Evaluation Of Scheduling And Allocation Algorithms
While Mapping Assembly Code Onto FPGAs

David Zaretsky, Gaurav Mittal, Xiaoyong Tang, Prith Banerjee

Northwestern University

Department of Electrical and Computer Engineering
2145 N. Sheridan Road
Evanston, IL 60208-3118

{dcz, mittal, tang, banerjee}@ece.northwestern.edu

ABSTRACT

Migration of software from older general purposebended
processors onto newer mixed hardware/software Sgs@n-Chip
(SOC) platforms is becoming an increasingly impartéopic.
Automatic translation of general purpose softwairaties and
assembly code onto hardware implementations usiRGAS
require sophisticated scheduling and allocationoritlyms to
maximize the resource utilization of such hardwdegices. This
paper describes the effects of scheduling and ritpiof node
operations in a CDFG onto an FPGA. The effects enfister
allocation on scheduled nodes are also discusskd. Texas
Instruments C6000 DSP processor architecture wasechas the
DSP processor platform and assembly code, and ithex Xirtex
Il XC2V250 was chosen as the target FPGA. Resudtseported
on ten benchmarks, which show that scheduling withining
operations produces the best results on FPGAse indé addition
of register allocation in fact generates poorefighesin terms of
area and frequency.

Categories and Subject Descriptors

B.5.0 [Register-Transfer-Level | mplementation]: General.
B.7.1 [Types and Design Styles]: Algorithms implemented in
hardware, Gate Arrays, VLS (very large scale integration).

General Terms
Algorithms, Performance, Design, Experimentatioarification.

Keywords
Hardware Synthesis, Optimizations, Scheduling, Qihgi
Compilers, Binary Translation, FPGAs.

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialadtage and that copies
bear this notice and the full citation on the fpage. To copy otherwise, or
republish, to post on servers or to redistributiésts, requires prior specific
permission and/or a fee.

GLSVLSI'04, APRIL 26-28, 2004, BOSTON, MASSACHUSESTUSA
COPYRIGHT 2004 ACM 1-58113-853-9/04/0004...$5.00.

1. INTRODUCTION

Recent advances in embedded communications androtont
systems for personal and vehicular environments dairging
efficient hardware and software implementations complete
systems-on-chip (SOC). These applications requggatl signal
processing (DSP) functions that are typically mappento
general-purpose DSP processors, such as the Tesaanhents
C6000 [3] and the Motorola 56600. However, it isl@ly believed
that such processors will be unable to supportctraputational
requirements of future DSP applications. It is éfi@re desirable to
migrate fragments of code or functions to a hardwar
implementation on FPGAs. The benefit of migrating such
devices is in utilizing its inherent parallelismavdcheduling more
computations per cycle than possible on a DSP psaceTowards
this effort, we developed the FREEDOM compiler, athi
automatically translates software binaries targéiedeneral DSP
processors into Register Transfer Level (RTL) VHBLVerilog
code to be mapped onto commercial FPGAs. The desiga
optimized and scheduled to achieve maximum utitrabf the
FPGA'’s resources.

The classical high-level synthesis problem is diteamsforming a
behavioral model in a high-level application into sat of
multi-cycle operations, which have been schedutadoptimal
performance. It is common for one to explore akiég methods
of scheduling to improve the performance of thegiedn doing
so, we attempt to exploit the parallelism in theige as much as
possible for implementations on FPGAs. Operatioairghg is a
technique that is most effective, in which the testithe operation
is used immediately rather than being stored iegister until the
next cycle. Register allocation is another optitiaza that
complements scheduling by reducing the number gifters in a
design. The number of possible register reusegpgmtiant upon
the type of scheduling routine that is implemented.

The problem of translating software binaries andeasbly to
FPGAs is interesting because assembly code consistheduled
instructions on a fixed processor architecture mgva fixed
number of functional units and registers, and load stores of
variables from external memory. It is quite chadfieny to translate
these prescheduled list of instructions onto coroiabIFPGAS,
where one can exploit a great deal of paralleligimgia much
larger number of functional units, embedded muikigl| registers
and on-chip embedded memories. The contributighisfpaper is
in evaluating a wide range of scheduling, operatmining and

register allocation algorithms within the contektlee problem of
translating software assembly to FPGAs.

The remainder of the paper is organized as follo8ection 2
presents the motivation for this work. Section 8cdsses related
work. Sections 4, 5, and 6 describe the effectsabfeduling,
operation chaining, and register allocation optations
implemented on FPGA designs that were translated oftware
binaries. Section 7 reports experimental resultearbenchmarks.
Conclusions and future work are discussed in Se&io

2. PROBLEM MOTIVATION

Consider the example Texas Instruments C6000 D&tegsor [3]
assembly code in Figure 1. The Tl DSP processor digist
functional units (.L1, .S1, .M1, .D1, etc.), ancertefore may
execute at most eight instructions in parallel. ésesult, the
section of code requires seven cycles to execute.

A simple translation of this code onto an FPGA bgigning one
operation per state in an RTL finite state machiuoeld produce
no cost benefit. In it's simplest form, the desigould require eight
cycles to complete on an FPGA since there are d@igltuctions,
excluding NOPs. Rather, one must explore the mdisth in the
design through scheduling techniques in order tploéix the
fine-grain parallelism inherent in the FPGA arctitee, thereby
reducing the number of execution clock cycles. @goently, very
little work has been done in analyzing the efficigrof different
methods of scheduling and operation chaining in AR@signs.
Likewise, the impact of register allocation afteicls scheduling
techniques requires investigation as well.

W .L1 A0, AL

[W .L2 BO,BL
MPY .M Al A2, A3

[MPY .M BI, B2 B3

MPY .M A3, A6, A7
[MPY .M B3, B6,B7

ADD . L1X A7,B7,A8
ADD L1 A4, A8, A9

Figure 1. ExampleTI CGbOO DSP Précr assembly code.

3. RELATED WORK

The problem of translating a high-level or behagidanguage
description into a register transfer level (RTLpnmesentation is
called high-level synthesis [1]. In contrast talftmnal behavioral
synthesis tools that automatically generate RTL Hibdm a

behavioral description of an application in a lamg® such as
C/C++ or MATLAB, our compiler translates softwaredries and
assembly language codes into RTL HDL for mappint & GAs.

Stitt and Vahid [11,12] have reported work on heaadvsoftware
partitioning of binary codes. CriticalBlue [13] ha®cently

announced the Cascade Tool that synthesizes a &ardw

co-processor specifically designed to accelerafevace tasks
selected by the user.

Scheduling is a very important problem in behavigsathesis.
For a given data flow graph, scheduling determirtes
concurrency of the resulting implementation by g@sisig
operations in a CDFG to specific cycles assumintheei
constrained or unconstrained resources. Numergasithims for
scheduling have been developed over the years bipusa
researchers [1]. Some example scheduling algorithems

As-Soon-As-Possible (ASAP), As-Late-As-Possible AR),
various versions of list scheduling, force direcsetieduling, and
scheduling based on integer linear programming\i8g.study the
use of resource constrained and unconstrained ASAPALAP
algorithm in this paper within the context of schialy software
binaries to FPGAs.

Regardless of the scheduling routine performedstegallocation
is an optimization that is generally performed rafieheduling to
minimize the registers in the design. The graplvgoy method,
adapted by Chaitin et al. [7,8], is a widely uspdraach to register
allocation using graph coloring. While graph catoriusually
results in very effective allocations, it can beyexpensive since
compilers may generate numerous register candidatiéls
temporary variables [9]. A simpler and significantfaster
approach to register allocation is the Linear-Saaethod,
developed by Poletto and Sarkar [10], which isbasted on graph
coloring. Given a range of lifetimes for each vhléa the greedy
algorithm allocates the variables to registerssingle pass. Traub
et al. [9] have developed a more efficient algonithhased on
Linear-Scan called Binpacking, which allocates stgs and
rewrites the instruction stream in a single scad,a&so makes use
of lifetime holes in temporary variables.

While much research has been done in terms of cangp¢he

quality of results between different approaches régister

allocation, many have failed to ascertain the dqualithese results
when implemented on different reconfigurable hamwdevices
that have restrictions in routing. The importantéh@ research is
in quantifying the results on FPGAs, which have edix
architectures and routing.

4, SCHEDULING

The scheduling pass is implemented at the CDFQ l&fter all
other optimizations. If scheduling were not perfedmon the
CDFG, each node operation would be mapped to apantent
state of an RTL finite state machine, which woutdduce a very
costly design in terms of clock cycles. Unlike b8P processor,
an FPGA is capable of executing a much larger nundfe
operations per cycle, and therefore can benefih fparallel node
scheduling to optimize the utilization of the FPGAésources.

State: sO
= = Al <= A0
State <= sl
State: sl

B3 <= B1[15:0] * :
A3 <= A1[15:0] * A2[15:0]
State <= s2

State: s2
B7 <= B3[15:0] * :
A7 <= A3[15:0] * A6[15:0]
State <= s3

State: s3
A8 <= A7 + B7
State <= s4

State: s4
A9 <= A4 + A8
State <= sb

Figure2. CDFG and HDL representation of ASAP scheduled
codein Figure1l.

Towards this effort, we implemented two well-knoscheduling
routines, namely As-Soon-As-Possible (ASAP) schadubnd
As-Late-As-Possible (ALAP) scheduling [1]. The nede a basic
block are scheduled based on a time-step and #ratign delay of
the FPGA's resource. Figure 2 shows the CDFG amésponding
HDL after running ASAP scheduling on the assemldyecin
Figure 1. The MV, ADD and MPY operations, along hwits
destination register, are each representdth® nodes, while the
input source registers (A0, A2, A6, etc.) are reprgéed as
Variable nodes. We assume ead¢hlue type operation has a single
clock cycle delay on the FPGR&pnstant andVariable types have
a delay of zero. The design runs in only five clagjcles, as
opposed to eight clock cycles without scheduling.

5. OPERATION CHAINING

Designs that are run on DSP processors are limitedhe

processor’s architecture in terms of the numbespafrations that
may be executed in a single cycle. Conversely, FRIEgigns are
allow the freedom to increase or decrease the nuailmperations
executed per state cycle. In addition to operatcheduling
discussed above, RTL HDL allows one to chain a remuf

operations in sequence within a single state imotd maximize
the number of operations executed per cycle. Th&alg process
is performed prior to scheduling, and is accomplishy assigning
the delay on the node operator to zero, effectivebking the
operation instantaneous. The effect of chainingyeserally a
tradeoff between a significant reduction in exemuttlock cycles
and area versus larger critical paths and redueggiéncies.

When chaining RTL HDL operations, one must consittex

impact on the critical path of the design. Ideaifyis best not to
chain complex structures, such as multipliers, tfey cause a
significant increase in the critical path and regrcin frequency.
However, chaining operations also reduces the nuofvegisters,
which may decrease the design area. One must aismider the
restrictions imposed by backend synthesis toolschwido not

allow mixing blocking and non-blocking assignmetiishe same
destination operand. It is therefore necessaryofoe to first

determine which nodes are valid for chaining.

We consider three approaches to chainisgnple chaining,
complex chaining, andunconstrained chaining.

In simple chaining, only simple ALU operations are chained. These

include, but are not limited to logical operatiore&ldition, and

subtraction. Complex structures, such as multipboa are

isolated in separate states so as to reduce teatpath. When
simple chaining is applied to the CDFG in Figure 2, the first gkt
assignment operations are assigned to the firtst; $kee two sets of
multiplication operations are isolated in the setand third states;
the last two addition operations are chained tageith the fourth

state. The resulting design takes four cycles topete.

In complex chaining, operations up to and including sngle
complex structure are chained.

in the second state; the addition operations aaeel in the third
state. The resulting design takes three cyclesiptete.

In unconstrained chaining, all operations are valid for chaining.
Therefore, all operations in Figure 2 are chainggther in a single
state, and the resulting design takes only a singlke to complete.
However, even though the number of clock cyclethis design is
reduced to one, the critical path delay requiree foperations,
including two multipliers in sequence. Hence, theek frequency
of the design will be much lower than that with eghling alone.

6. REGISTER ALLOCATION

Register allocation is an optimization that is paerfed after
scheduling to reduce the number of registers. Reguegisters in
circuit designs generally leads to smaller desige. s Unlike DSP
processor architectures, FPGAs are not limited small, fixed

number of registers. Since they are capable of Imand
significantly more registers, one does not neetheaoconcerned
with issues such as memory spilling. However, onsstrmealize
that the scheduling and chaining of operationscatfee number of
possible register reuses. One can perform regikecation to

reduce the number of registers. However, by reusingmall

number of registers one may require more compleipexers in

front of functional units and longer interconnecti this study,

we want to experimentally evaluate the impact ofister

allocation while mapping software assembly cod® ¢iRGAs.

Register allocation was implemented on the FREED¢piler
using the Linear-Scan (left-edge) algorithm [10]e \Wse a simple
approach that does consider lifetime holes or rsite¢ée memory
spilling. We assume the nodes in the CDFG are iA ®8m, in
which data dependencies are broken. We also asanmebound
number of register resources in the target FPGA,cam task is to
assign the variable lifetimes to the smallest subseegisters.

Prior to running the Linear-Scan algorithm, one nagermine the
liveness of each variable, or the time from the variabléist
definition until its final use in a CDFG. Our appoh for
calculating the live intervals of registers in alBis as follows:
The nodes in each basic block are sorted in dégthefrder. We
then iterate through the nodes in each basic ldadkmap a list of
nodes sharing the same name along with a timevadtery the name
in a register table. Each node that is encounteyedided to the
table under its corresponding name. The lifetinteriral is updated
by comparing its start time with the node’s timegta and
comparing its end time with the timestamp of allcassive uses of
the node. If a variable is used inside a loop &smdéfinition exists
outside the loop body, the time interval is extehde the loop
body’s time boundaries. The register table is usedthe
Linear-Scan algorithm by renaming the list of nodeseach
mapping with a newly allocated register name. Tigerghm runs
in O(V) time, where V is the total number of nodeshe CDFG.

When considering DSP7. EXPERIMENTAL RESULTS

applications, it is more common to find sequenceS o This section reports the results of the FREEDOMitenon a set

multiply-accumulate operations than accumulate-iplylt
sequences. Consequently, one would expect thisoapiprto
produce larger critical paths if multipliers werbamed with
successive nodes rather than preceding nodes. \uthreplex

chaining is applied to the CDFG in Figure fhe first set of
assignment and multiplication operations are cltatogether in
the first state; the second set of multiplicatipei@tions is isolated

of ten benchmarks from the signal and image praogstomains.
The benchmarks were originally available in C anthpiled into
the TI C6000 assembly code using the Code Com8isdio from
Texas Instruments. The designs were unrolled sktieres where
applicable in order to increase the number of deraodes.

The RTL HDL codes generated by the FREEDOM compilere
synthesized using the Synplify Pro 7.2 logic systhdool from

Synplicity and mapped onto Xilinx Virtex 11 XC2V25@evices.
Estimated frequencies and area utilization wereainbt from
these synthesis results. The areas of the synétkdizsigns were
measured in terms of Look Up Tables (LUTs) for idinx
FPGAs. The RTL HDL codes were also simulated usimg
ModelSim 5.6 tool from Mentor Graphics. In each ecabe
bit-accuracy of the results were confirmed. Thekloycles were
measured by counting the total number of cycleéhénModelSim
simulations of each FPGA design.

Tables 1-2 shows results in terms of final exeeutimes (clock

cycles / frequency) and area. The first column shthe results of
the compiler's base case (B) without schedulinge Tse of
scheduling optimizations facilitates a reductiortlie number of
states (clock cycles) and design area. The resw#tsapparent
when comparing the base case (B) and the schechlting (B+S);

frequency results are comparable between the twause the
critical path has not changed. Consequently, whembiing

scheduling with simple chaining (B+S+SC), compléhaiaing

(B+S+CC) and unconstrained chaining (B+S+UC), tesshow

increasingly improved performance in clock cycled design area
due to reduction in registers. The frequency deggdue to larger
critical paths, an effect of operation chaining. égected, most
cases showed unconstrained chaining producingrhetelts in

terms of clock cycles and area, while schedulindpevit chaining

produced the best frequency results due to snaitéal paths.

Table 1. Final execution timesin psfor Xilinx Virtex |1 FPGA.

B B+S B+S+SC | B+S+CC | B+S+UC (B+S+UC+R
dot prod| 101.7] 52.7 496 413 39.3 411
iir 2387 79.1 723 65.1 579 66.0
firl6tap 15264] 462.3] 2795 2962 296.2 403.7
fir_cmplx| 3769 53.0 55.3 54.2) 54.2) 79.3
matmul | 172171 39430] 29489 38127 38127 42725
laplace 589.6] 3246 2012 201.2] 2012 196.3
sobel 1069.5] 371.8] 2263 2263 2263 238.0
lgcd 0.9 0.7 04 04 04 04
lellip 1.9 1.2 0.9 0.9 0.9 0.9
|diffeq 8.8 54 36 33 35 41

Table2. Arearesultsin LUTsfor Xilinx Virtex || FPGA.

B B+S B+S+SC | B+S+CC | B+S+UC |B+S+UC+R
dot_prod 1958 1807 1544 1563 1578 3033
iir 4025 3694 2634 2606 2544 8232
fir16tap 2813 2426 1938 1922 1880 2899
fir_cmplx 4361 3740 3324 3295 2873 9013
matmul 3222 2633 1765 1906 1871 3101
laplace 6089 5609 3949 3949 3949 10327
|sobel 11582 9531 4379 4379 4379 8629
ch 766 673 456 456 456, 712
ellip 3082 3112 2023 2023 2023 2744
|diffeq 3274 2914 2381 2474 2283 5120

The final column (B+S+UC+R) shows the effects ofjister

allocation on area and frequency after chaining interesting to
note that this optimization in fact caused a negatifect in almost
all designs and in all forms of scheduling; resshewed design
areas increased while frequencies decreased. Téwt ef register
reuse causes the backend synthesis tools to iasklitional

multiplexers in order to support the multiple uséshe register
across different combinational logic blocks. Thifact causes the
design area, interconnect and the critical patlintoease, thus
affecting the frequency of the design as well. Adowly, the

optimal method for FPGA designs would be to usedating and
chaining alone, leaving the design in SSA form bgt n
implementing register allocation.

8. CONCLUSIONS

The FREEDOM compiler translates DSP algorithmstemiin the
assembly language or binary code of a DSP procesgsdregister
Transfer Level (RTL) VHDL or Verilog code for FPGAZhis
paper evaluated a wide range of scheduling, opechtning and
register allocation algorithms within the contekttee problem of
translating software binaries to FPGAs using thengwork of the
FREEDOM compiler.

Experimental results were shown on ten assemblguiage
benchmarks from signal processing and image pringedemains.
Results show performance gains on the FPGA desigiisised a
combination of scheduling and chaining with resgeaxecution
times and area. Register allocation produced pomwrlts than
those designs left in SSA form.

Future work would include heuristical methods fgueration
chaining in which one would consider a more aceurat
representation of an operation’s delay on the FPGA.

9. REFERENCES
[1] G. DeMicheli, Synthesis and Optimization of Q& Circuits,
McGraw Hill, 1994.

[2] Steven S. Muchnick. Advanced Compiler Design
Implementation. Morgan Kaufmann, San Francisco, CA.

[3] Texas Instruments, TMS320C6000 Architectureddigsion,
www.ti.com

[4] N.Ramsey, and M.F. Fernandez, “Specifying Repntations
of Machine Instructions”, ACM Transactions on
Programming Languages and Systems, May 1997.

[5] N. Ramsey, and M.F. Fernandez, “New Jersey MeaclCode
toolkit”, Proceedings of the 1995 USENIX Technical
Conference, January 1995.

[6] Synplicity. Synplify Pro Datasheet, www.synjticcom.

[7] G. Chaitin et al., “Register Allocation via Quing,”
Computer Languages, 6, pp. 47-57, 1981.

[8] G.J. Chaitin, “Register Allocation and Spillirvia Graph
Coloring,” SIGPLAN Notices, 17(6):201-107, June 298

[9] O. Traub et al., “Quality and Speed in Lineaass Register
Allocation,” ACM SIGPLAN 1998 Conf. On Programming
Language Design and Implementation, pp. 142-151g Ju
1998.

[10] M. Poletto and V. Sarkar, “Linear Scan Regigthocation,”
ACM Trans. on Programming Languages and Systemis, Vo
21, No. 5, pp. 895-913, Sept. 1999.

[11] G. stitt and F. Vahid, “Hardware/Software Rarhing of
Software Binaries,” Proc. Int. Conf. Computer Aidedsign
(ICCAD), Santa Clara, CA, Nov. 2002, pp. 164-170.

[12] G. stitt et al, “Dynamic Hardware/Software #éning: A
First Approach,” Proc. Design Automation Conf., Aean,
CA, Jun. 2003, pp. 250-255.

[13] CriticalBlue, Cascade Tool Set, www.criticalblcom

