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Abstract. MaxNet is a distributed congestion control architecture in
which only the most severely bottlenecked link on the end-to-end path
controls the source rate. This paper shows that the small-signal conver-
gence speed of MaxNet is higher than that of conventional architectures,
such as the current Internet or REM. It also shows that MaxNet decou-
ples the control, so that each pole position depends only on parameters
of one bottleneck link and of the sources controlled by that bottleneck,
enabling optimal pole placement.

1 Introduction

Network flow control aims to control source rates so that link capacities are
utilised. Internet-like networks, where links and sources can only have local in-
formation, must use fully distributed control.

Models of Internet-like networks control the source rate by a scalar feedback
congestion signal which aggregates the congestion prices of links on the end-to-
end connection. The signals, such as loss or delay, used by current flow control
algorithms such as TCP, are implicitly summed over all links by the network.
We refer to these networks as SumNets. In [1], we introduced MaxNet, where
the congestion prices are aggregated by taking the maximum link price along the
connection path, rather than the sum. In [1], we showed that MaxNet results in
Max-Min fairness for sources with homogeneous demand functions.

Sufficient conditions for the stability of MaxNet are known [2], but its tran-
sient dynamics are yet to be studied. The convergence time of network flow
control impacts on the Quality of Service of the network. A slow response re-
sults in long traffic transients which are responsible for packet delay, delay-jitter,
under-utilisation and buffer-overflow. Reducing the duration and overshoot of
transients improves these performance measures and makes smaller buffer sizes
possible.

This paper compares the convergence times of MaxNet and SumNet, using a
common framework given in Section 2. The first part of the investigation involves
a local analysis for which we develop small-signal linearized models in Sections 3
and 4. Using these models, Section 6 finds the position of poles which determine
the convergence time of MaxNet. Section 7 compares the convergence time of
MaxNet with a lower bound of the performance of SumNet, and shows that a



faster pole placement is possible with MaxNet than with SumNet. This makes
it possible for MaxNet to achieve better QoS performance. In the second part of
this paper, Section 8 investigates the global performance by simulating the full
non-linear system, and relates the local analysis to these simulation results.

2 Control Architecture

The following is a brief overview of the MaxNet and SumNet control algorithms.
For a fuller description, see [1, 3]. The behaviour of source i is governed by an
explicit demand function, Di(·), such that its transmit rate is

xi = Di(qi) (1)

for a congestion signal qi. In both MaxNet and SumNet, the congestion signal,
qi, summarises the prices, pl, of all links, l, on the end-to-end path, Li, of source
i. In MaxNet the congestion signal is the maximum of all link prices,

qi = max{pl : l ∈ Li} . (2a)

In contrast, SumNet uses the sum

q̂i =
∑
l∈Li

pl . (2b)

(Throughout this paper, variables with a hat pertain to SumNet, and the corre-
sponding variables without a hat pertain to MaxNet.)

The Active Queue Management (AQM) algorithm in a router sets the price
of an outgoing link according to the well studied integrator process [3]:

pl(t + 1) = pl(t) + (yl(t)− cl)ϕl , (3)

where yl(t) =
∑

i:l∈Li
xi(t) is the aggregate traffic for link l at time t, ϕl is the

control gain and cl is the target capacity of link l which is related to its physical
capacity, Cl by the target utilisation, 0 < µl < 1, such that cl = µlCl.

3 MaxNet Control System Model

This section describes the MaxNet model from [2] which will be used in subse-
quent sections to investigate convergence time. This model makes a number of
simplifications of the network. The first is to use a fluid-flow approximation of
the packet based information flow. The second simplification is that the global
non-linear system is linearized about its equilibrium point. MaxNet contains two
sources of non-linearity. The first is the Max operation itself and the second is
the non-linear demand function, D. These will be linearised separately.

Using these simplifications, the network is represented as a multi-variable
control system, shown in Figure 1. Note that Figure 1, for illustration only, shows



a large-signal source, and small-signal links and network. The interconnection of
sources with links is piecewise linear, due to the Max operation. It is described
in the Laplace domain by forward and backward routing matrices. The matrices
specify the interconnection and the delay incurred in signal flow from source to
link and vice versa. The forward routing matrix is

[Rf (s)]l,i =

{
e−τf

i,ls if source i uses link l
0 otherwise ,

(4)

where τf
i,ls is the forward delay between source i and link l. Note that the bar

notation in Rf (s) indicates it has a row for every link in the network. We later
reduce this to a matrix representing only bottleneck links, without the bar.

Fig. 1. Flow Control Structure.

Let ni be the bottleneck link that controls source i (the link on Li with the
maximum price). Then the backward routing matrix depends on n, as

[Rb(s;n)]l,i =
{

e−τb
i,ls if ni = l

0 otherwise .
(5)

Note that the round-trip time of source i’s connection is τi = τf
i,l + τ b

i,l. Let L
be the number of links in the network. Without loss of generality, order the link
prices such that

p1 ≥ p2 ≥ . . . ≥ pL . (6)

The backward routing matrix remains static over a period where the vari-
ations in link prices do not change the ordering of link prices (6). The overall
multi-variable feedback loop in the configuration of Figure 1 is

y(s) = Rf (s)x(s) (7)
q(s) = Rb(s;n)T p(s) . (8)

We can construct a small signal model as in [3]. Consider small perturbations
around equilibrium, x = x0 + δx, y = y0 + δy, p = p0 + δp, q = q0 + δq, where



subscript 0 denotes a steady state value and prefix δ denotes a perturbation.
Note that the bar notation still denotes variables that contain non-bottleneck
links and δpl is only non-zero for bottleneck links. Note also that when all link
prices are distinct, the vector of bottlenecks, n, is unchanged by a sufficiently
small perturbation. In this case, the small signal model does not explicitly involve
n. This is the first linearisation. Form the vectors δp(s), δy(s) and the matrices
Rf , Rb by eliminating the elements (or rows) corresponding to non-bottleneck
links. This gives the reduced small signal model

δy(s) = Rf (s)δx(s) (9)
δq(s) = Rb(s)T δp(s) . (10)

To achieve stable control for networks of arbitrary dimensions, it is sufficient
that the gains that sources and links introduce be as follows [2]. The second
linearisation replaces the demand function of a source by a small-signal gain, κi,
between a perturbation in δqi and the resulting perturbation in δxi, given by

κi = D′
i(qi) . (11)

For robust stability, it is sufficient that this gain be scaled such that

κi =
αix0i

τi
. (12)

Here, αi ∈ (0, 1) reflects the source’s need for capacity, and the factor τi provides
robustness to delay. To make stability robust to the number of sources, a gain
x0i/cl is introduced in the closed-loop, with the x0i component put into the
source and the 1/cl component in the link as ϕl = 1/cl.

Note that (11) implicitly assumes a static demand function. As discussed
in [3], the requirement (12) determines the shape of the static demand function.
However, recent work in [4] provides dynamic source algorithms which allow ar-
bitrary demand functions, whilst preserving the control gain required for robust
stability. They separate the high-frequency gain AC from the DC gain.

In the Laplace domain, the integrator AQM of (3) with the required gain
between the coupling of δpl and δyl is

δpl =
1

cls
δyl . (13)

The open-loop transfer function for the small signal MaxNet model is

H(s) =
1
s
Rf (s)KRb(s)TC , (14)

where

K = diag(κi), C = diag
(

1
cl

)
. (15)



4 SumNet Control System Model

This section describes the model from [3] for a SumNet network, by highlighting
the difference from the MaxNet model. Recall that the hat symbol identifies
SumNet variables which have a related variable in MaxNet.

The SumNet forward routing matrix is the same as that of MaxNet, R̂f = Rf .
The backward routing matrix, which describes the flow of congestion information
from each link back to sources, is independent of the current transmission rates:

[R̂b(s)]l,i =
{

e−τb
i,ls if source i uses link l

0 otherwise .
(16)

Thus (8) becomes
q(s) = R̂b(s)T p(s). (17)

The small signal variables also take on the hat notation: x̂ = x̂0 + δx̂, ŷ =
ŷ0 + δŷ, p̂ = p̂0 + δp̂, q̂ = q̂0 + δq̂.

For SumNet, the routing matrices can again be reduced to contain only bot-
tleneck links. These reduced matrices are applicable so long as the bottlenecks
remain the same throughout the perturbations. The reduced small-signal model
has the same form as (9), (10), in the variables R̂f = Rf , R̂b δp̂(s) and δŷ(s).

To achieve stable control for networks of arbitrary dimensions, the gains
that sources and links introduce need to satisfy the bounds detailed in [3]. For
SumNet, a source i requires a gain κ̂i of

κ̂i =
α̂ix̂0i

Miτi
, (18)

where Mi is the number of controlling bottleneck links on the end-to-end path,
and α̂i ∈ (0, 1) is again an adjustable parameter.

To maintain stability, SumNet must either estimate and communicate Mi to
each source [3], or use a slow, conservative control policy. MaxNet has Mi = 1,
eliminating these drawbacks.

The complete SumNet open loop small signal transfer function has the same
form as (14), (15).

5 Root Loci

Despite their non-linear nature, the small signal convergence behaviour of MaxNet
and SumNet can be characterised by the positions of the dominant poles of their
linearisation. The MaxNet case is described; SumNet is analogous.

The closed-loop transfer function is

T (s) = G(s)(Is + G(s))−1 , (19)

where G(s) = sH(s). The poles of T (s) are values of s satisfying either of the
equivalent equations

det(I + H(s)) = 0 or eig(H(s)) = −1 . (20)



For non-zero poles, corresponding conditions are

det(Is + G(s)) = 0 or eig(G(s)) = −s . (21)

The root loci of MaxNet and SumNet have many similarities, but some im-
portant differences. The open loop transfer function of each has L poles at zero.
In MaxNet, these correspond directly to the sources controlled by the L links.
In SumNet, there is intrinsic coupling between the links, and it is not helpful to
think of poles as belonging to particular links.

For very small, but positive, loop gain, the poles at the origin move left on the
real line. Meanwhile, L infinite sets of poles appear with real part −∞, and with
imaginary parts uniformly spaced [5]. These poles move right in the complex
plane as the loop gains are increased. Importantly, L of these poles move along
the real axis. For MaxNet, it is once again possible to associate each pole with
a specific link, while for SumNet, the poles can only associated with eigenvalues
of a less structured matrix.

The point at which the rightmost of the poles coming from infinity meets the
leftmost of the poles coming from zero is called a breakpoint. At this point, the
two poles become a complex-conjugate pair, and start moving at right angles to
the real axis, before going right again to eventually cross the imaginary axis and
cause instability. As the gains increase further, subsequent pairs of real poles
will meet at their respective break points, and also eventually become unstable.
Under MaxNet, the pairs of poles which meet at break points always belong to
the same link.

The value of the maximum real pole is minimised at the break point, when
two real solutions of (20) coincide. At that point, s∗l , not only are the left and
right hand sides equal, but their derivatives are also equal [6].

6 MaxNet Convergence Time

This section will derive bounds on the fastest possible convergence time of
MaxNet; that is, the most negative value the real part of the dominant pole
as the feedback gain is varied. These results hold for MaxNet networks with
arbitrary topology, delay, number of sources and capacity.

Lemma 1. For sufficiently small gain, each link, l, introduces a pair of real
poles. The minimum value achieved (by increasing the gain) of the maximum
of these poles is the break point, s∗l , which lies between −1/tmaxl

and −1/tminl
,

where tmaxl
and tminl

are the maximum and minimum round trip times (RTTs)
of all of the sources being controlled by link l.

Proof. Since G(s) is lower triangular under MaxNet, the eigenvalues are simply
the diagonal elements, each of which corresponds to a particular link. Thus (21)
decouples, and we get one equation per link. From (14), poles associated with
link l satisfy

−s =
∑

k∈ml

aie
−τis

cl
, (22)



where
ai =

αix0i

τi
. (23)

Each of these equations clearly has a real solution for sufficiently small ai, es-
tablishing the first part of the lemma.

Differentiating (22) to find the break point, s∗l , yields the condition

1 =
∑

k∈ml

aiτie
−τis

∗
l

cl
=

∑
k∈ml

bi , (24)

where

bi =
aiτie

−τis
∗
l

cl
. (25)

Substituting (25) into (22) gives

−s∗l =
∑

k∈ml

bi

τi
. (26)

Since 1 =
∑

k∈ml
bi, then (26) is a weighted sum of 1/τi. A weighted sum is

between the maximum and minimum elements in the sum, giving

− 1
τminl

≤ s∗l ≤ − 1
τmaxl

. (27)

Proposition 1. At the break point, s∗l is the dominant pole due to link l.

Proof. Except for the pole at the origin, all poles of (19) start with infinitely
negative real part for low loop gain. Thus it suffices to show that, as the loop
gain is increased, no complex pole crosses the line Re(s) = s∗l before the real
pole starting at −∞ does.

Substituting s = −σ + jω into (22) yields the implicit equation for pole
positions at link l∑

k∈ml

akeστk(cos(ωτk)− j sin(ωτk)) = σcl − jωcl . (28)

Taking the real part of (28) gives∑
k∈ml

akeστk cos(ωτk) = σcl . (29)

Consider a line on the complex plane where Re(s) = σ. If we fix the operating
point for parameters x0k and τk, then by (28), a is element-wise minimized when
ω = 0. Since complex poles begin at negative infinity for a = 0, and for the
minimum amin that satisfies (28) there is only a real pole on the line Re(s) = σ,
it follows that the real pole is the first to cross this line as the gain is increased.
Complex poles, with ω 6= 0, that cross this line have an element-wise higher a,
and are therefore to the left of the real pole when the gain is amin. Thus the real
pole at the break point will be the dominant pole for that link, since no complex
poles have crossed to its right.



Remark 1. A key conclusion from this analysis is that because the links are
independent, it is possible to adjust the control gains such that all links are
simultaneously at their break points. That implies that the fastest operation of
MaxNet is governed by poles satisfying (27).

7 Bound on SumNet Convergence Time

This section will show that, at least for the specific case analysed, MaxNet has
a faster transient response than SumNet.

Due to the complexity of the SumNet analysis, we will consider a two link
SumNet network only, where all sources have a common round trip time, τ , and
only one source traverses both links. The assumption of a common round trip
time is expected to favour SumNet by reducing the coupling between link. Thus
we have no reason to believe that any other SumNet will be able to achieve a
faster transient response than the equivalent MaxNet. It is sufficient to consider
only the real pole, even though there may be complex poles which are slower,
since this gives a lower bound for the transient response time.

The SumNet system can be described by a 2× 2 open-loop transfer function
matrix, Ĥ. Expanding the SumNet form of (14) gives the elements of Ĥ as

Ĥij(s) =
1

scj

∑
k∈Ui∩Uj

e−(τF
ki+τB

kj)sâk , (30)

where Ui is the set of sources that uses link i and

âk =
α̂kx0k

Mkτk
. (31)

The following lemmas are proved in the appendix.

Lemma 2. For a two link SumNet, where only one source traverses both links,
and all sources have the same RTT τ , the unique break point is at −1/τ .

Lemma 3. Unless α̂k = 0 for all k, Ĝ(s) for a two link SumNet does not have
a repeated eigenvalue for real s.

Together, these two lemmas imply that there must be a pole to the right of
−1/τ . Therefore SumNet must have a slower transient response than MaxNet.

8 Numerical Results

In this section, the full non-linear SumNet and MaxNet networks are simulated
to compare their transient response speeds. The results are evidence that the
small signal linearized properties proven analytically in the previous sections are
relevant to the practical non-linear system.

The system simulated in this section is intended to reflect a physically real-
isable system. Whilst it may be possible to devise a control strategy where each



Fig. 2. Network Simulated.

source measures network properties and tunes its own gains (equation (18) for
SumNet or (12) for MaxNet) to optimize transient speed, an online algorithm to
achieve this is not trivial. In this paper we consider a practical strategy where
all sources use the same demand function. We simulate sources with the same
static demand function

xi(t) = xmaxe
−ρqi(t) (32)

where ρ is a network wide parameter and xmax is the maximum transmission
rate. A similar demand function was introduced in [3], and was shown to be able
to satisfy the gain requirements (12). For MaxNet, the parameter ρ relates to
the small-signal source gain (12) such that

ρ =
αix0i

τi
(33)

and for SumNet the equivalent relationship is with (18)

ρ =
α̂ix0i

Miτi
(34)

Note that ρ may be tuned to improve transient performance. This strategy
will in general not result in the fastest possible transient response for MaxNet
or SumNet, as the poles are not necessarily placed at their closet position to the
break-points. Nevertheless it allows us to demonstrate some important proper-
ties.

A small network of 5 sources and 3 links, shown in Figure 2, is simulated using
both SumNet and MaxNet congestion signaling. Sources S0 . . . S4 transmit to
destinations D0 . . . D4 respectively.

We model traffic by a fluid flow approximation, that is, the source transmis-
sion rate and congestion price are continuous. At each time step in this discrete
time simulation, the flow rate values and price feedback move one unit along
in the forward and backward delay paths between sources and links. Acknowl-
edgements are assumed to traverse the same links in the reverse direction, and
consume negligible bandwidth. The numbers near each line in Figure 2 represent
delays, in simulation time step units. Note that every source has a RTT of 160
units, and for all sources xmax is set to 15. The MaxNet or SumNet link control



law (3) is at the head of the link, represented by the rectangle inside each link
in Figure 2.

In the simulation scenarios, we assume that the best-effort congestion con-
trolled traffic is receiving only a portion of the link’s physical capacity. This rep-
resesents the situation of having higher-priority constant-bit-rate (CBR) traffic
occupying some capacity. We simulate two scenarios with different proportions
of CBR traffic and different link capacities.

In Scenario 1, the physical link capacities are c0 = 5, c1 = 3 and c2 = 5. To
generate a transient, we assume that initially the capacities available to best-
effort traffic are 5, 3 and 2 at links L0, L1 and L2 respectively. A transient occurs
when the CBR traffic source using L2 stops and the available capacities become
5, 3 and 5. Throughout the whole experiment the link gains are, as stipulated
in [3], 1/cl such that ϕ0 = 1/5, ϕ1 = 1/3 and ϕ2 = 1/5.

Scenario 2 is the same as scenario 1 except that the physical link capacity of
link 1 is c1 = 12, and correspondingly ϕ1 = 1/12. The available capacities again
start at 5, 3 and 2, and link 2’s available capacity increases to 5.

(a) Simulation scenario 1 (b) Simulation scenario 2

Fig. 3. SumNet and MaxNet Convergence Time.

The transient response metric used is the settle time, which is the time from
the change of capacity to when the last source is within ±1% of its final value.
The settle time is measured in simulation time steps. Figures 3(a) and 3(b)
show this convergence time for both SumNet and MaxNet for gains ρ = 0.0015
to ρ = 0.009 for scenario 1, and ρ = 0.002 to ρ = 0.012 for scenario 2.



9 Conclusion and Acknowledgement

This paper has shown that MaxNet flow control has favourable convergence
properties compared with traditional SumNet flow control. For small perturba-
tions from the operating point, MaxNet permits a pole placement that has a
faster transient response than that possible with SumNet. Numerical results for
the complete nonlinear system confirm the conclusions drawn from the analysis
of the linear model.

This work was funded by the Australian Research Concil.
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Appendix

The proof of Lemma 2 is as follows.

Proof. This proof will again use the fact that, at the point a which a pair of real
poles meet and become complex conjugates, the derivative of X = det(I +Ĥ(s))
with respect to s is zero. It also uses the fact that values of s for which dX/ds = 0
but X 6= 0 are not breakpoints.

Since the round trip time of each route is equal, τF
ki + τB

ki = τ for all k, (30)
implies

Ĥii(s) =
1

sci

∑
k∈Ui

e−τsâk =
e−τs

s
Ri , (35)

for i = 1, 2, where Ri =
∑

k∈Ui
âk/ci.

The fact that only one source traverses both links implies that, for i 6= j, the
sum in (30) contains a single term. Without loss of generality, let that source be
source 1. Then

Ĥ12(s)Ĥ21(s) =
â2
1

s2c1c2
e−(τF

11+τB
12+τF

12+τB
11)s

=
e−2τs

s2
R3 , (36)



where R3 = â2
1/(c1c2).

From (20), the 2× 2 SumNet poles are at X = 0, where

X = Ĥ11(s)Ĥ22(s)− Ĥ12(s)Ĥ21(s) + Ĥ11(s) + Ĥ22(s) + 1 .

Substituting (35) and (36) into this gives

X =
e−2τs

s2
(R1R2 −R3) +

e−τs

s
(R1 + R2) + 1 . (37)

Differentiating (37) to find the break point gives

dX

ds
=(τs + 1)

(
2e−2τs

s3
(R1R2 −R3)−

e−τs

s2
(R1 + R2)

)
=(τs + 1)A

2e−τs(R1R2 −R3)− s(R1 + R2)

s3
, (38)

where

A ≡ e−τs

s
.

This derivative, (38), is zero when s = −1/τ . The root locus occupies the entire
negative real axis, and thus s∗ = −1/τ corresponds to an actual breakpoint. It
remains to show that there are no other breakpoints.

Assume, with a view to obtaining a contradiction, that there is another break-
point, s′. At s′, the final factor of (38) must be zero. That implies

e−τs

s
=

R1 + R2

2(R1R2 −R3)
. (39)

Substituting (39) into (37) gives

X =
3(R1 + R2)2

4(R1R2 −R3)
+ 1 .

But the left had side is positive, since R3 is one of the terms in the positive-term
sum R1R2, and so X 6= 0. Thus s′ is not a pole, and cannot be a breakpoint.
This establishes the result.

The proof of Lemma 3 is as follows.

Proof. The eigenvalues of Ĝ(s) are

Ĝ11(s) + Ĝ22(s)±
√

(Ĝ11(s)− Ĝ22(s))2 + 4Ĝ21(s)Ĝ12(s) . (40)

Equating the two solutions to (40) gives the condition for poles being co-
incident as

0 = (Ĝ11(s)− Ĝ22(s))2 + 4Ĝ21(s)Ĝ12(s) . (41)

When s is real, Ĝij(s) is also real. A real solution to (41) is only possible
when Ĝ21(s)Ĝ12(s) ≤ 0. For SumNet, Ĝ21(s)Ĝ12(s) > 0 for real s, unless α̂k = 0
for all k. Thus (41) cannot be satisfied.


