-EM will become increasingly import-
ant, as it removes a frequent bottleneck for X-ray analysis,
namely the formation of diffraction-quality, ordered crystals.
Cryo-EM can also be carried out with less protein material,
and can resolve heterogeneity in the sample by compuational
sorting of the particle images. Cryo-EM also holds the
promise of determining structures of several subcomplexes
in a single experiment, and of providing information
about structural dynamics. Thus, future structural studies
of large and transient transcription complexes can rely
on two complementary techniques, X-ray crystallography
and cryo-EM, and these can be further complemented
by other biophysical methods such as cross-linking-mass
spectrometry, small angle X-ray scattering and nuclear
magnetic resonance. Such structural biology hybrid methods
ultimately characterize the entire transcription cycle as a
process of transitions between multicomponent complexes
that are formed temporarily at a specific stage of the cycle.
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