

Evaluation Of Scheduling And Allocation Algorithms
While Mapping Assembly Code Onto FPGAs

David Zaretsky, Gaurav Mittal, Xiaoyong Tang, Prith Banerjee
Northwestern University

Department of Electrical and Computer Engineering
2145 N. Sheridan Road

Evanston, IL 60208-3118

{dcz, mittal, tang, banerjee}@ece.northwestern.edu

ABSTRACT
Migration of software from older general purpose embedded
processors onto newer mixed hardware/software Systems-On-Chip
(SOC) platforms is becoming an increasingly important topic.
Automatic translation of general purpose software binaries and
assembly code onto hardware implementations using FPGAs
require sophisticated scheduling and allocation algorithms to
maximize the resource utilization of such hardware devices. This
paper describes the effects of scheduling and chaining of node
operations in a CDFG onto an FPGA. The effects of register
allocation on scheduled nodes are also discussed. The Texas
Instruments C6000 DSP processor architecture was chosen as the
DSP processor platform and assembly code, and the Xilinx Virtex
II XC2V250 was chosen as the target FPGA. Results are reported
on ten benchmarks, which show that scheduling with chaining
operations produces the best results on FPGAs, while the addition
of register allocation in fact generates poorer designs in terms of
area and frequency.

Categories and Subject Descriptors
B.5.0 [Register-Transfer-Level Implementation]: General.
B.7.1 [Types and Design Styles]: Algorithms implemented in
hardware, Gate Arrays, VLSI (very large scale integration).

General Terms
Algorithms, Performance, Design, Experimentation, Verification.

Keywords
Hardware Synthesis, Optimizations, Scheduling, Chaining,
Compilers, Binary Translation, FPGAs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GLSVLSI’04, APRIL 26-28, 2004, BOSTON, MASSACHUSETTS, USA

COPYRIGHT 2004 ACM 1-58113-853-9/04/0004...$5.00.

1. INTRODUCTION
Recent advances in embedded communications and control
systems for personal and vehicular environments are driving
efficient hardware and software implementations of complete
systems-on-chip (SOC). These applications require digital signal
processing (DSP) functions that are typically mapped onto
general-purpose DSP processors, such as the Texas Instruments
C6000 [3] and the Motorola 56600. However, it is widely believed
that such processors will be unable to support the computational
requirements of future DSP applications. It is therefore desirable to
migrate fragments of code or functions to a hardware
implementation on FPGAs. The benefit of migrating to such
devices is in utilizing its inherent parallelism via scheduling more
computations per cycle than possible on a DSP processor. Towards
this effort, we developed the FREEDOM compiler, which
automatically translates software binaries targeted for general DSP
processors into Register Transfer Level (RTL) VHDL or Verilog
code to be mapped onto commercial FPGAs. The designs are
optimized and scheduled to achieve maximum utilization of the
FPGA’s resources.

The classical high-level synthesis problem is one of transforming a
behavioral model in a high-level application into a set of
multi-cycle operations, which have been scheduled for optimal
performance. It is common for one to explore alternate methods
of scheduling to improve the performance of the design. In doing
so, we attempt to exploit the parallelism in the design as much as
possible for implementations on FPGAs. Operation chaining is a
technique that is most effective, in which the result of the operation
is used immediately rather than being stored in a register until the
next cycle. Register allocation is another optimization that
complements scheduling by reducing the number of registers in a
design. The number of possible register reuses is dependant upon
the type of scheduling routine that is implemented.

The problem of translating software binaries and assembly to
FPGAs is interesting because assembly code consists of scheduled
instructions on a fixed processor architecture having a fixed
number of functional units and registers, and loads and stores of
variables from external memory. It is quite challenging to translate
these prescheduled list of instructions onto commercial FPGAs,
where one can exploit a great deal of parallelism using a much
larger number of functional units, embedded multipliers, registers
and on-chip embedded memories. The contribution of this paper is
in evaluating a wide range of scheduling, operator chaining and

register allocation algorithms within the context of the problem of
translating software assembly to FPGAs.

The remainder of the paper is organized as follows: Section 2
presents the motivation for this work. Section 3 discusses related
work. Sections 4, 5, and 6 describe the effects of scheduling,
operation chaining, and register allocation optimizations
implemented on FPGA designs that were translated from software
binaries. Section 7 reports experimental results on ten benchmarks.
Conclusions and future work are discussed in Section 8.

2. PROBLEM MOTIVATION
Consider the example Texas Instruments C6000 DSP processor [3]
assembly code in Figure 1. The TI DSP processor has eight
functional units (.L1, .S1, .M1, .D1, etc.), and therefore may
execute at most eight instructions in parallel. As a result, the
section of code requires seven cycles to execute.

A simple translation of this code onto an FPGA by assigning one
operation per state in an RTL finite state machine would produce
no cost benefit. In it’s simplest form, the design would require eight
cycles to complete on an FPGA since there are eight instructions,
excluding NOPs. Rather, one must explore the parallelism in the
design through scheduling techniques in order to exploit the
fine-grain parallelism inherent in the FPGA architecture, thereby
reducing the number of execution clock cycles. Consequently, very
little work has been done in analyzing the efficiency of different
methods of scheduling and operation chaining in FPGA designs.
Likewise, the impact of register allocation after such scheduling
techniques requires investigation as well.

 MV .L1 A0,A1
|| MV .L2 B0,B1
 MPY .M1 A1,A2,A3
|| MPY .M2 B1,B2,B3
 NOP 1
 MPY .M1 A3,A6,A7
|| MPY .M2 B3,B6,B7
 NOP 1
 ADD .L1X A7,B7,A8
 ADD .L1 A4,A8,A9

Figure 1. Example TI C6000 DSP Processor assembly code.

3. RELATED WORK
The problem of translating a high-level or behavioral language
description into a register transfer level (RTL) representation is
called high-level synthesis [1]. In contrast to traditional behavioral
synthesis tools that automatically generate RTL HDL from a
behavioral description of an application in a language such as
C/C++ or MATLAB, our compiler translates software binaries and
assembly language codes into RTL HDL for mapping onto FPGAs.

Stitt and Vahid [11,12] have reported work on hardware-software
partitioning of binary codes. CriticalBlue [13] has recently
announced the Cascade Tool that synthesizes a hardware
co-processor specifically designed to accelerate software tasks
selected by the user.

Scheduling is a very important problem in behavioral synthesis.
For a given data flow graph, scheduling determines the
concurrency of the resulting implementation by assigning
operations in a CDFG to specific cycles assuming either
constrained or unconstrained resources. Numerous algorithms for
scheduling have been developed over the years by various
researchers [1]. Some example scheduling algorithms are

As-Soon-As-Possible (ASAP), As-Late-As-Possible (ALAP),
various versions of list scheduling, force directed scheduling, and
scheduling based on integer linear programming [1]. We study the
use of resource constrained and unconstrained ASAP and ALAP
algorithm in this paper within the context of scheduling software
binaries to FPGAs.

Regardless of the scheduling routine performed, register allocation
is an optimization that is generally performed after scheduling to
minimize the registers in the design. The graph-coloring method,
adapted by Chaitin et al. [7,8], is a widely used approach to register
allocation using graph coloring. While graph coloring usually
results in very effective allocations, it can be very expensive since
compilers may generate numerous register candidates with
temporary variables [9]. A simpler and significantly faster
approach to register allocation is the Linear-Scan method,
developed by Poletto and Sarkar [10], which is not based on graph
coloring. Given a range of lifetimes for each variable, the greedy
algorithm allocates the variables to registers in a single pass. Traub
et al. [9] have developed a more efficient algorithm based on
Linear-Scan called Binpacking, which allocates registers and
rewrites the instruction stream in a single scan, and also makes use
of lifetime holes in temporary variables.

While much research has been done in terms of comparing the
quality of results between different approaches in register
allocation, many have failed to ascertain the quality of these results
when implemented on different reconfigurable hardware devices
that have restrictions in routing. The importance of this research is
in quantifying the results on FPGAs, which have fixed
architectures and routing.

4. SCHEDULING
The scheduling pass is implemented at the CDFG level after all
other optimizations. If scheduling were not performed on the
CDFG, each node operation would be mapped to an independent
state of an RTL finite state machine, which would produce a very
costly design in terms of clock cycles. Unlike the DSP processor,
an FPGA is capable of executing a much larger number of
operations per cycle, and therefore can benefit from parallel node
scheduling to optimize the utilization of the FPGA’s resources.

State: s0
 B1 <= B0
 A1 <= A0
 State <= s1

State: s1
 B3 <= B1[15:0] * B2[15:0]
 A3 <= A1[15:0] * A2[15:0]
 State <= s2

State: s2
 B7 <= B3[15:0] * B6[15:0]
 A7 <= A3[15:0] * A6[15:0]
 State <= s3

State: s3
 A8 <= A7 + B7
 State <= s4

State: s4
 A9 <= A4 + A8
 State <= s5

Figure 2. CDFG and HDL representation of ASAP scheduled
code in Figure 1.

Towards this effort, we implemented two well-known scheduling
routines, namely As-Soon-As-Possible (ASAP) scheduling and
As-Late-As-Possible (ALAP) scheduling [1]. The nodes in a basic
block are scheduled based on a time-step and the operation delay of
the FPGA’s resource. Figure 2 shows the CDFG and corresponding
HDL after running ASAP scheduling on the assembly code in
Figure 1. The MV, ADD and MPY operations, along with its
destination register, are each represented as Value nodes, while the
input source registers (A0, A2, A6, etc.) are represented as
Variable nodes. We assume each Value type operation has a single
clock cycle delay on the FPGA; Constant and Variable types have
a delay of zero. The design runs in only five clock cycles, as
opposed to eight clock cycles without scheduling.

5. OPERATION CHAINING
Designs that are run on DSP processors are limited to the
processor’s architecture in terms of the number of operations that
may be executed in a single cycle. Conversely, FPGA designs are
allow the freedom to increase or decrease the number of operations
executed per state cycle. In addition to operation scheduling
discussed above, RTL HDL allows one to chain a number of
operations in sequence within a single state in order to maximize
the number of operations executed per cycle. The chaining process
is performed prior to scheduling, and is accomplished by assigning
the delay on the node operator to zero, effectively making the
operation instantaneous. The effect of chaining is generally a
tradeoff between a significant reduction in execution clock cycles
and area versus larger critical paths and reduced frequencies.

When chaining RTL HDL operations, one must consider the
impact on the critical path of the design. Ideally, it is best not to
chain complex structures, such as multipliers, for they cause a
significant increase in the critical path and reduction in frequency.
However, chaining operations also reduces the number of registers,
which may decrease the design area. One must also consider the
restrictions imposed by backend synthesis tools, which do not
allow mixing blocking and non-blocking assignments to the same
destination operand. It is therefore necessary for one to first
determine which nodes are valid for chaining.

We consider three approaches to chaining: simple chaining,
complex chaining, and unconstrained chaining.

In simple chaining, only simple ALU operations are chained. These
include, but are not limited to logical operations, addition, and
subtraction. Complex structures, such as multiplication, are
isolated in separate states so as to reduce the critical path. When
simple chaining is applied to the CDFG in Figure 2, the first set of
assignment operations are assigned to the first state; the two sets of
multiplication operations are isolated in the second and third states;
the last two addition operations are chained together in the fourth
state. The resulting design takes four cycles to complete.

In complex chaining, operations up to and including a single
complex structure are chained. When considering DSP
applications, it is more common to find sequences of
multiply-accumulate operations than accumulate-multiply
sequences. Consequently, one would expect this approach to
produce larger critical paths if multipliers were chained with
successive nodes rather than preceding nodes. When complex
chaining is applied to the CDFG in Figure 2, the first set of
assignment and multiplication operations are chained together in
the first state; the second set of multiplication operations is isolated

in the second state; the addition operations are chained in the third
state. The resulting design takes three cycles to complete.

In unconstrained chaining, all operations are valid for chaining.
Therefore, all operations in Figure 2 are chained together in a single
state, and the resulting design takes only a single cycle to complete.
However, even though the number of clock cycles in this design is
reduced to one, the critical path delay requires five operations,
including two multipliers in sequence. Hence, the clock frequency
of the design will be much lower than that with scheduling alone.

6. REGISTER ALLOCATION
Register allocation is an optimization that is performed after
scheduling to reduce the number of registers. Reducing registers in
circuit designs generally leads to smaller design size. Unlike DSP
processor architectures, FPGAs are not limited to a small, fixed
number of registers. Since they are capable of handling
significantly more registers, one does not need to be concerned
with issues such as memory spilling. However, one must realize
that the scheduling and chaining of operations affect the number of
possible register reuses. One can perform register allocation to
reduce the number of registers. However, by reusing a small
number of registers one may require more complex multiplexers in
front of functional units and longer interconnects. In this study,
we want to experimentally evaluate the impact of register
allocation while mapping software assembly code onto FPGAs.

Register allocation was implemented on the FREEDOM compiler
using the Linear-Scan (left-edge) algorithm [10]. We use a simple
approach that does consider lifetime holes or necessitate memory
spilling. We assume the nodes in the CDFG are in SSA form, in
which data dependencies are broken. We also assume an unbound
number of register resources in the target FPGA, and our task is to
assign the variable lifetimes to the smallest subset of registers.

Prior to running the Linear-Scan algorithm, one must determine the
liveness of each variable, or the time from the variable’s first
definition until its final use in a CDFG. Our approach for
calculating the live intervals of registers in a CDFG is as follows:
The nodes in each basic block are sorted in depth-first order. We
then iterate through the nodes in each basic block and map a list of
nodes sharing the same name along with a time interval to the name
in a register table. Each node that is encountered is added to the
table under its corresponding name. The lifetime interval is updated
by comparing its start time with the node’s timestamp, and
comparing its end time with the timestamp of all successive uses of
the node. If a variable is used inside a loop and its definition exists
outside the loop body, the time interval is extended to the loop
body’s time boundaries. The register table is used in the
Linear-Scan algorithm by renaming the list of nodes in each
mapping with a newly allocated register name. The algorithm runs
in O(V) time, where V is the total number of nodes in the CDFG.

7. EXPERIMENTAL RESULTS
This section reports the results of the FREEDOM compiler on a set
of ten benchmarks from the signal and image processing domains.
The benchmarks were originally available in C and compiled into
the TI C6000 assembly code using the Code Composer Studio from
Texas Instruments. The designs were unrolled several times where
applicable in order to increase the number of operation nodes.

The RTL HDL codes generated by the FREEDOM compiler were
synthesized using the Synplify Pro 7.2 logic synthesis tool from

Synplicity and mapped onto Xilinx Virtex II XC2V250 devices.
Estimated frequencies and area utilization were obtained from
these synthesis results. The areas of the synthesized designs were
measured in terms of Look Up Tables (LUTs) for the Xilinx
FPGAs. The RTL HDL codes were also simulated using the
ModelSim 5.6 tool from Mentor Graphics. In each case the
bit-accuracy of the results were confirmed. The clock cycles were
measured by counting the total number of cycles in the ModelSim
simulations of each FPGA design.

Tables 1-2 shows results in terms of final execution times (clock
cycles / frequency) and area. The first column shows the results of
the compiler’s base case (B) without scheduling. The use of
scheduling optimizations facilitates a reduction in the number of
states (clock cycles) and design area. The results are apparent
when comparing the base case (B) and the scheduling alone (B+S);
frequency results are comparable between the two because the
critical path has not changed. Consequently, when combining
scheduling with simple chaining (B+S+SC), complex chaining
(B+S+CC) and unconstrained chaining (B+S+UC), results show
increasingly improved performance in clock cycles and design area
due to reduction in registers. The frequency decreases due to larger
critical paths, an effect of operation chaining. As expected, most
cases showed unconstrained chaining producing better results in
terms of clock cycles and area, while scheduling without chaining
produced the best frequency results due to smaller critical paths.

Table 1. Final execution times in � s for Xilinx Virtex II FPGA.

 B B+S B+S+SC B+S+CC B+S+UC B+S+UC+R

dot_prod 101.7 52.7 49.6 41.3 39.3 41.1

iir 238.7 79.1 72.3 65.1 57.9 66.0

fir16tap 1526.4 462.3 279.5 296.2 296.2 403.7

fir_cmplx 376.9 53.0 55.3 54.2 54.2 79.3

matmul 17217.1 3943.0 2948.9 3812.7 3812.7 4272.5

laplace 589.6 324.6 201.2 201.2 201.2 196.3

sobel 1069.5 371.8 226.3 226.3 226.3 238.0

gcd 0.9 0.7 0.4 0.4 0.4 0.4

ellip 1.9 1.2 0.9 0.9 0.9 0.9

diffeq 8.8 5.4 3.6 3.3 3.5 4.1

Table 2. Area results in LUTs for Xilinx Virtex II FPGA.

 B B+S B+S+SC B+S+CC B+S+UC B+S+UC+R

dot_prod 1958 1807 1544 1563 1578 3033

iir 4025 3694 2634 2606 2544 8232

fir16tap 2813 2426 1938 1922 1880 2899

fir_cmplx 4361 3740 3324 3295 2873 9013

matmul 3222 2633 1765 1906 1871 3101

laplace 6089 5609 3949 3949 3949 10327

sobel 11582 9531 4379 4379 4379 8629

gcd 766 673 456 456 456 712

ellip 3082 3112 2023 2023 2023 2744

diffeq 3274 2914 2381 2474 2283 5120

The final column (B+S+UC+R) shows the effects of register
allocation on area and frequency after chaining. It is interesting to
note that this optimization in fact caused a negative effect in almost
all designs and in all forms of scheduling; results showed design
areas increased while frequencies decreased. The effect of register
reuse causes the backend synthesis tools to insert additional
multiplexers in order to support the multiple uses of the register
across different combinational logic blocks. This in fact causes the
design area, interconnect and the critical path to increase, thus
affecting the frequency of the design as well. Accordingly, the

optimal method for FPGA designs would be to use scheduling and
chaining alone, leaving the design in SSA form by not
implementing register allocation.

8. CONCLUSIONS
The FREEDOM compiler translates DSP algorithms written in the
assembly language or binary code of a DSP processor into Register
Transfer Level (RTL) VHDL or Verilog code for FPGAs. This
paper evaluated a wide range of scheduling, operator chaining and
register allocation algorithms within the context of the problem of
translating software binaries to FPGAs using the framework of the
FREEDOM compiler.

Experimental results were shown on ten assembly language
benchmarks from signal processing and image processing domains.
Results show performance gains on the FPGA designs that used a
combination of scheduling and chaining with respect to execution
times and area. Register allocation produced poorer results than
those designs left in SSA form.

Future work would include heuristical methods for operation
chaining in which one would consider a more accurate
representation of an operation’s delay on the FPGA.

9. REFERENCES
[1] G. DeMicheli, Synthesis and Optimization of Digital Circuits,

McGraw Hill, 1994.

[2] Steven S. Muchnick. Advanced Compiler Design
Implementation. Morgan Kaufmann, San Francisco, CA.

[3] Texas Instruments, TMS320C6000 Architecture Description,
www.ti.com

[4] N. Ramsey, and M.F. Fernandez, “Specifying Representations
of Machine Instructions”, ACM Transactions on
Programming Languages and Systems, May 1997.

[5] N. Ramsey, and M.F. Fernandez, “New Jersey Machine-Code
toolkit”, Proceedings of the 1995 USENIX Technical
Conference, January 1995.

[6] Synplicity. Synplify Pro Datasheet, www.synplicity.com.

[7] G. Chaitin et al., “Register Allocation via Coloring,”
Computer Languages, 6, pp. 47-57, 1981.

[8] G. J. Chaitin, “Register Allocation and Spilling via Graph
Coloring,” SIGPLAN Notices, 17(6):201-107, June 1982.

[9] O. Traub et al., “Quality and Speed in Linear-scan Register
Allocation,” ACM SIGPLAN 1998 Conf. On Programming
Language Design and Implementation, pp. 142-151, June
1998.

[10] M. Poletto and V. Sarkar, “Linear Scan Register Allocation,”
ACM Trans. on Programming Languages and Systems, Vol.
21, No. 5, pp. 895-913, Sept. 1999.

[11] G. Stitt and F. Vahid, “Hardware/Software Partitioning of
Software Binaries,” Proc. Int. Conf. Computer Aided Design
(ICCAD), Santa Clara, CA, Nov. 2002, pp. 164-170.

[12] G. Stitt et al, “Dynamic Hardware/Software Partitioning: A
First Approach,” Proc. Design Automation Conf., Anaheim,
CA, Jun. 2003, pp. 250-255.

[13] CriticalBlue, Cascade Tool Set, www.criticalblue.com

