

Available online at www.sciencedirect.com

Journal of
MATHEMATICAL

a, citation and similar papers at core.ac.uk

brought to

www.elsevier.com/locate/jmaa

Subnormality of Bergman-like weighted shifts

Raúl E. Curto a,*,1, Yiu T. Poon b, Jasang Yoon b

Department of Mathematics, The University of Iowa, Iowa City, IA 52242, USA
 Department of Mathematics, Iowa State University, Ames, IA 50011, USA

Received 8 January 2005 Available online 16 February 2005

Submitted by William F. Ames

Abstract

For $a, b, c, d \ge 0$ with ad - bc > 0, we consider the unilateral weighted shift S(a, b, c, d) with weights $\alpha_n := \sqrt{\frac{an+b}{cn+d}}$ $(n \ge 0)$. Using Schur product techniques, we prove that S(a, b, c, d) is always subnormal; more generally, we establish that for every $p \ge 1$, all p-subshifts of S(a, b, c, d) are subnormal. As a consequence, we show that all Bergman-like weighted shifts are subnormal. © 2005 Elsevier Inc. All rights reserved.

Keywords: Bergman-like weighted shifts; Schur product techniques; p-period subsequences; p-subshifts

1. Introduction

Let \mathcal{H} be a complex Hilbert space and let $\mathcal{B}(\mathcal{H})$ denote the algebra of bounded linear operators on \mathcal{H} . We say that $T \in \mathcal{B}(\mathcal{H})$ is *normal* if $T^*T = TT^*$, *subnormal* if $T = N|_{\mathcal{H}}$, where N is normal and $N(\mathcal{H}) \subseteq \mathcal{H}$, and *hyponormal* if $T^*T \geqslant TT^*$. For $k \geqslant 1$, T is k-hyponormal if (I, T, \ldots, T^k) is (jointly) hyponormal. Additionally, T is *weakly* k-hyponormal if p(T) is hyponormal for every polynomial p of degree at most k. Thus

^{*} Corresponding author.

E-mail addresses: rcurto@math.uiowa.edu (R.E. Curto), ytpoon@iastate.edu (Y.T. Poon), jyoon@iastate.edu (J. Yoon).

URLs: http://www.math.uiowa.edu/~rcurto/ (R.E. Curto), http://www.public.iastate.edu/~jyoon/ (J. Yoon).

¹ Partially supported by NSF Grants DMS-0099357 and DMS-0400741.

k-hyponormal \Rightarrow weakly k-hyponormal, and "hyponormal," "1-hyponormal" and "weakly 1-hyponormal" are identical notions [1]. On the other hand, results in [5,9,12] show that weakly 2-hyponormal operators (also called *quadratically hyponormal* operators) are not necessarily 2-hyponormal. The Bram–Halmos characterization of subnormality [3, III.1.9] can be paraphrased as follows: T is subnormal if and only if T is k-hyponormal for every $k \ge 1$ [9, Proposition 1.9]. In particular, each subnormal operator is *polynomially hyponormal* (i.e., weakly k-hyponormal for every $k \ge 1$). The converse implication, whether T polynomially hyponormal $\Rightarrow T$ subnormal, was settled in the negative in [10]; indeed, it was shown that there exists a polynomially hyponormal operator which is not 2-hyponormal. Previously, S. McCullough and V. Paulsen had established [12] that one can find a non-subnormal polynomially hyponormal operator if and only if one can find a unilateral weighted shift with the same property. Thus, although the existence proof in [10] is abstract, by combining the results in [10,12], we now know that there exists a polynomially hyponormal unilateral weighted shift which is not subnormal. The following diagram gives a simple representation of the above mentioned relations:

subnormal
$$\Leftrightarrow \infty$$
-hyponormal $\Rightarrow \cdots \Rightarrow$ 3-hyponormal \Rightarrow 2-hyponormal \searrow hyponormal $\Rightarrow \cdots \Rightarrow$ weakly $\Rightarrow 0$ hyponormal $\Rightarrow 0$ hyponormal hyponorma

For $\alpha \equiv \{\alpha_n\}_{n=0}^{\infty}$ a bounded sequence of positive real numbers (called *weights*), let $W_{\alpha}: \ell^2(\mathbb{Z}_+) \to \ell^2(\mathbb{Z}_+)$ be the associated *unilateral weighted shift*, defined by $W_{\alpha}e_n := \alpha_n e_{n+1}$ (all $n \geq 0$), where $\{e_n\}_{n=0}^{\infty}$ is the canonical orthonormal basis in $\ell^2(\mathbb{Z}_+)$. The *moments* of α are given as

$$\gamma_k \equiv \gamma_k(\alpha) := \begin{cases} 1, & \text{if } k = 0, \\ \alpha_0^2 \cdot \dots \cdot \alpha_{k-1}^2, & \text{if } k > 0. \end{cases}$$

It is easy to see that W_{α} is never normal, and that it is hyponormal if and only if $\alpha_0 \le \alpha_1 \le \cdots$.

We now recall a well-known characterization of subnormality for single variable weighted shifts, due to C. Berger (cf. [3, III.8.16]): W_{α} is subnormal if and only if there exists a probability measure ξ supported in $[0, \|W_{\alpha}\|^2]$ (called the *Berger measure* of W_{α}) such that $\gamma_n(\alpha) := \alpha_0^2 \cdot \dots \cdot \alpha_{n-1}^2 = \int t^n d\xi(t) \ (n \ge 1)$. If W_{α} is subnormal, and if for $h \ge 1$ we let $\mathcal{M}_h := \bigvee \{e_n \colon n \ge h\}$ denote the invariant subspace obtained by removing the first h vectors in the canonical orthonormal basis of $\ell^2(\mathbb{Z}_+)$, then the Berger measure of $W_{\alpha}|_{\mathcal{M}_h}$ is $\frac{1}{\gamma_h} t^h d\xi(t)$.

We will often write $\text{shift}(\alpha_0, \alpha_1, \alpha_2, \ldots)$ to denote the weighted shift with weight sequence $\{\alpha_n\}_{n=0}^{\infty}$. We also denote by $U_+ := \text{shift}(1, 1, 1, \ldots)$ the (unweighted) unilateral shift, and for 0 < a < 1 we let $S_a := \text{shift}(a, 1, 1, \ldots)$.

2. Main results

For matrices A, $B \in M_n(\mathbb{C})$, we let $A \circ B$ denote their *Schur product*, i.e., $(A \circ B)_{ij} := A_{ij}B_{ij}$ $(1 \le i, j \le n)$. The following result is well-known: if $A \ge 0$ and $B \ge 0$, then $A \circ B \ge 0$ [14].

We are now ready to introduce the class of Bergman-like weighted shifts.

Definition 2.1 [11]. For $\ell \geqslant 1$ and $n \geqslant 0$, let $\alpha_n^{(\ell)} := \sqrt{\ell - \frac{1}{n+2}}$ and let $B_+^{(\ell)} :=$ $\text{shift}(\alpha_0^{(\ell)}, \alpha_1^{(\ell)}, \alpha_2^{(\ell)}, \ldots).$ In particular, $B_+^{(1)} \equiv B_+ := \text{shift}(\sqrt{\frac{1}{2}}, \sqrt{\frac{2}{3}}, \sqrt{\frac{3}{4}}, \ldots).$ Each $B_+^{(\ell)}$ is called a Bergman-like weighted shift.

Remark 2.2.

- (i) B_+ is subnormal with Berger measure $d\xi(s) := ds$ on [0, 1]. (ii) $[11] B_+^{(2)}$ is subnormal with Berger measure $d\xi(s) := \frac{sds}{\pi \sqrt{2s-s^2}}$ on [0, 1].

Lemma 2.3 [4,5]. Let $W_{\alpha}e_i = \alpha_i e_{i+1}$ $(i \ge 0)$ be a hyponormal weighted shift, and let $k \ge 1$. The following statements are equivalent:

- (i) W_{α} is k-hyponormal.
- (ii) The matrix

$$(([W_{\alpha}^{*j}, W_{\alpha}^{i}]e_{n+j}, e_{n+i}))_{i, j=1}^{k}$$

is positive semi-definite for all $n \ge -1$.

(iii) The matrix

$$(\gamma_n \gamma_{n+i+j} - \gamma_{n+i} \gamma_{n+j})_{i,j=1}^k$$

is positive semi-definite for all $n \ge 0$, where as usual $\gamma_0 = 1$, $\gamma_n = \alpha_0^2 \cdot \dots \cdot \alpha_{n-1}^2$ $(n \ge 1)$.

(iv) The Hankel matrix

$$H(k; n) := (\gamma_{n+i+j-2})_{i, i=1}^{k+1}$$

is positive semi-definite for all $n \ge 0$.

Symbolic manipulation easily [16] implies the following result.

Theorem 2.4. All Bergman-like shifts $B_{+}^{(\ell)}$ (all $\ell \geqslant 1$) are 4-hyponormal.

Proof. By Lemma 2.3, to check k-hyponormality it suffices to prove that the determinant of the Hankel matrix H(k; n) in Lemma 2.3(iv) is positive for all $n \ge 0$.

For k = 2, and all $n \ge 0$, we have

$$\det H(2;n) = \gamma_n^3 \det \begin{pmatrix} 1 & \alpha_n^2 & \alpha_n^2 \alpha_{n+1}^2 \\ \alpha_n^2 & \alpha_n^2 \alpha_{n+1}^2 & \alpha_n^2 \alpha_{n+1}^2 \alpha_{n+2}^2 \\ \alpha_n^2 \alpha_{n+1}^2 & \alpha_n^2 \alpha_{n+1}^2 \alpha_{n+2}^2 & \alpha_n^2 \alpha_{n+1}^2 \alpha_{n+2}^2 \alpha_{n+3}^2 \end{pmatrix}$$

$$= \gamma_n^3 \frac{2(\ell+1)((n+2)\ell-1)^2((n+3)\ell-1)}{(n+2)^3(n+3)^3(n+4)^2(n+5)} > 0.$$

When k = 3.

$$\det H(3;n) = \gamma_n^4 \frac{12(\ell+1)^2(2\ell+1)((n+2)\ell-1)^3((n+3)\ell-1)^2((n+4)\ell-1)}{(n+2)^4(n+3)^4(n+4)^4(n+5)^3(n+6)^2(n+7)} > 0.$$

Finally, if k = 4, we see that

$$\det H(4;n) = \gamma_n^5 \frac{288(\ell+1)^3 (2\ell+1)^2 (3\ell+1)((n+2)\ell-1)^4 ((n+3)\ell-1)^3 ((n+4)\ell-1)^2 ((n+5)\ell-1)}{(n+2)^5 (n+3)^5 (n+4)^5 (n+5)^5 (n+6)^4 (n+7)^3 (n+8)^2 (n+9)} > 0.$$

It follows that $H(4; n) \ge 0$ for all $n \ge 0$, as desired. \square

For $k \ge 1$, we observe that

$$\det H(k;n) = \gamma_n^{k+1} \alpha_n^{2k} \alpha_{n+1}^{2k-2} \cdots \alpha_{n+k-1}^2$$

$$\times \det \begin{pmatrix} \alpha_{n+1}^2 - \alpha_n^2 & \alpha_{n+2}^2 - \alpha_{n+1}^2 & \cdots & \alpha_{n+k}^2 - \alpha_{n+k-1}^2 \\ \alpha_{n+1}^2 (\alpha_{n+2}^2 - \alpha_n^2) & \alpha_{n+2}^2 (\alpha_{n+3}^2 - \alpha_{n+1}^2) & \cdots & \alpha_{n+k}^2 (\alpha_{n+k+1}^2 - \alpha_{n+k-1}^2) \\ \vdots & \vdots & \ddots & \vdots \\ (\Pi_{i=n+1}^{n+k-1} a_i^2) (\alpha_{n+k}^2 - \alpha_n^2) & (\Pi_{i=n+2}^{n+k} a_i^2) (\alpha_{n+k+1}^2 - \alpha_{n+1}^2) & \cdots & (\Pi_{i=n+k}^{n+2k-2} a_i^2) (\alpha_{n+2k-1}^2 - \alpha_{n+k-1}^2) \end{pmatrix}.$$

Thus, to check the positivity of $\det H(k;n)$ is generally quite complicated. Also, it appears that $\det H(k;n)$ is related to the determinant of the Hilbert matrix (after performing column operations and substituting α_n^2 by $\ell - \frac{1}{n+2}$). We conclude that a new idea is needed, to bypass the use of nested determinants [2], which we now present.

We introduce a new class of weighted shifts that includes the class of Bergman-like weighted shifts.

Definition 2.5. Let $a, b, c, d \ge 0$ satisfy ad - bc > 0. Let $S(a, b, c, d) := \text{shift}(\alpha_0, \alpha_1, \alpha_2, \ldots)$, where $\alpha_n := \sqrt{\frac{an+b}{cn+d}}$ $(n \ge 0)$.

Remark 2.6. Note that for a Bergman-like weighted shift $B_{+}^{(\ell)}$, we have

$$\alpha_n = \sqrt{\ell - \frac{1}{n+2}} = \sqrt{\frac{\ell n + (2\ell - 1)}{n+2}} \quad (n \geqslant 0).$$

Therefore, $B_{+}^{(\ell)} = S(\ell, 2\ell - 1, 1, 2)$ and ad - bc = 1.

Theorem 2.7. Let $a, b, c, d \ge 0$ satisfy ad - bc > 0. Then S(a, b, c, d) is subnormal.

Proof. Recall that for $n \ge 0$, $\alpha_n := \sqrt{\frac{an+b}{cn+d}}$. Then the moments of α are $\gamma_0 = 1$ and $\gamma_n = \alpha_0^2 \cdot \dots \cdot \alpha_{n-1}^2$ $(n \ge 1)$. By the Bram–Halmos characterization of subnormality [9, Proposition 1.9] and Lemma 2.3((i) \Leftrightarrow (iv)), we only need to show that the Hankel matrix $(\gamma_{n+i+j-2})_{i,j=1}^{k+1}$ is positive semi-definite for all $n \ge 0$ and $k \ge 1$. For $n \ge 0$ and $k \ge 1$, let $\beta_k^n := \frac{\gamma_{n+k}}{\gamma_n}$ and $L(k;n) := (\beta_{i+j-2}^n)_{i,j=1}^{k+1}$. Since $H(k;n) = \gamma_n L(k;n)$, it suffices to show that L(k;n) is positive semi-definite for all $n \ge 0$ and $k \ge 1$. We prove this by induction on $k \ge 1$. For k = 1, $L(1;n) = \begin{pmatrix} 1 & \alpha_n^2 \\ \alpha_n^2 & \alpha_n^2 \alpha_{n+1}^2 \end{pmatrix}$. Since

$$\det L(1;n) = \frac{(an+b)(ad-bc)}{(c(n+1)+d)(cn+d)^2} > 0,$$

it follows that L(1; n) is positive semi-definite. For k > 1, let

$$Q(k;n) := \begin{pmatrix} 1 & -\alpha_n^2 & & & \\ & 1 & -\alpha_{n+1}^2 & & & \\ & & \ddots & \ddots & & \\ & & & 1 & -\alpha_{n+k-1}^2 \\ & & & & 1 \end{pmatrix}.$$

Then $Q(k; n)^T L(k; n) Q(k; n) = 1 \oplus [L(k-1; n) \circ B(k; n)]$, where $B(k; n) := (b_{ij})_{i,j=1}^k$, with

$$b_{ij} := \alpha_{n+i+j-2}^2 (\alpha_{n+i+j-1}^2 - \alpha_{n+j-1}^2) - \alpha_{n+i-1}^2 (\alpha_{n+i+j-2}^2 - \alpha_{n+j-1}^2).$$

Note that the (i, j) entry of B(k; n) corresponds to the (i + 1, j + 1) entry of $Q(k; n)^T \times L(k; n)Q(k; n)$. Since by induction hypothesis we know that L(k - 1; n) is positive semi-definite, it remains to show that B(k; n) is positive semi-definite for all $k, n \ge 1$. By direct computation, we have

$$b_{ij} = \left[\left(c(n+i-1) + d \right) \left(c(n+j-1) + d \right) \left(c(n+i+j-2) + d \right) \right.$$

$$\times \left(c(n+i+j-1) + d \right) \right]^{-1} \left[(ad-bc) \left((a-b)(c-d) + (bc+ad-2ac)n + acn^2 + (acn+bc-ac)(i+j) + (ac-bc+ad)ij \right) \right].$$

Therefore, we can write

$$B(k;n) = (ad - bc)D$$

$$\times \left((c_{ij}) \circ \left(\frac{1}{c(n+i+j-2)+d} \right) \circ \left(\frac{1}{c(n+i+j-1)+d} \right) \right) D, \quad (2.1)$$

where D is the diagonal matrix with diagonal entry $\left(\frac{1}{c(n+i-1)+d}\right)$ and

$$c_{ij} := (a-b)(c-d) + (bc + ad - 2ac)n + acn^2 + (acn + bc - ac)(i+j) + (ac - bc + ad)ij.$$

Now observe that $\left(\frac{1}{c(n+i+j-2)+d}\right)_{i,j=1}^{k+1} \geqslant 0$ (by [13, Example 18.A2]), since $c(n+i+j-2)+d=x_i+x_j$, where $x_i:=c(\frac{n}{2}+i-1)+\frac{d}{2}$ is positive and increasing in i. Similarly, $\left(\frac{1}{c(n+i+j-1)+d}\right)_{i,j=1}^{k+1}\geqslant 0$.

We will now show that $C := (c_{ij})_{i,j=1}^{k+1}$ is positive semi-definite with positive diagonal. Let

$$P := \begin{pmatrix} 1 & -1 & & & \\ & 1 & -1 & & & \\ & & \ddots & \ddots & \\ & & & 1 & -1 \\ & & & & 1 \end{pmatrix}.$$

Then P^TCP has $bd + bcn + adn + acn^2$ at the (1, 1) position, acn + ad at (1, j) and (i, 1) positions (i, j > 1), and a(c + d) - bc elsewhere. Therefore, C is a positive semi-definite matrix of rank 2. For $i \ge 1$, the ith diagonal entry of C is

$$c_{ii} = (ac - bc + ad)i^{2} + 2c(a(n-1) + b)i + (a(n-1) + b)(c(n-1) + d) > 0.$$

By Schur's theorem [13, Theorem 9.I.5], $C \circ M$ is positive semi-definite for every positive semi-definite matrix M. By using this in (2.1), we conclude that $B(k; n) \ge 0$, as desired. \square

Corollary 2.8. All Bergman-like shifts $B_{+}^{(\ell)}$ are subnormal.

Definition 2.9. Suppose $\alpha = (\alpha_0, \alpha_1, \alpha_2, ...)$ and p is a positive integer. A subsequence $\beta = (\beta_0, \beta_1, \beta_2, ...)$ is called a p-subsequence of α if there exists $0 \le r < p$ such that $\beta_n = \alpha_{pn+r}$. The operator shift $(\beta_0, \beta_1, \beta_2, ...)$ is called a p-subshift of shift $(\alpha_0, \alpha_1, \alpha_2, ...)$.

Example 2.10.

- (i) The only 1-subsequence of α is α itself.
- (ii) The 2-subsequences of α are $\alpha_{\text{even}} := \{\alpha_{2n} : n \ge 0\}$ and $\alpha_{\text{odd}} := \{\alpha_{2n+1} : n \ge 0\}$.

The following examples show that a 2-subshift of a subnormal weighted shift may not be subnormal. To this end, we consider *recursively generated weighted shifts* [7,8]. We briefly recall some key facts about these shifts, specifically the case when there are two coefficients of recursion. In [15], J. Stampfli proved that given three positive numbers $\sqrt{a} < \sqrt{b} < \sqrt{c}$, it is always possible to find a subnormal weighted shift, denoted $W_{(\sqrt{a},\sqrt{b},\sqrt{c})^{\wedge}}$, whose first three weights are \sqrt{a} , \sqrt{b} and \sqrt{c} . In this case, the coefficients of recursion (cf. [7, Example 3.12], [8, Section 3], [6, Section 1, p. 81]) are given by

$$\varphi_0 = -\frac{ab(c-b)}{b-a}$$
 and $\varphi_1 = \frac{b(c-a)}{b-a}$, (2.2)

the atoms t_0 and t_1 are the roots of the equation

$$t^2 - (\varphi_0 + \varphi_1 t) = 0, (2.3)$$

and the densities ρ_0 and ρ_1 uniquely solve the 2 × 2 system of equations

$$\begin{cases} \rho_0 + \rho_1 = 1\\ \rho_0 t_0 + \rho_1 t_1 = \alpha_0^2. \end{cases}$$
 (2.4)

Thus, we get $\mu = \rho_0 \delta_{t_0} + \rho_1 \delta_{t_1}$ which is the Berger measure of $W_{(\sqrt{a},\sqrt{b},\sqrt{c})^{\wedge}}$.

Example 2.11. For $a = \frac{1}{4}$, $b = \frac{1}{3}$, $c = \frac{1}{2}$, the Berger measure of $W_{(\sqrt{a},\sqrt{b},\sqrt{c})^{\wedge}}$ is

$$\mu = \frac{2 + \sqrt{3}}{4} \delta_{\frac{1}{2}(1 - \frac{1}{\sqrt{3}})} + \frac{2 - \sqrt{3}}{4} \delta_{\frac{1}{2}(1 + \frac{1}{\sqrt{3}})}.$$

Thus, W_{α} is subnormal, but $W_{\alpha_{\text{even}}}$ is not subnormal.

Proof. We have

$$\det H(2;0) = \det \begin{pmatrix} 1 & \frac{1}{4} & \frac{1}{8} \\ \frac{1}{4} & \frac{1}{8} & \frac{3}{32} \\ \frac{1}{8} & \frac{3}{32} & \frac{33}{448} \end{pmatrix} = -\frac{1}{3584} < 0.$$

Therefore, $W_{\alpha_{\text{even}}}$ is not 2-hyponormal which implies $W_{\alpha_{\text{even}}}$ is not subnormal. \square

Example 2.12. Let

$$\alpha \equiv \alpha_n := \begin{cases} \sqrt{\frac{1}{2}}, & \text{if } n = 0, \\ \sqrt{\frac{2^n + \frac{1}{2}}{2^n + 1}}, & \text{if } n \geqslant 1. \end{cases}$$

Then W_{α} is subnormal, but $W_{\alpha_{\text{even}}}$ is not subnormal.

Proof. W_{α} is subnormal: Consider the 3-atomic measure $\xi := \frac{1}{3}\delta_0 + \frac{1}{3}\delta_{\frac{1}{2}} + \frac{1}{3}\delta_1$. For $n \ge 1$,

$$\gamma_{n} \equiv \alpha_{0}^{2} \alpha_{1}^{2} \alpha_{2}^{2} \cdots \alpha_{n-2}^{2} \alpha_{n-1}^{2} \\
= \frac{1}{2} \cdot \frac{2 + \frac{1}{2}}{2 + 1} \cdot \frac{2^{2} + \frac{1}{2}}{2^{2} + 1} \cdot \cdots \cdot \frac{2^{n-2} + \frac{1}{2}}{2^{n-2} + 1} \cdot \frac{2^{n-1} + \frac{1}{2}}{2^{n-1} + 1} \\
= \frac{1}{2} \cdot \frac{\frac{2^{2} + 1}{2^{2}}}{\frac{2^{2} + 1}{2}} \cdot \frac{\frac{2^{3} + 1}{2^{3}}}{\frac{2^{2} + 1}{2^{2}}} \cdot \cdots \cdot \frac{\frac{2^{n-1} + 1}{2^{n-1}}}{\frac{2^{n-2} + 1}{2^{n-2}}} \cdot \frac{\frac{2^{n} + 1}{2^{n}}}{\frac{2^{n-1} + 1}{2^{n-1}}} \\
= \frac{1}{2} \cdot \frac{2}{3} \cdot (1 + 2^{-n}) = \frac{1}{3} (2^{-n} + 1) = \frac{1}{3} \cdot \left(\frac{1}{2}\right)^{n} + \frac{1}{3} = \int s^{n} d\xi(s), \tag{2.5}$$

which shows that ξ is the Berger measure of W_{α} . Therefore, W_{α} is subnormal.

 W_{β_n} is not subnormal: Let

$$\tilde{\gamma}_n \equiv \beta_0^2 \beta_1^2 \beta_2^2 \cdots \beta_{n-2}^2 \beta_{n-1}^2 \equiv \alpha_0^2 \alpha_2^2 \alpha_4^2 \cdots \alpha_{2n-4}^2 \alpha_{2n-2}^2, \tag{2.6}$$

and consider $\tilde{H}(k; n) := (\tilde{\gamma}_{n+i+j-2})_{i,j=1}^{k+1} \ (n \ge 0)$. For k = 2, we have

$$\begin{split} \det \tilde{H}(2;n) \\ &= \tilde{\gamma}_n^3 \det \begin{pmatrix} 1 & \alpha_{2n}^2 & \alpha_{2n}^2 \alpha_{2(n+1)}^2 \\ \alpha_{2n}^2 & \alpha_{2n}^2 \alpha_{2(n+1)}^2 & \alpha_{2n}^2 \alpha_{2(n+1)}^2 \alpha_{2n+2}^2 \\ \alpha_{2n}^2 \alpha_{2(n+1)}^2 & \alpha_{2n}^2 \alpha_{2(n+1)}^2 \alpha_{2(n+2)}^2 & \alpha_{2n}^2 \alpha_{2(n+1)}^2 \alpha_{2(n+2)}^2 \alpha_{2(n+2)}^2 \\ &= \tilde{\gamma}_n^3 \frac{-135 \cdot 2^{6n-1} (1 + 2^{2n+1})^2 (1 + 2^{2n+3})}{(1 + 4^{n+2})^2 (1 + 4^{n+3}) (1 + 5 \cdot 4^n + 4^{2n+1})^3} < 0. \end{split}$$

Thus, W_{β} is not 2-hyponormal; hence, W_{β} is not subnormal. \square

Theorem 2.13. Suppose $a, b, c, d \ge 0$ satisfy ad - bc > 0. Then for $p \ge 1$, all p-subshifts of S(a, b, c, d) are subnormal.

Proof. Suppose $\beta_n = \alpha_{pn+r}$ for some $0 \le r < p$. Since

$$\frac{a(pn+r)+b}{c(pn+r)+d} = \frac{(ap)n + (ar+b)}{(cp)n + (cr+d)}$$

and

$$(ap)(cr + d) - (ar + b)(cp) = p(ad - bc) > 0,$$

it follows that shift(β) = S(ap, ar + b, cp, cr + d) is also subnormal. \Box

Theorem 2.14. The 2-subsequences $\{\alpha_{2n}: n \ge 0\}$ and $\{\alpha_{2n+1}: n \ge 0\}$ of B_+ are subnormal with $d\mu(s) = \frac{ds}{\pi \sqrt{s-s^2}}$ and $d\nu(s) = \frac{ds}{2\sqrt{1-s}}$, respectively.

Proof.

Case 1. Let $W_{\alpha_{2n}} := \text{shift}(\sqrt{\frac{1}{2}}, \sqrt{\frac{3}{4}}, \sqrt{\frac{5}{6}}, \sqrt{\frac{7}{8}}, \dots)$ and consider the " γ " numbers of $W_{\alpha_{2n}}$, that is, $\gamma_n = \frac{(2n-1)!!}{n!}$ (all $n \ge 1$). Using Berger's theorem, we want to find the Berger measure of $W_{\alpha_{2n}}$. Let $d\mu_{\alpha_{2n}}(s) := \frac{ds}{\pi \sqrt{s-s^2}}$, $s \ne 0, 1$. Then

$$\int_{0}^{1} d\mu(s) = \int_{0}^{1} \frac{ds}{\pi \sqrt{\frac{1}{4} - (s - \frac{1}{2})^{2}}} = \frac{1}{\pi} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{dy}{\sqrt{\frac{1}{4} - y^{2}}} \quad \text{(by letting } y := s - \frac{1}{2}\text{)}$$
$$= \frac{2}{\pi} \left[\sin^{-1} y \right]_{-\frac{1}{2}}^{\frac{1}{2}} = 1.$$

Thus, μ is a probability measure. Let $s := \sin^2 x \ \left(= \frac{1 - \cos 2x}{2} \right)$. Then

$$ds = 2\sin x \cos x \, dx = \sqrt{1 - (1 - 2s)^2} \, dx.$$

Thus

$$\int_{0}^{1} s^{n} d\mu(s) = \int_{0}^{1} s^{n} \frac{ds}{\pi \sqrt{s - s^{2}}} = \frac{2}{\pi} \int_{0}^{1} s^{n} \frac{ds}{\sqrt{1 - (1 - 2s)^{2}}}$$
$$= \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \sin^{2n} x \, dx = \frac{(2n - 1)!!}{2n!} = \gamma_{n}.$$

Therefore, $W_{\alpha_{2n}}$ is subnormal with $d\mu(s) = \frac{ds}{\pi \sqrt{s-s^2}}$.

Case 2. Let $W_{\alpha_{2n+1}} := \operatorname{shift}\left(\sqrt{\frac{2}{3}}, \sqrt{\frac{4}{5}}, \sqrt{\frac{6}{7}}, \sqrt{\frac{8}{9}}, \ldots\right)$ and consider the " γ " numbers of $W_{\alpha_{2n+1}}$, that is, $\gamma_n = \frac{2n!}{(2n+1)!!}$ (all $n \ge 1$). Let $d\nu(s) := \frac{ds}{2\sqrt{1-s}}$ ($s \ne 1$). Then $\int_0^1 d\nu(s) = 1$. Thus, ν is also probability measure. Let $s := \sin^2 x$, then $ds = 2 \sin x \cos x \, dx$ and $\cos x = 1$.

$$\sqrt{1-s}$$
. Thus

$$\int_{0}^{1} s^{n} d\nu(s) = \int_{0}^{1} s^{n} \frac{ds}{2\sqrt{1-s}} = \int_{0}^{\frac{\pi}{2}} \sin^{2n} x \frac{2\sin x \cos x dx}{2\cos x} = \int_{0}^{\frac{\pi}{2}} \sin^{2n+1} x dx$$
$$= \frac{2n!}{(2n+1)!!} = \gamma_{n}.$$

Therefore, $W_{\alpha_{2n+1}}$ is also subnormal with $d\nu(s) = \frac{ds}{2\sqrt{1-s}}$. \square

We conclude this section with a problem of independent interest.

Problem 2.15. Recall that $B_+^{(\ell)} = S(\ell, 2\ell - 1, 1, 2)$, so Theorem 2.13 guarantees that $B_+^{(\ell)}$ and all of its p-subshifts are subnormal. For $\ell \geqslant 2$ and $p \geqslant 1$, find the Berger measure of $B_+^{(\ell)}$ and the Berger measure of its p-subshifts.

References

- [1] A. Athavale, On joint hyponormality of operators, Proc. Amer. Math. Soc. 103 (1988) 417–423.
- [2] K. Atkinson, Introduction to Numerical Analysis, second ed., Wiley, New York, 1989.
- [3] J. Conway, The Theory of Subnormal Operators, Math. Surveys Monogr., vol. 36, Amer. Math. Soc., Providence, RI, 1991.
- [4] R. Curto, Joint hyponormality: A bridge between hyponormality and subnormality, Proc. Sympos. Pure Math. 51 (1990) 69–91.
- [5] R. Curto, Quadratically hyponormal weighted shifts, Integral Equations Operator Theory 13 (1990) 49-66.
- [6] R. Curto, An operator-theoretic approach to truncated moment problems, in: Linear Operators, in: Banach Center Publ., vol. 38, 1997, pp. 75–104.
- [7] R. Curto, L. Fialkow, Recursively generated weighted shifts and the subnormal completion problem, Integral Equations Operator Theory 17 (1993) 202–246.
- [8] R. Curto, L. Fialkow, Recursively generated weighted shifts and the subnormal completion problem, II, Integral Equations Operator Theory 18 (1994) 369–426.
- [9] R. Curto, P. Muhly, J. Xia, Hyponormal pairs of commuting operators, Oper. Theory Adv. Appl. 35 (1988) 1–22.
- [10] R. Curto, M. Putinar, Nearly subnormal operators and moment problems, J. Funct. Anal. 115 (1993) 480–497.
- [11] R. Curto, J. Yoon, Spectral picture of 2-variable weighted shifts, in preparation.
- [12] S. McCullough, V. Paulsen, A note on joint hyponormality, Proc. Amer. Math. Soc. 107 (1989) 187–195.
- [13] A.W. Marshall, I. Olkin, Inequalities: The Theory of Majorization and Its Applications, Academic Press, New York, 1979.
- [14] V. Paulsen, Completely bounded maps and dilations, Pitman Res. Notes Math. Ser., vol. 146, Longman, New York, 1986.
- [15] J. Stampfli, Hyponormal operators, Pacific J. Math. 12 (1962) 1453–1458.
- [16] Wolfram Research Inc., Mathematica, Version 4.2, Wolfram Research Inc., Champaign, IL, 2002.