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ABSTRACT 
Migration of software from older general purpose embedded 
processors onto newer mixed hardware/software Systems-On-Chip 
(SOC) platforms is becoming an increasingly important topic. 
Automatic translation of general purpose software binaries and 
assembly code onto hardware implementations using FPGAs 
require sophisticated scheduling and allocation algorithms to 
maximize the resource utilization of such hardware devices. This 
paper describes the effects of scheduling and chaining of node 
operations in a CDFG onto an FPGA. The effects of register 
allocation on scheduled nodes are also discussed. The Texas 
Instruments C6000 DSP processor architecture was chosen as the 
DSP processor platform and assembly code, and the Xilinx Virtex 
II XC2V250 was chosen as the target FPGA. Results are reported 
on ten benchmarks, which show that scheduling with chaining 
operations produces the best results on FPGAs, while the addition 
of register allocation in fact generates poorer designs in terms of 
area and frequency. 

Categories and Subject Descriptors 
B.5.0 [Register-Transfer-Level Implementation]: General. 
B.7.1 [Types and Design Styles]: Algorithms implemented in 
hardware, Gate Arrays, VLSI (very large scale integration).  

General Terms 
Algorithms, Performance, Design, Experimentation, Verification. 

Keywords 
Hardware Synthesis, Optimizations, Scheduling, Chaining, 
Compilers, Binary Translation, FPGAs. 
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1. INTRODUCTION 
Recent advances in embedded communications and control 
systems for personal and vehicular environments are driving 
efficient hardware and software implementations of complete 
systems-on-chip (SOC). These applications require digital signal 
processing (DSP) functions that are typically mapped onto 
general-purpose DSP processors, such as the Texas Instruments 
C6000 [3] and the Motorola 56600. However, it is widely believed 
that such processors will be unable to support the computational 
requirements of future DSP applications. It is therefore desirable to 
migrate fragments of code or functions to a hardware 
implementation on FPGAs. The benefit of migrating to such 
devices is in utilizing its inherent parallelism via scheduling more 
computations per cycle than possible on a DSP processor. Towards 
this effort, we developed the FREEDOM compiler, which 
automatically translates software binaries targeted for general DSP 
processors into Register Transfer Level (RTL) VHDL or Verilog 
code to be mapped onto commercial FPGAs. The designs are 
optimized and scheduled to achieve maximum utilization of the 
FPGA’s resources.  

The classical high-level synthesis problem is one of transforming a 
behavioral model in a high-level application into a set of 
multi-cycle operations, which have been scheduled for optimal 
performance.  It is common for one to explore alternate methods 
of scheduling to improve the performance of the design. In doing 
so, we attempt to exploit the parallelism in the design as much as 
possible for implementations on FPGAs. Operation chaining is a 
technique that is most effective, in which the result of the operation 
is used immediately rather than being stored in a register until the 
next cycle. Register allocation is another optimization that 
complements scheduling by reducing the number of registers in a 
design. The number of possible register reuses is dependant upon 
the type of scheduling routine that is implemented.   

The problem of translating software binaries and assembly to 
FPGAs is interesting because assembly code consists of scheduled 
instructions on a fixed processor architecture having a fixed 
number of functional units and registers, and loads and stores of 
variables from external memory. It is quite challenging to translate 
these prescheduled list of instructions onto commercial FPGAs, 
where one can exploit a great deal of parallelism using a much 
larger number of functional units, embedded multipliers, registers 
and on-chip embedded memories. The contribution of this paper is 
in evaluating a wide range of scheduling, operator chaining and 



 

 

register allocation algorithms within the context of the problem of 
translating software assembly to FPGAs. 

The remainder of the paper is organized as follows: Section 2 
presents the motivation for this work. Section 3 discusses related 
work.  Sections 4, 5, and 6 describe the effects of scheduling, 
operation chaining, and register allocation optimizations 
implemented on FPGA designs that were translated from software 
binaries. Section 7 reports experimental results on ten benchmarks. 
Conclusions and future work are discussed in Section 8. 

2. PROBLEM MOTIVATION 
Consider the example Texas Instruments C6000 DSP processor [3] 
assembly code in Figure 1. The TI DSP processor has eight 
functional units (.L1, .S1, .M1, .D1, etc.), and therefore may 
execute at most eight instructions in parallel. As a result, the 
section of code requires seven cycles to execute. 

A simple translation of this code onto an FPGA by assigning one 
operation per state in an RTL finite state machine would produce 
no cost benefit. In it’s simplest form, the design would require eight 
cycles to complete on an FPGA since there are eight instructions, 
excluding NOPs. Rather, one must explore the parallelism in the 
design through scheduling techniques in order to exploit the 
fine-grain parallelism inherent in the FPGA architecture, thereby 
reducing the number of execution clock cycles. Consequently, very 
little work has been done in analyzing the efficiency of different 
methods of scheduling and operation chaining in FPGA designs. 
Likewise, the impact of register allocation after such scheduling 
techniques requires investigation as well. 

 
       MV    .L1   A0,A1 
||     MV    .L2   B0,B1 
       MPY   .M1   A1,A2,A3 
||     MPY   .M2   B1,B2,B3 
       NOP         1 
       MPY   .M1   A3,A6,A7 
||     MPY   .M2   B3,B6,B7 
       NOP         1 
       ADD   .L1X  A7,B7,A8 
       ADD   .L1   A4,A8,A9 

Figure 1. Example TI C6000 DSP Processor assembly code. 

3. RELATED WORK 
The problem of translating a high-level or behavioral language 
description into a register transfer level (RTL) representation is 
called high-level synthesis [1]. In contrast to traditional behavioral 
synthesis tools that automatically generate RTL HDL from a 
behavioral description of an application in a language such as 
C/C++ or MATLAB, our compiler translates software binaries and 
assembly language codes into RTL HDL for mapping onto FPGAs. 

Stitt and Vahid [11,12] have reported work on hardware-software 
partitioning of binary codes. CriticalBlue [13] has recently 
announced the Cascade Tool that synthesizes a hardware 
co-processor specifically designed to accelerate software tasks 
selected by the user.   

Scheduling is a very important problem in behavioral synthesis. 
For a given data flow graph, scheduling determines the 
concurrency of the resulting implementation by assigning 
operations in a CDFG to specific cycles assuming either 
constrained or unconstrained resources. Numerous algorithms for 
scheduling have been developed over the years by various 
researchers [1]. Some example scheduling algorithms are 

As-Soon-As-Possible (ASAP), As-Late-As-Possible (ALAP), 
various versions of list scheduling, force directed scheduling, and 
scheduling based on integer linear programming [1]. We study the 
use of resource constrained and unconstrained ASAP and ALAP 
algorithm in this paper within the context of scheduling software 
binaries to FPGAs. 

Regardless of the scheduling routine performed, register allocation 
is an optimization that is generally performed after scheduling to 
minimize the registers in the design. The graph-coloring method, 
adapted by Chaitin et al. [7,8], is a widely used approach to register 
allocation using graph coloring. While graph coloring usually 
results in very effective allocations, it can be very expensive since 
compilers may generate numerous register candidates with 
temporary variables [9]. A simpler and significantly faster 
approach to register allocation is the Linear-Scan method, 
developed by Poletto and Sarkar [10], which is not based on graph 
coloring. Given a range of lifetimes for each variable, the greedy 
algorithm allocates the variables to registers in a single pass. Traub 
et al. [9] have developed a more efficient algorithm based on 
Linear-Scan called Binpacking, which allocates registers and 
rewrites the instruction stream in a single scan, and also makes use 
of lifetime holes in temporary variables. 

While much research has been done in terms of comparing the 
quality of results between different approaches in register 
allocation, many have failed to ascertain the quality of these results 
when implemented on different reconfigurable hardware devices 
that have restrictions in routing. The importance of this research is 
in quantifying the results on FPGAs, which have fixed 
architectures and routing. 

4. SCHEDULING 
The scheduling pass is implemented at the CDFG level after all 
other optimizations. If scheduling were not performed on the 
CDFG, each node operation would be mapped to an independent 
state of an RTL finite state machine, which would produce a very 
costly design in terms of clock cycles. Unlike the DSP processor, 
an FPGA is capable of executing a much larger number of 
operations per cycle, and therefore can benefit from parallel node 
scheduling to optimize the utilization of the FPGA’s resources.  

 
State: s0 
    B1 <= B0 
    A1 <= A0 
    State <= s1 
 
State: s1 
    B3 <= B1[15:0] * B2[15:0] 
    A3 <= A1[15:0] * A2[15:0] 
    State <= s2 
 
State: s2 
    B7 <= B3[15:0] * B6[15:0] 
    A7 <= A3[15:0] * A6[15:0] 
    State <= s3 
 
State: s3 
    A8 <= A7 + B7 
    State <= s4 
 
State: s4 
    A9 <= A4 + A8 
    State <= s5 

 

Figure 2. CDFG and HDL representation of ASAP scheduled 
code in Figure 1. 



 

 

Towards this effort, we implemented two well-known scheduling 
routines, namely As-Soon-As-Possible (ASAP) scheduling and 
As-Late-As-Possible (ALAP) scheduling [1]. The nodes in a basic 
block are scheduled based on a time-step and the operation delay of 
the FPGA’s resource. Figure 2 shows the CDFG and corresponding 
HDL after running ASAP scheduling on the assembly code in 
Figure 1. The MV, ADD and MPY operations, along with its 
destination register, are each represented as Value nodes, while the 
input source registers (A0, A2, A6, etc.) are represented as 
Variable nodes. We assume each Value type operation has a single 
clock cycle delay on the FPGA; Constant and Variable types have 
a delay of zero. The design runs in only five clock cycles, as 
opposed to eight clock cycles without scheduling. 

5. OPERATION CHAINING  
Designs that are run on DSP processors are limited to the 
processor’s architecture in terms of the number of operations that 
may be executed in a single cycle. Conversely, FPGA designs are 
allow the freedom to increase or decrease the number of operations 
executed per state cycle. In addition to operation scheduling 
discussed above, RTL HDL allows one to chain a number of 
operations in sequence within a single state in order to maximize 
the number of operations executed per cycle. The chaining process 
is performed prior to scheduling, and is accomplished by assigning 
the delay on the node operator to zero, effectively making the 
operation instantaneous. The effect of chaining is generally a 
tradeoff between a significant reduction in execution clock cycles 
and area versus larger critical paths and reduced frequencies.  

When chaining RTL HDL operations, one must consider the 
impact on the critical path of the design. Ideally, it is best not to 
chain complex structures, such as multipliers, for they cause a 
significant increase in the critical path and reduction in frequency. 
However, chaining operations also reduces the number of registers, 
which may decrease the design area. One must also consider the 
restrictions imposed by backend synthesis tools, which do not 
allow mixing blocking and non-blocking assignments to the same 
destination operand.  It is therefore necessary for one to first 
determine which nodes are valid for chaining. 

We consider three approaches to chaining: simple chaining, 
complex chaining, and unconstrained chaining.  

In simple chaining, only simple ALU operations are chained. These 
include, but are not limited to logical operations, addition, and 
subtraction. Complex structures, such as multiplication, are 
isolated in separate states so as to reduce the critical path. When 
simple chaining is applied to the CDFG in Figure 2, the first set of 
assignment operations are assigned to the first state; the two sets of 
multiplication operations are isolated in the second and third states; 
the last two addition operations are chained together in the fourth 
state. The resulting design takes four cycles to complete. 

In complex chaining, operations up to and including a single 
complex structure are chained. When considering DSP 
applications, it is more common to find sequences of 
multiply-accumulate operations than accumulate-multiply 
sequences. Consequently, one would expect this approach to 
produce larger critical paths if multipliers were chained with 
successive nodes rather than preceding nodes. When complex 
chaining is applied to the CDFG in Figure 2, the first set of 
assignment and multiplication operations are chained together in 
the first state; the second set of multiplication operations is isolated 

in the second state; the addition operations are chained in the third 
state. The resulting design takes three cycles to complete. 

In unconstrained chaining, all operations are valid for chaining. 
Therefore, all operations in Figure 2 are chained together in a single 
state, and the resulting design takes only a single cycle to complete.  
However, even though the number of clock cycles in this design is 
reduced to one, the critical path delay requires five operations, 
including two multipliers in sequence. Hence, the clock frequency 
of the design will be much lower than that with scheduling alone.  

6. REGISTER ALLOCATION 
Register allocation is an optimization that is performed after 
scheduling to reduce the number of registers. Reducing registers in 
circuit designs generally leads to smaller design size.  Unlike DSP 
processor architectures, FPGAs are not limited to a small, fixed 
number of registers. Since they are capable of handling 
significantly more registers, one does not need to be concerned 
with issues such as memory spilling. However, one must realize 
that the scheduling and chaining of operations affect the number of 
possible register reuses.  One can perform register allocation to 
reduce the number of registers. However, by reusing a small 
number of registers one may require more complex multiplexers in 
front of functional units and longer interconnects.  In this study, 
we want to experimentally evaluate the impact of register 
allocation while mapping software assembly code onto FPGAs. 

Register allocation was implemented on the FREEDOM compiler 
using the Linear-Scan (left-edge) algorithm [10]. We use a simple 
approach that does consider lifetime holes or necessitate memory 
spilling. We assume the nodes in the CDFG are in SSA form, in 
which data dependencies are broken. We also assume an unbound 
number of register resources in the target FPGA, and our task is to 
assign the variable lifetimes to the smallest subset of registers.  

Prior to running the Linear-Scan algorithm, one must determine the 
liveness of each variable, or the time from the variable’s first 
definition until its final use in a CDFG. Our approach for 
calculating the live intervals of registers in a CDFG is as follows: 
The nodes in each basic block are sorted in depth-first order. We 
then iterate through the nodes in each basic block and map a list of 
nodes sharing the same name along with a time interval to the name 
in a register table. Each node that is encountered is added to the 
table under its corresponding name. The lifetime interval is updated 
by comparing its start time with the node’s timestamp, and 
comparing its end time with the timestamp of all successive uses of 
the node. If a variable is used inside a loop and its definition exists 
outside the loop body, the time interval is extended to the loop 
body’s time boundaries. The register table is used in the 
Linear-Scan algorithm by renaming the list of nodes in each 
mapping with a newly allocated register name. The algorithm runs 
in O(V) time, where V is the total number of nodes in the CDFG.   

7. EXPERIMENTAL RESULTS 
This section reports the results of the FREEDOM compiler on a set 
of ten benchmarks from the signal and image processing domains. 
The benchmarks were originally available in C and compiled into 
the TI C6000 assembly code using the Code Composer Studio from 
Texas Instruments. The designs were unrolled several times where 
applicable in order to increase the number of operation nodes. 

The RTL HDL codes generated by the FREEDOM compiler were 
synthesized using the Synplify Pro 7.2 logic synthesis tool from 



 

 

Synplicity and mapped onto Xilinx Virtex II XC2V250 devices. 
Estimated frequencies and area utilization were obtained from 
these synthesis results. The areas of the synthesized designs were 
measured in terms of Look Up Tables (LUTs) for the Xilinx 
FPGAs. The RTL HDL codes were also simulated using the 
ModelSim 5.6 tool from Mentor Graphics. In each case the 
bit-accuracy of the results were confirmed. The clock cycles were 
measured by counting the total number of cycles in the ModelSim 
simulations of each FPGA design. 

Tables 1-2 shows results in terms of final execution times (clock 
cycles / frequency) and area. The first column shows the results of 
the compiler’s base case (B) without scheduling. The use of 
scheduling optimizations facilitates a reduction in the number of 
states (clock cycles) and design area.  The results are apparent 
when comparing the base case (B) and the scheduling alone (B+S); 
frequency results are comparable between the two because the 
critical path has not changed. Consequently, when combining 
scheduling with simple chaining (B+S+SC), complex chaining 
(B+S+CC) and unconstrained chaining (B+S+UC), results show 
increasingly improved performance in clock cycles and design area 
due to reduction in registers. The frequency decreases due to larger 
critical paths, an effect of operation chaining. As expected, most 
cases showed unconstrained chaining producing better results in 
terms of clock cycles and area, while scheduling without chaining 
produced the best frequency results due to smaller critical paths. 

Table 1. Final execution times in � s for Xilinx Virtex II FPGA. 

 B B+S B+S+SC B+S+CC B+S+UC B+S+UC+R 

dot_prod 101.7 52.7 49.6 41.3 39.3 41.1 

iir 238.7 79.1 72.3 65.1 57.9 66.0 

fir16tap 1526.4 462.3 279.5 296.2 296.2 403.7 

fir_cmplx 376.9 53.0 55.3 54.2 54.2 79.3 

matmul  17217.1 3943.0 2948.9 3812.7 3812.7 4272.5 

laplace 589.6 324.6 201.2 201.2 201.2 196.3 

sobel 1069.5 371.8 226.3 226.3 226.3 238.0 

gcd 0.9 0.7 0.4 0.4 0.4 0.4 

ellip 1.9 1.2 0.9 0.9 0.9 0.9 

diffeq 8.8 5.4 3.6 3.3 3.5 4.1 

Table 2. Area results in LUTs for Xilinx Virtex II FPGA. 

 B B+S B+S+SC B+S+CC B+S+UC B+S+UC+R 

dot_prod 1958 1807 1544 1563 1578 3033 

iir 4025 3694 2634 2606 2544 8232 

fir16tap 2813 2426 1938 1922 1880 2899 

fir_cmplx 4361 3740 3324 3295 2873 9013 

matmul  3222 2633 1765 1906 1871 3101 

laplace 6089 5609 3949 3949 3949 10327 

sobel 11582 9531 4379 4379 4379 8629 

gcd 766 673 456 456 456 712 

ellip 3082 3112 2023 2023 2023 2744 

diffeq 3274 2914 2381 2474 2283 5120 

 

The final column (B+S+UC+R) shows the effects of register 
allocation on area and frequency after chaining. It is interesting to 
note that this optimization in fact caused a negative effect in almost 
all designs and in all forms of scheduling; results showed design 
areas increased while frequencies decreased. The effect of register 
reuse causes the backend synthesis tools to insert additional 
multiplexers in order to support the multiple uses of the register 
across different combinational logic blocks. This in fact causes the 
design area, interconnect and the critical path to increase, thus 
affecting the frequency of the design as well. Accordingly, the 

optimal method for FPGA designs would be to use scheduling and 
chaining alone, leaving the design in SSA form by not 
implementing register allocation. 

8. CONCLUSIONS 
The FREEDOM compiler translates DSP algorithms written in the 
assembly language or binary code of a DSP processor into Register 
Transfer Level (RTL) VHDL or Verilog code for FPGAs. This 
paper evaluated a wide range of scheduling, operator chaining and 
register allocation algorithms within the context of the problem of 
translating software binaries to FPGAs using the framework of the 
FREEDOM compiler. 

Experimental results were shown on ten assembly language 
benchmarks from signal processing and image processing domains. 
Results show performance gains on the FPGA designs that used a 
combination of scheduling and chaining with respect to execution 
times and area. Register allocation produced poorer results than 
those designs left in SSA form. 

Future work would include heuristical methods for operation 
chaining in which one would consider a more accurate 
representation of an operation’s delay on the FPGA. 
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