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Abstract

For a, b, c, d � 0 with ad − bc > 0, we consider the unilateral weighted shiftS(a, b, c, d) with

weightsαn :=
√

an+b
cn+d

(n � 0). Using Schur product techniques, we prove thatS(a, b, c, d) is always
subnormal; more generally, we establish that for everyp � 1, all p-subshifts ofS(a, b, c, d) are
subnormal. As a consequence, we show that all Bergman-like weighted shifts are subnormal
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let H be a complex Hilbert space and letB(H) denote the algebra of bounded li
ear operators onH. We say thatT ∈ B(H) is normal if T ∗T = T T ∗, subnormalif
T = N |H, whereN is normal andN(H)⊆ H, andhyponormalif T ∗T � T T ∗. Fork � 1,
T is k-hyponormalif (I, T , . . . , T k) is (jointly) hyponormal. Additionally,T is weakly
k-hyponormalif p(T ) is hyponormal for every polynomialp of degree at mostk. Thus
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k-hyponormal⇒ weaklyk-hyponormal, and “hyponormal,” “1-hyponormal” and “weak
1-hyponormal” are identical notions [1]. On the other hand, results in [5,9,12] show
weakly 2-hyponormal operators (also calledquadratically hyponormaloperators) are no
necessarily 2-hyponormal. The Bram–Halmos characterization of subnormality [3, II
can be paraphrased as follows:T is subnormal if and only ifT is k-hyponormal for every
k � 1 [9, Proposition 1.9]. In particular, each subnormal operator ispolynomially hypo-
normal (i.e., weaklyk-hyponormal for everyk � 1). The converse implication, wheth
T polynomially hyponormal⇒ T subnormal, was settled in the negative in [10];
deed, it was shown that there exists a polynomially hyponormal operator which
2-hyponormal. Previously, S. McCullough and V. Paulsen had established [12] tha
can find a non-subnormal polynomially hyponormal operator if and only if one can fi
unilateral weighted shift with the same property. Thus, although the existence proof i
is abstract, by combining the results in [10,12], we now know that there exists a poly
ally hyponormal unilateral weighted shift which is not subnormal. The following diag
gives a simple representation of the above mentioned relations:

subnormal ⇔ ∞-hyponormal⇒ ·· · ⇒ 3-hyponormal⇒ 2-hyponormal↘
�⇑⇓ �⇑⇓ �⇑⇓ �⇑⇓ hypo.

polyn. hypo.⇔ weakly∞-hypo.⇒ ·· · ⇒ weakly 3-hypo.⇒ weakly 2-hypo.↗
For α ≡ {αn}∞n=0 a bounded sequence of positive real numbers (calledweights), let

Wα :�2(Z+) → �2(Z+) be the associatedunilateral weighted shift, defined byWαen :=
αnen+1 (all n � 0), where{en}∞n=0 is the canonical orthonormal basis in�2(Z+). Themo-
mentsof α are given as

γk ≡ γk(α) :=
{

1, if k = 0,
α2

0 · · · · · α2
k−1, if k > 0.

It is easy to see thatWα is never normal, and that it is hyponormal if and only ifα0 �
α1 � · · · .

We now recall a well-known characterization of subnormality for single vari
weighted shifts, due to C. Berger (cf. [3, III.8.16]):Wα is subnormal if and only if there
exists a probability measureξ supported in[0,‖Wα‖2] (called theBerger measureof Wα)
such thatγn(α) := α2

0 · · · · ·α2
n−1 = ∫

tn dξ(t) (n � 1). If Wα is subnormal, and if forh � 1
we letMh := ∨{en: n � h} denote the invariant subspace obtained by removing the fih

vectors in the canonical orthonormal basis of�2(Z+), then the Berger measure ofWα|Mh

is 1
γh

th dξ(t).
We will often write shift(α0, α1, α2, . . .) to denote the weighted shift with weight s

quence{αn}∞n=0. We also denote byU+ := shift(1,1,1, . . .) the (unweighted) unilatera
shift, and for 0< a < 1 we letSa := shift(a,1,1, . . .).

2. Main results

For matricesA,B ∈ Mn(C), we letA ◦ B denote theirSchur product, i.e.,(A ◦ B)ij :=
AijBij (1 � i, j � n). The following result is well-known: ifA � 0 andB � 0, then
A ◦ B � 0 [14].
We are now ready to introduce the class of Bergman-like weighted shifts.
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Definition 2.1 [11]. For � � 1 and n � 0, let α
(�)
n :=

√
� − 1

n+2 and let B
(�)
+ :=

shift(α(�)
0 , α

(�)
1 , α

(�)
2 , . . .). In particular,B(1)

+ ≡ B+ := shift
(√ 1

2,
√

2
3,

√
3
4, . . .

)
. EachB

(�)
+

is called a Bergman-like weighted shift.

Remark 2.2.

(i) B+ is subnormal with Berger measuredξ(s) := ds on [0,1].
(ii) [11] B

(2)
+ is subnormal with Berger measuredξ(s) := sds

π
√

2s−s2
on [0,1].

Lemma 2.3 [4,5]. Let Wαei = αiei+1 (i � 0) be a hyponormal weighted shift, and
k � 1. The following statements are equivalent:

(i) Wα is k-hyponormal.
(ii) The matrix(([

W ∗j
α ,Wi

α

]
en+j , en+i

))k

i,j=1

is positive semi-definite for alln � −1.

(iii) The matrix

(γnγn+i+j − γn+iγn+j )
k
i,j=1

is positive semi-definite for alln � 0, where as usualγ0 = 1, γn = α2
0 · · · · · α2

n−1
(n � 1).

(iv) The Hankel matrix

H(k;n) := (γn+i+j−2)
k+1
i,j=1

is positive semi-definite for alln � 0.

Symbolic manipulation easily [16] implies the following result.

Theorem 2.4. All Bergman-like shiftsB(�)
+ (all � � 1) are 4-hyponormal.

Proof. By Lemma 2.3, to checkk-hyponormality it suffices to prove that the determin
of the Hankel matrixH(k;n) in Lemma 2.3(iv) is positive for alln � 0.

For k = 2, and alln � 0, we have

detH(2;n) = γ 3
n det




1 α2
n α2

nα
2
n+1

α2
n α2

nα
2
n+1 α2

nα
2
n+1α

2
n+2

α2
nα

2
n+1 α2

nα
2
n+1α

2
n+2 α2

nα
2
n+1α

2
n+2α

2
n+3




= γ 3
n

2(� + 1)((n + 2)� − 1)2((n + 3)� − 1)

(n + 2)3(n + 3)3(n + 4)2(n + 5)
> 0.

Whenk = 3,

4 12(�+1)2(2�+1)((n+2)�−1)3((n+3)�−1)2((n+4)�−1)

detH(3;n)=γn (n+2)4(n+3)4(n+4)4(n+5)3(n+6)2(n+7)

>0.
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rix
Finally, if k = 4, we see that

detH(4;n) = γ 5
n

288(� + 1)3(2� + 1)2(3� + 1)((n + 2)� − 1)4((n + 3)� − 1)3((n + 4)� − 1)2((n + 5)� − 1)

(n + 2)5(n + 3)5(n + 4)5(n + 5)5(n + 6)4(n + 7)3(n + 8)2(n + 9)
> 0.

It follows thatH(4;n) � 0 for all n � 0, as desired. �
For k � 1, we observe that

detH(k;n) = γ k+1
n α2k

n α2k−2
n+1 · · · · · α2

n+k−1

× det




α2
n+1 − α2

n α2
n+2 − α2

n+1 · · · α2
n+k − α2

n+k−1

α2
n+1(α

2
n+2 − α2

n) α2
n+2(α

2
n+3 − α2

n+1) · · · α2
n+k(α

2
n+k+1 − α2

n+k−1)

.

.

.
.
.
.

. . .
.
.
.

(�n+k−1
i=n+1a2

i )(α2
n+k − α2

n) (�n+k
i=n+2a

2
i )(α2

n+k+1 − α2
n+1) · · · (�n+2k−2

i=n+k a2
i )(α2

n+2k−1 − α2
n+k−1)




.

Thus, to check the positivity of detH(k;n) is generally quite complicated. Also, it appea
that detH(k;n) is related to the determinant of the Hilbert matrix (after performing colu
operations and substitutingα2

n by � − 1
n+2). We conclude that a new idea is needed

bypass the use of nested determinants [2], which we now present.
We introduce a new class of weighted shifts that includes the class of Bergma

weighted shifts.

Definition 2.5. Let a, b, c, d � 0 satisfyad − bc > 0. Let S(a, b, c, d) := shift(α0, α1,

α2, . . .), whereαn :=
√

an+b
cn+d

(n � 0).

Remark 2.6. Note that for a Bergman-like weighted shiftB
(�)
+ , we have

αn =
√

� − 1

n + 2
=

√
�n + (2� − 1)

n + 2
(n � 0).

Therefore,B(�)
+ = S(�,2� − 1,1,2) andad − bc = 1.

Theorem 2.7. Leta, b, c, d � 0 satisfyad − bc > 0. ThenS(a, b, c, d) is subnormal.

Proof. Recall that forn � 0, αn :=
√

an+b
cn+d

. Then the moments ofα are γ0 = 1 and

γn = α2
0 · · · · · α2

n−1 (n � 1). By the Bram–Halmos characterization of subnormality
Proposition 1.9] and Lemma 2.3((i)⇔ (iv)), we only need to show that the Hankel mat
(γn+i+j−2)

k+1
i,j=1 is positive semi-definite for alln � 0 andk � 1. Forn � 0 andk � 1, let

βn
k := γn+k

γn
andL(k;n) := (βn

i+j−2)
k+1
i,j=1. SinceH(k;n) = γnL(k;n), it suffices to show

thatL(k;n) is positive semi-definite for alln � 0 andk � 1. We prove this by induction

on k � 1. Fork = 1, L(1;n) = ( 1 α2
n

α2
n α2

nα2
n+1

)
. Since

(an + b)(ad − bc)

detL(1;n) =

(c(n + 1) + d)(cn + d)2
> 0,
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l.
it follows thatL(1;n) is positive semi-definite. Fork > 1, let

Q(k;n) :=




1 −α2
n

1 −α2
n+1

. . .
. . .

1 −α2
n+k−1
1




.

ThenQ(k;n)T L(k;n)Q(k;n) = 1⊕ [L(k − 1;n) ◦ B(k;n)], whereB(k;n) := (bij )
k
i,j=1,

with

bij := α2
n+i+j−2

(
α2

n+i+j−1 − α2
n+j−1

) − α2
n+i−1

(
α2

n+i+j−2 − α2
n+j−1

)
.

Note that the(i, j) entry ofB(k;n) corresponds to the(i + 1, j + 1) entry ofQ(k;n)T ×
L(k;n)Q(k;n). Since by induction hypothesis we know thatL(k − 1;n) is positive semi-
definite, it remains to show thatB(k;n) is positive semi-definite for allk,n � 1. By direct
computation, we have

bij = [(
c(n + i − 1) + d

)(
c(n + j − 1) + d

)(
c(n + i + j − 2) + d

)
× (

c(n + i + j − 1) + d
)]−1[

(ad − bc)
(
(a − b)(c − d) + (bc + ad − 2ac)n

+ acn2 + (acn + bc − ac)(i + j) + (ac − bc + ad)ij
)]

.

Therefore, we can write

B(k;n) = (ad − bc)D

×
(

(cij ) ◦
(

1

c(n+ i + j −2)+d

)
◦

(
1

c(n+ i + j −1)+d

))
D, (2.1)

whereD is the diagonal matrix with diagonal entry
( 1

c(n+i−1)+d

)
and

cij := (a − b)(c − d) + (bc + ad − 2ac)n + acn2 + (acn + bc − ac)(i + j)

+ (ac − bc + ad)ij.

Now observe that
( 1

c(n+i+j−2)+d

)k+1
i,j=1 � 0 (by [13, Example 18.A2]), sincec(n + i +

j −2)+d = xi +xj , wherexi := c(n
2 + i −1)+ d

2 is positive and increasing ini. Similarly,( 1
c(n+i+j−1)+d

)k+1
i,j=1 � 0.

We will now show thatC := (cij )
k+1
i,j=1 is positive semi-definite with positive diagona

Let

P :=




1 −1
1 −1

. . .
. . .

1 −1




.

1
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[7,
ThenP T CP hasbd +bcn+adn+acn2 at the(1,1) position,acn+ad at(1, j) and(i,1)

positions(i, j > 1), anda(c + d) − bc elsewhere. Therefore,C is a positive semi-definite
matrix of rank 2. Fori � 1, theith diagonal entry ofC is

cii = (ac − bc + ad)i2 + 2c
(
a(n − 1) + b

)
i + (

a(n − 1) + b
)(

c(n − 1) + d
)
> 0.

By Schur’s theorem [13, Theorem 9.I.5],C ◦ M is positive semi-definite for every po
itive semi-definite matrixM . By using this in (2.1), we conclude thatB(k;n) � 0, as
desired. �
Corollary 2.8. All Bergman-like shiftsB(�)

+ are subnormal.

Definition 2.9. Supposeα = (α0, α1, α2, . . .) andp is a positive integer. A subsequen
β = (β0, β1, β2, . . .) is called ap-subsequence ofα if there exists 0� r < p such thatβn =
αpn+r . The operator shift(β0, β1, β2, . . .) is called ap-subshift of shift(α0, α1, α2, . . .).

Example 2.10.

(i) The only 1-subsequence ofα is α itself.
(ii) The 2-subsequences ofα areαeven:= {α2n: n � 0} andαodd := {α2n+1: n � 0}.

The following examples show that a 2-subshift of a subnormal weighted shift may n
subnormal. To this end, we considerrecursively generated weighted shifts[7,8]. We briefly
recall some key facts about these shifts, specifically the case when there are two coe
of recursion. In [15], J. Stampfli proved that given three positive numbers

√
a <

√
b <

√
c,

it is always possible to find a subnormal weighted shift, denotedW(
√

a,
√

b,
√

c)∧ , whose

first three weights are
√

a,
√

b and
√

c. In this case, the coefficients of recursion (cf.
Example 3.12], [8, Section 3], [6, Section 1, p. 81]) are given by

ϕ0 = −ab(c − b)

b − a
and ϕ1 = b(c − a)

b − a
, (2.2)

the atomst0 andt1 are the roots of the equation

t2 − (ϕ0 + ϕ1t) = 0, (2.3)

and the densitiesρ0 andρ1 uniquely solve the 2× 2 system of equations{
ρ0 + ρ1 = 1
ρ0t0 + ρ1t1 = α2

0.
(2.4)

Thus, we getµ = ρ0δt0 + ρ1δt1 which is the Berger measure ofW(
√

a,
√

b,
√

c)∧ .

Example 2.11. Fora = 1
4, b = 1

3, c = 1
2, the Berger measure ofW(

√
a,

√
b,

√
c)∧ is

µ = 2+ √
3

4
δ 1

2 (1− 1√
3
)
+ 2− √

3

4
δ 1

2 (1+ 1√
3
)
.

Thus,Wα is subnormal, butWαeven is not subnormal.
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Proof. We have

detH(2;0) = det




1 1
4

1
8

1
4

1
8

3
32

1
8

3
32

33
448


 = − 1

3584
< 0.

Therefore,Wαeven is not 2-hyponormal which impliesWαeven is not subnormal. �
Example 2.12. Let

α ≡ αn :=




√
1
2, if n = 0,√
2n+ 1

2
2n+1 , if n � 1.

ThenWα is subnormal, butWαeven is not subnormal.

Proof. Wα is subnormal: Consider the 3-atomic measureξ := 1
3δ0 + 1

3δ 1
2

+ 1
3δ1. For

n � 1,

γn ≡ α2
0α2

1α2
2 · · ·α2

n−2α
2
n−1

= 1

2
· 2+ 1

2

2+ 1
· 22 + 1

2

22 + 1
· · · · · 2n−2 + 1

2

2n−2 + 1
· 2n−1 + 1

2

2n−1 + 1

= 1

2
·

22+1
22

2+1
2

·
23+1

23

22+1
22

· · · · ·
2n−1+1

2n−1

2n−2+1
2n−2

·
2n+1

2n

2n−1+1
2n−1

= 1

2
· 2

3
· (1+ 2−n

) = 1

3

(
2−n + 1

) = 1

3
·
(

1

2

)n

+ 1

3
=

∫
sn dξ(s), (2.5)

which shows thatξ is the Berger measure ofWα . Therefore,Wα is subnormal.
Wβn is not subnormal: Let

γ̃n ≡ β2
0β2

1β2
2 · · ·β2

n−2β
2
n−1 ≡ α2

0α2
2α2

4 · · ·α2
2n−4α

2
2n−2, (2.6)

and considerH̃ (k;n) := (γ̃n+i+j−2)
k+1
i,j=1 (n � 0). Fork = 2, we have

detH̃ (2;n)

= γ̃ 3
n det




1 α2
2n α2

2nα
2
2(n+1)

α2
2n α2

2nα
2
2(n+1) α2

2nα
2
2(n+1)α

2
2(n+2)

α2
2nα

2
2(n+1) α2

2nα
2
2(n+1)α

2
2(n+2) α2

2nα
2
2(n+1)α

2
2(n+2)α

2
2(n+3)




= γ̃ 3
n

−135· 26n−1(1+ 22n+1)2(1+ 22n+3)

(1+ 4n+2)2(1+ 4n+3)(1+ 5 · 4n + 42n+1)3
< 0.

Thus,Wβ is not 2-hyponormal; hence,Wβ is not subnormal. �
Theorem 2.13. Supposea, b, c, d � 0 satisfyad − bc > 0. Then forp � 1, all p-subshifts

of S(a, b, c, d) are subnormal.
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ea-
Proof. Supposeβn = αpn+r for some 0� r < p. Since

a(pn + r) + b

c(pn + r) + d
= (ap)n + (ar + b)

(cp)n + (cr + d)

and

(ap)(cr + d) − (ar + b)(cp) = p(ad − bc) > 0,

it follows that shift(β) = S(ap,ar + b, cp, cr + d) is also subnormal. �
Theorem 2.14. The2-subsequences{α2n: n � 0} and{α2n+1: n � 0} of B+ are subnormal
with dµ(s) = ds

π
√

s−s2
anddν(s) = ds

2
√

1−s
, respectively.

Proof.

Case 1. Let Wα2n
:= shift

(√ 1
2,

√
3
4,

√
5
6,

√
7
8, . . .

)
and consider the “γ ” numbers ofWα2n

,

that is,γn = (2n−1)!!
n! (all n � 1). Using Berger’s theorem, we want to find the Berger m

sure ofWα2n
. Let dµα2n

(s) := ds

π
√

s−s2
, s �= 0,1. Then

1∫
0

dµ(s) =
1∫

0

ds

π

√
1
4 − (s − 1

2)2
= 1

π

1
2∫

− 1
2

dy√
1
4 − y2

(
by lettingy := s − 1

2

)

= 2

π

[
sin−1 y

] 1
2

− 1
2

= 1.

Thus,µ is a probability measure. Lets := sin2 x
(= 1−cos 2x

2

)
. Then

ds = 2 sinx cosx dx =
√

1− (1− 2s)2 dx.

Thus

1∫
0

sn dµ(s) =
1∫

0

sn ds

π
√

s − s2
= 2

π

1∫
0

sn ds√
1− (1− 2s)2

= 2

π

π
2∫

0

sin2n x dx = (2n − 1)!!
2n! = γn.

Therefore,Wα2n
is subnormal withdµ(s) = ds

π
√

s−s2
.

Case 2. Let Wα2n+1 := shift
(√ 2

3,
√

4
5,

√
6
7,

√
8
9, . . .

)
and consider the “γ ” numbers of

Wα2n+1, that is,γn = 2n!
(2n+1)!! (all n � 1). Letdν(s) := ds

2
√

1−s
(s �= 1). Then

∫ 1
0 dν(s) = 1.
Thus,ν is also probability measure. Lets := sin2 x, thends = 2 sinx cosx dx and cosx =
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of

Provi-

. Pure

9–66.
Banach

ntegral

m, II,

988)

) 480–

95.
ress,

an, New
√
1− s. Thus

1∫
0

sn dν(s) =
1∫

0

sn ds

2
√

1− s
=

π
2∫

0

sin2n x
2 sinx cosx dx

2 cosx
=

π
2∫

0

sin2n+1 x dx

= 2n!
(2n + 1)!! = γn.

Therefore,Wα2n+1 is also subnormal withdν(s) = ds

2
√

1−s
. �

We conclude this section with a problem of independent interest.

Problem 2.15. Recall thatB(�)
+ = S(�,2� − 1,1,2), so Theorem 2.13 guarantees thatB

(�)
+

and all of itsp-subshifts are subnormal. For� � 2 andp � 1, find the Berger measure
B

(�)
+ and the Berger measure of itsp-subshifts.
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