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Abstract

Fora,b,c,d > 0 with ad — bc > 0, we consider the unilateral weighted stffi, b, ¢, d) with

weightsa,, := ‘C‘Zig (n > 0). Using Schur product techniques, we prove 8@t b, c, d) is always
subnormal; more generally, we establish that for every 1, all p-subshifts ofS(a, b, ¢, d) are
subnormal. As a consequence, we show that all Bergman-like weighted shifts are subnormal.
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1. Introduction

Let H be a complex Hilbert space and IBt+) denote the algebra of bounded lin-
ear operators ori{. We say thatT € B(H) is normal if T*T = TT*, subnormalif
T = N|x, whereN is normal andV (H)C H, andhyponormaif T*T > TT*. Fork > 1,
T is k-hyponormalif (I, T,...,T*) is (jointly) hyponormal. Additionally,T is weakly
k-hyponormalif p(T) is hyponormal for every polynomigt of degree at most. Thus
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k-hyponormalks weaklyk-hyponormal, and “hyponormal,” “1-hyponormal” and “weakly
1-hyponormal” are identical notions [1]. On the other hand, results in [5,9,12] show that
weakly 2-hyponormal operators (also callgabdratically hyponormabperators) are not
necessarily 2-hyponormal. The Bram—Halmos characterization of subnormality [3, 111.1.9]
can be paraphrased as followsis subnormal if and only if" is k-hyponormal for every

k > 1[9, Proposition 1.9]. In particular, each subnormal operatg@olgnomially hypo-
normal (i.e., weaklyk-hyponormal for every > 1). The converse implication, whether

T polynomially hyponormal= T subnormal, was settled in the negative in [10]; in-
deed, it was shown that there exists a polynomially hyponormal operator which is not
2-hyponormal. Previously, S. McCullough and V. Paulsen had established [12] that one
can find a non-subnormal polynomially hyponormal operator if and only if one can find a
unilateral weighted shift with the same property. Thus, although the existence proof in [10]
is abstract, by combining the results in [10,12], we now know that there exists a polynomi-
ally hyponormal unilateral weighted shift which is not subnormal. The following diagram
gives a simple representation of the above mentioned relations:

subnormal < oo-hyponormal= --- = 3-hyponormal=- 2-hyponormal™\

R VR i 7l hypo.
polyn. hypo.< weakly co-hypo.= - - - = weakly 3-hypo=- weakly 2-hypo.”

For a = {a,}72 , @ bounded sequence of positive real numbers (calleightg, let
Wy :03(Z1) — ¢2(Z,) be the associatednilateral weighted shiftdefined byW,e, :=
apeqt1 (@l n > 0), wherefe, }7° , is the canonical orthonormal basiséf(Z.). Themo-
mentsof « are given as

B " if k=0,
Yk = yi(a) i= @l a? 4, ifk>0.

It is easy to see thal/, is never normal, and that it is hyponormal if and onlyxif <
ap <

We now recall a well-known characterization of subnormality for single variable
weighted shifts, due to C. Berger (cf. [3, I11.8.16}),, is subnormal if and only if there
exists a probability measutesupported if0, | W, ||2] (called theBerger measuref W,,)
such thaty, (o) ;== o -+ - -- a? = [1"dEt) (n > 1). If W, is subnormal, and if foh > 1
we letM), :=\/{e,: n > h} denote the invariant subspace obtained by removing théfirst
vectors in the canonical orthonormal basig®fZ., ), then the Berger measure B, | 1,
is %zh d&().

We will often write shif(ag, @1, a2, ...) to denote the weighted shift with weight se-
quencef{a,}>> ;. We also denote by/, := shift(1,1,1,...) the (unweighted) unilateral
shift, and for O< a < 1 we letS, := shift(a, 1,1, ...).

2. Main results

For matricesA, B € M, (C), we letA o B denote theiSchur produgti.e., (A o B);; :=
AijB;j (1< i,j < n). The following result is well-known: ifA > 0 and B > 0, then
Ao B>0[14].

We are now ready to introduce the class of Bergman-like weighted shifts.
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Definition 2.1 [11]. For ¢ > 1 andn > 0, let o\ := /¢ — -1 and let BY =

shift@y’, i, a3, ...). In particular,B{" = B, := shift(v'1, V2,3, ...). EachB!”
is called a Bergman-like weighted shift.

Remark 2.2.

(i) By is subnormal with Berger measwé(s) :=ds on [0, 1].

i) [11] B'? is subnormal with Berger measuf =34 on[0,1].
(i) 111] B? is su with Berg €)= £ on[0, 1]

Lemma 2.3 [4,5]. Let Wye; = aje;+1 (i > 0) be a hyponormal weighted shift, and let
k > 1. The following statements are equivalent

(i) Wy is k-hyponormal.
(i) The matrix

T k
(([We, WeJent)s enti))i s
is positive semi-definite for atl > —1.
(iif) The matrix

(Vn Vn+i+j — Vn+i Vn+j);(,j=1

is positive semi-definite for alt > 0, where as usualo =1, y, = a3 - -+ - a2,
n=1.
(iv) The Hankel matrix

H(k;n) = (Vn+i+j—2)fji1

is positive semi-definite for atl > 0.
Symbolic manipulation easily [16] implies the following result.
Theorem 2.4. All Bergman-like shiftsBSf) (all £ > 1) are 4-hyponormal.
Proof. By Lemma 2.3, to check-hyponormality it suffices to prove that the determinant

of the Hankel matrixH (k; n) in Lemma 2.3(iv) is positive for alk > 0.
Fork =2, and alln > 0, we have

2 2.2
1 of ooy g
. 3 2 2.2 2.2 2
detH (2; n) = y,’ det o oo g ooy 0 o

2.2 2.2 2 2.2 2 2
Qi1 %1% 90 1%, 0% 3

_ 320+ D((n+2)e -1 +3)L 1)

Tt 23+ 3 L 2+ E)

Whenk = 3,

detH (3 ) = 4 22T D22+ 1((n+2)t = D3 ((n+3)t - DA (n+ 4t -1

n 1+ 2% +3)2n+ 821 +530n 1 6)2(n +7) >0




R.E. Curto et al. / J. Math. Anal. Appl. 308 (2005) 334—-342 337

Finally, if k = 4, we see that

v 2886+ 1)3(2¢ + 1)2@Bt+ 1)((n + 2 — D*((n +3)¢ — 13((n + 4 — 1)2((n+51¢ — 1)
n+2°n+3)5m+45n+55n+6)4(n+7)3(n +8)2(n+9)

It follows that H (4; n) > 0 for alln > 0, as desired. O

detH (4;n) = > 0.

Fork > 1, we observe that

. k+1 2k 2k—2 2
dEtH(k* n)= Vo "0 g O
o2 2 2 2 2 2
L e Qyp2 = Xyqq o Uk — %ppk—1
2 2 2 2 2 2 2 2 2
o (g, —op) ool g — e ) o A G e )
x det
n+ 2 2 n+ 2 n+2k—2 a2
(IT; —n+1” )("‘n+k —a) (I n+2a )(O‘n+k+1 n+1) (e )(“n+2k 1~ n+k—1)

Thus, to check the positivity of dét (k; n) is generally quite complicated. Also, it appears
that detH (k; n) is related to the determinant of the Hilbert matrix (after performing column
operations and substitutinﬁ by ¢ — n—}rz). We conclude that a new idea is needed, to
bypass the use of nested determinants [2], which we now present.

We introduce a new class of weighted shifts that includes the class of Bergman-like
weighted shifts.

Definition 2.5. Let a, b, c,d > 0 satisfyad — bc > 0. Let S(a, b, ¢, d) := shift(ag, a1,

a2....), wherea, :=/ 245 (n > 0).

Remark 2.6. Note that for a Bergman-like weighted shﬂff), we have

1 In+ (20 -1)
= — = 2 .
on \/ n+2 \/ n+?2 (>0

Therefore,B(Z) Si,2¢—1,1,2) andad — bc = 1.

Theorem 2.7. Leta, b, ¢, d > 0 satisfyad — bc > 0. ThenS(«, b, ¢, d) is subnormal.

Proof. Recall that forn > 0, a, := Z,’;L’j Then the moments of areyp = 1 and
Yn = aé .. _, (n > 1). By the Bram—Halmos characterization of subnormality [9,

Proposition 1 9] and Lemma 2.3(& (iv)), we only need to show that the Hankel matrix
(yn+l~+.,~_2)fj;i1 is positive semi-definite for alt > 0 andk > 1. Forn >0 andk > 1, let
By = % andL(k;n) := (/3,+, Z)fflfil. SinceH (k; n) = y, L(k; n), it suffices to show
that L (k; n) is positive semi- deflnlte for alk > 0 andk > 1. We prove this by induction
onk>1.Fork=1,L(1;n) = ( “'z ) Since

(an 4+ b)(ad — bc)

detL(1;n) = (cn+1)+d)(cn+d)2 -0
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it follows that L (1; n) is positive semi-definite. Fdr> 1, let

1 —a?

n

2
1 —y g

Q(k;n) =

2
1 —0y i1
1

ThenQ(k; n)T L(k; n)Q(k; n) = 1@ [L(k — 1;n) o B(k; n)], whereB(k; n) := (b,-j)i."jzl,
with
2 2 2 2 2 2
bij = “n+i+j—2(“n+i+j—1 - an-i—j—l) - O‘n+i—1(0‘n+i+j—2 - “n+j—1)~

Note that the(, j) entry of B(k; n) corresponds to thé + 1, j + 1) entry of Q(k; n)T x
L(k; n)Q(k; n). Since by induction hypothesis we know that — 1; n) is positive semi-
definite, it remains to show tha@(k; n) is positive semi-definite for ali, n > 1. By direct
computation, we have

bij=[(cn+i—-D+d)(cn+j—D+d)(cn+i+j—2) +d)
x (ct+i+j—1 +d)] [(ad — be)((a — b)(c —d) + (be +ad — 2ac)n
+acn®+ (acn + be — ac)(i + j) + (ac — be + ad)ij)].
Therefore, we can write

B(k;n) = (ad — bc)D

1 1
* ((C”)" (c(n+i+j—2)+d) ° <c(n+i+j—1)+d>>D’ 1)

whereD is the diagonal matrix with diagonal ent(gm) and

ciji=(a—"b)(c—d)+ (bc+ad —2ac)n +acn®+ (acn +bc —ac)(i + j)
+ (ac — bc + ad)ij.

k+1 . .
Now observe tha(m%j:l > 0 (by [13, Example 18.A2]), since(n + i +
j—2)+d =x;+x;,wherex; :=c(3+i—1)+ % is positive and increasing in Similarly,

1 k+1
(c(n+i+jfl)+d)i,j:1 > 0.

We will now show thatC := (c;;)
Let

k+1

i j=1 Is positive semi-definite with positive diagonal.
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ThenP” C P hasbd + ben +adn + acn? atthe(l, 1) position,acn +ad at(1, j) and(i, 1)
positions(i, j > 1), anda(c + d) — bc elsewhere. Thereforg; is a positive semi-definite
matrix of rank 2. Foi > 1, theith diagonal entry ot is

cii = (ac — bc +ad)i2 + ZC(a(n -1+ b)i + (a(n -1+ b)(c(n -1 +d) > 0.
By Schur’s theorem [13, Theorem 9.1.5],0 M is positive semi-definite for every pos-
itive semi-definite matrixM. By using this in (2.1), we conclude th#&(k;n) > 0, as
desired. O

Corollary 2.8. All Bergman-like shiftst)

are subnormal.

Definition 2.9. Supposex = (xp, a1, a2, ...) and p is a positive integer. A subsequence
B = (Bo, B1, B2, ...) is called ap-subsequence of if there exists O< r < p suchthap, =

o pn+r. The operator shifBo, B1, B2, .. .) is called ap-subshift of shiffxo, a1, a2, .. .).

Example 2.10.

(i) The only 1-subsequence ofis « itself.
(i) The 2-subsequences efareaeyen:= {a2,: n > 0} andaodq:= {o2,4+1: n = 0}.

The following examples show that a 2-subshift of a subnormal weighted shift may not be
subnormal. To this end, we considecursively generated weighted shiffs8]. We briefly
recall some key facts about these shifts, specifically the case when there are two coefficients
of recursion. In [15], J. Stampfli proved that given three positive numplers: vb < /c,
it is always possible to find a subnormal weighted shift, dendﬁ?gaﬁ’ﬁ)m whose

first three weights arg/a, +/b and./c. In this case, the coefficients of recursion (cf. [7,
Example 3.12], [8, Section 3], [6, Section 1, p. 81]) are given by

ab(c —b) b(c—a)
po=———— and ¢1= , (2.2)
b—a b—a
the atomsg andr; are the roots of the equation
1% — (g0 + g1t) =0, (2.3)
and the densitiegp andp1 uniquely solve the X 2 system of equations
po+p1=1
2.4
{ poto + p1t1 = (xg. ( )

Thus, we gefw = pod;, + p18;, Which is the Berger measure W(ﬁ,ﬁ,ﬁ)A-

Example 2.11. Fora = 3, b= 1, ¢ = 3, the Berger measure OF 2 /5. /o IS

_2+v3, 2- V3,
H=—7%a-5H T 7 %ardy

Thus, W, is subnormal, buw,,,., is not subnormal.
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Proof. We have

A AN

detH(2,0)=det| 2 1 3 |=-__-<0
1 3 33 3584
8 32 448

Therefore Wy, is not 2-hyponormal which implie#,,,.,, is not subnormal. O

Example 2.12. Let

ThenW, is subnormal, buw,,,., is not subnormal.

Proof. W, is subnormal: Consider the 3-atomic measufe= 380 + 181 + 81 For
n>=1,

yn = oo o sy

2 241 2241 =241 2141
1 241 24 27141 iy

- — . 22 . 23 ooooo 2”71 . 2"

T2 241 2241 n-241 -141

2 22 on—2 on—1

12 1 1 /1\" 1
= 1+2- 27"+ === - = "d , 2.5
=53 (127" =5l +)3<2>+3 [s 5(5) (2:5)

which shows tha¢ is the Berger measure &, . Therefore W, is subnormal.
Wg, isnot subnormal: Let
Vn Eﬂgﬂfﬂzz" ﬂn 2/3 1—0‘00‘5‘13 a%n—4a%n—2’ (2.6)

and consideH (k; n) := (;7,,+,-+j_2)i’j:l (n > 0). Fork =2, we have

detH (2; n)
2 2 2
1 ®on Q2 %2(n+1)
-3 2 2 2 2 2 2
=y, det o2, A2 Aoy 41) %2, %201 +1)%2(n+2)
2 2 2 2 2 2 2 2 2
U2n%m+1) %20 %2m+1)%2m+2) %20 ¥2(n+1)¥2(n+2)%2(n+3)
~3 —135. 26n— l(1+22n+l) 1+ 22n+3)
(1 + 4n+2)2(1 + 4n+3)(1 +5.4" ¢ 42n+l)3
Thus, Wg is not 2-hyponormal; hencéys is not subnormal. O

<0.

Theorem 2.13. Suppose:, b, ¢, d > 0 satisfyad — bc > 0. Then forp > 1, all p-subshifts
of S(a, b, ¢, d) are subnormal.
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Proof. Supposes, = ap, for some 0<» < p. Since

a(pn+r)+b _ (ap)n+ (ar +b)
c(pn+r)+d - (ecp)n + (cr +4d)

and
(ap)(cr +d) — (ar + b)(cp) = p(ad — bc) > 0,

it follows that shif{8) = S(ap, ar + b, cp, cr + d) is also subnormal. O

Theorem 2.14. The2 -subsequencdsy,: n > 0} and{a2,+1: n > 0} of B, are subnormal
_ ds :
with du(s) = F anddv(s) = Nt respectively.

Proof.

Casel. Let W,,, = shift(\/I \/3 \/g, \/7 .. ) and consider they”” numbers ofW,,, ,
<2n D!

thatis,y, = (aln>1). Usmg Berger’s theorem, we want to find the Berger mea-
sure of W, . Letdu% (s):= nm, s #0,1. Then
/ dus) = / / (b lettin 1)
S =5 — =
4~ -1 va
2 1
“[simty]?, =1
7'[ 2

Thus, . is a probability measure. Let=sir? x (= =53°%). Then

ds =2sinxcosxdx =+/1— (1 —2s5)2dx.

Thus
1

1 1
ds 2 ds
s"d,u(s):/s"—:—/s"—
0/ J TA/s — 52 7TO V1—(1-=2s5)2

s

2
2 o o (@n-DN
—;/S|n21 )CdX—T—')/n.
0
ds

A/ S—SZ '

Therefore Wy, is subnormal withi(s) =

Case 2. Let Wy, ; = shift(\/7 NES \/g, \/g,...) and consider they” numbers of
Was,.y» that s,y = 245y (@ll n > 1). Letdv(s) := ;45— (s # 1). Then 3 dv(s) =
Thus,v is also probability measure. Let= sirf x, thends = 2sinx cosx dx and cos =
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+v1—s.Thus
1 1 d 7 2si d 2
_ sinx cosx .
/s"dv(s):/snis :/Sman#:/smz’”lxdx
2J/1—5 2 cosx
0 0 0 0
. 2n! _
Ty on
Therefore Wa,, ., is also subnormal witdv(s) = 5 dTS_S. O

We conclude this section with a problem of independent interest.

Problem 2.15. Recall thatBSf) =S5(¢,2¢ - 1,1, 2), so Theorem 2.13 guarantees thﬁ)
and all of its p-subshifts are subnormal. Fé£> 2 andp > 1, find the Berger measure of
Bff) and the Berger measure of jissubshifts.
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