Hindawi Publishing Corporation

Journal of Control Science and Engineering
Volume 2015, Article ID 502828, 7 pages
http://dx.doi.org/10.1155/2015/502828

Research Article

Hindawi

System Identification of Heat-Transfer Process of
Frequency Induction Furnace for Melting Copper Based on

Particle Swarm Algorithm

Zhi-gang Jia and Xing-xuan Wang

Department of Electronic Engineering, Fudan University, Shanghai 200433, China

Correspondence should be addressed to Zhi-gang Jia; 523562419@qq.com

Received 28 October 2014; Revised 17 February 2015; Accepted 17 February 2015

Academic Editor: Hung-Yuan Chung

Copyright © 2015 Z.-g. Jia and X.-x. Wang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

An adaptive evolutionary strategy in standard particle swarm optimization is introduced. Adaptive evolution particle swarm
optimization is constructed to improve the capacity of global search. A method based on adaptive evolution particle swarm
optimization for identification of continuous system with time delay is proposed. The basic idea is that the identification of
continuous system with time delay is converted to an optimization of continuous nonlinear function. The adaptive evolution particle
swarm optimization is utilized to find an optimal solution of continuous nonlinear function. Convergence conditions are given by
the convergence analysis based on discrete time linear dynamic system theory. Numerical simulation results show that the proposed
method is effective for a general continuous system with time delay and the system of heat-transfer process of frequency induction

furnace for melting copper.

1. Introduction

Frequency induction furnace has been developed into a
kind of smelting equipment widely used. It is composed
of four main parts: furnace body, electrical system, water
cooling system, and hydraulic system [1]. Its power supply
is industrial frequency (50 or 60 Hz) current. The research
object in this paper is a vertical frequency induction fur-
nace in a copper company. After adding raw material,
workers regulate transformer output-voltage so that mate-
rial melts. Copper smelting and heat preservation need
lower transformer output-voltage. The molten copper is
kept in proper temperature. Finally pour the molten copper
(2].

The heat-transfer process in frequency induction furnace
system consists of copper melting process and heat-transfer
process of molten copper to furnace wall. The approximation
of most industrial processes is low-order continuous system.
For the sake of convenience, the approximations of those two
processes are first-order continuous systems, respectively [2].
The following mathematical model can be set up by frequency

induction furnace input voltage and measured data of furnace
wall temperature

B K
C (Tys+ 1) (Tys + 1)

G(s) @

where K, Tj;, and T denote heat-transfer gain, time constant
of the process of copper melting, and time constant of heat-
transfer process of molten copper to furnace wall [2]. But
this industrial process has time delay. Therefore time delay
is introduced to model (1) in literature [1]. The mathematical
model of frequency induction furnace heat-transfer process
is proposed as follows:

K e—Ls
(Tys +1)(Tys + 1)

G(s) = (2)

The controller design of frequency induction furnace heat-

transfer process needs identification of system (2).
Identification methods of second-order system with time

delay in literature [3-6] set up identification model by integral



computation of step response and measured data of input
signal in time domain. Then identify parameters though
Newton-Raphson method and least square method. Methods
in literature [3-6] can only be used for second-order system
with time delay.

The continuous system identification methods based on
particle swarm optimization (PSO) proposed in this paper are
effective for general continuous system with time delay. The
input signal has no limitation.

2. Adaptive Evolution PSO (AEPSO)

2.1. Standard PSO. The particle swarm optimization algo-
rithm is a new evolutionary computation method proposed
by Kenndy and Eberhart in 1995. It is a simulation of
the natural phenomenon of a flock of birds searching for
food. As a key optimization technique, PSO has been used
extensively in many fields, including function optimization,
neutral network, and fuzzy system control [7]. PSO algorithm
belongs to the evolutionary algorithm similar to genetic
algorithm. It starts from the random solutions and searches
for the optimal solution through iteration [8].

In D dimensional solution space, the position of ith
particle can be expressed as a D dimensional vector

Xi=[xn xp x5 -+ xp]. €)
The velocity vector of ith particle is expressed as follows:
Vi=[va v vis =+ vip]. (4)

The position of the optimal solution of ith particle can be
expressed as a D dimensional vector as follows:

P =[py P2 Ps ' Pip]- (5)

The position of the optimal solution of the swarm which has
the maximum fitness value in the swarm can be expressed as
follows:

P, = [Pg1 Pg2 Pgs " Pyp)- (6)
The dynamic range of the particles is as follows:
Xin = [xminl Xmin2 Xmin3 """ xminD] )
Xmax = [xmaxl Xmax2 *max3 """ xmaxD] .

The dynamic range of the velocity of the particles is as follows:

VmaxD] . (8)

f is a real function which is defined in D dimensional space.
The fitness value of ith particle can be expressed as follows:

fitness; = f (X;). )

Vmax = [vmaxl Vmax2 Vmax3 ~°°

Particles’ velocity and position are updated from generation ¢
to t + 1 according to the following equations:
VitJrl =w* Vl.t +¢, * rand; * (Pf - Xf)
(10)
+ ¢, * rand, (P; - Xf)

X=X+ v, (1)

Journal of Control Science and Engineering

where rand, and rand, are random number from 0 to 1. ¢
and ¢, are local learning factor and global learning factor,
respectively. ¢, is larger than ¢, generally. w is inertia weight.

Studies show that the standard PSO algorithm can find
the local optimal solution quickly, but it also can produce
premature convergence phenomenon. Each particle adjusts
its search direction based on individual optimal position
and global optimal position in standard PSO algorithm. But
particles are more and more close to the global optimal
particle along with iteration. Thus particles’ velocity decreases
and tends to zero gradually. So this particle swarm loses
ability to evolve further. The standard PSO is considered to
be convergent at this time. In many cases, the convergence
results do not converge to the global optimal solution, not
even converge to a local optimal solution sometimes [9].

In order to avoid premature convergence phenomenon,
many improved PSO algorithms have been proposed. These
algorithms tend to focus on improving inertia weight w
or introduce special mutation operation to particles [10].
This paper will introduce adaptive inertia weight w(t) and
special mutation operation to the swarm to avoid premature
convergence phenomenon.

2.2. The Introduction of Adaptive Inertia Weight. PSO algo-
rithm which has introduced adaptive inertia weight needs
to do the following modifications. Equation (10) can be
modified as follows:
Vf“ =w(t) * V] +¢ = rand, * (Pf - Xf)
(12)
+ ¢, * rand, * (P; —Xf).

Time-varying inertia weight w(t) has been used in (12).
If a linear decreasing inertia weight w(t) is used in iterative
process, the PSO algorithm has good global search capability
in the beginning and has a good local search ability in the
later stage [11]. A good global search capability makes the
PSO algorithm locate the area around the global optimal
solution quickly in the beginning. The good local search
ability makes the PSO algorithm obtain the global optimal
solution accurately in the later stage. The adaptive inertia
weight can be determined by the following equation in
iteration:
Wpax — @i
w(t) — wmax _ ( maXG mln) % t) (13)
where G is the number of evolution generation. w,,,, and
Wi, are constants. Let adaptive inertia weight w(t) vary in
the range of [w,in> Wmax]- @max and @i, are usually 0.9 and
0.1, respectively, according to experience.

2.3. Mutation Operation. Mutation operation is a natural bio-
logical model of gene mutation induced by various accidental
factors in genetic environment. It takes very small probability
to change the position of the particle randomly. In order
to obtain high quality optimal solution as far as possible,
mutation operation must be taken. Mutation operation plays
an auxiliary role in the genetic algorithm but is a necessary
operation step of genetic algorithm. In this paper, the basic
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mutation strategy of genetic algorithm is introduced to the
standard PSO algorithm [12]. The particles which will do
mutation operation are selected according to the probability.
Then the positions of the selected particles do mutation
operation. The position density distribution model of each
particle is considered to be uniform distribution density
function in this paper [13]

(X)) =~ (14)

max j ~ “*minj

where X;; denotes jth parameter of ith mutation particle.
Then a new particle can have the following representation:

Xi = Xmin + (Xmax - Xmin) * T, (15)
where 7 is a random variable which satisfies uniform distri-
bution in the range of [0, 1].

AEPSO consists of the following steps.

(1) Initialization: generate N particles in D dimensional
solution space which have random position and
velocity vectors.

(2) Fitness evaluation: calculate the fitness value of ith
particle and find out the optimal particle in the
swarm which has the maximum fitness value, i =
1,2,3,...,N.

(3) Updating of particles’ position and velocity: update
the position and velocity of each particle with (12)
and (11), respectively. Check whether the position and
velocity of each particle are out of bounds.

(4) Mutation operation: the positions of particles do
mutation operation with (15).

(5) Comparison of current fitness value of ith particle
f(X;) and individual optimal fitness value of ith
particle f(P):if f(X;) > f(P,), then P, = X;.

(6) Comparison of current fitness value of ith particle
f(X;) and global optimal fitness value of the swarm
f(Py):if f(X;) > f(P,), then P, = X;.

(7) Checking criterion for stopping iteration of algo-
rithm: if the criterion is satisfied, the iteration of the
algorithm is stopped. Otherwise, go to Step 3 and

continue searching for the optimal solution until the
criterion is satisfied.

3. System Identification of General
Continuous System with Time Delay

Consider the general continuous system as follows:

b4 b, T hs by s

gs) = . (16)

n n—1
a,s’ +a, ;S +eeet+as+a

where m < n. The time delay of such a general continuous
system needs approximate processing according to the iden-
tification method of second-order continuous system with

time delay in literature [3]. The time delay can be represented
by Taylor series as follows:

- Ls)?
eL5=1—Ls+%+---. (17)

Now the parameter identification of L becomes very dif-
ficult. After approximate processing, L has high math power.
The form of the general continuous system will become
complicated after multiplication. Parameters of second-order
continuous system with time delay can be identified well by
Newton-Raphson method. But it does not work well for high-
order system. The identification of the general continuous
system can be converted to optimization of nonlinear func-
tion. Then the AEPSO algorithm mentioned in this paper can
be used to solve this optimization problem. The parameters
which need to be identified can be expressed as the following
vector:

0=[b, by - by a, a,y - a L] (18)
The nonlinear function which needs to be optimized can be
expressed as follows:

1(8)=(v-7) (v-7), (19)

where Y is the measured output vector of real system. Y
is calculated output vector of estimation model. The fitness
function f can be expressed as follows:

f= @ (20)

Therefore the parameter identification problem of general
continuous system can be regarded as a standard optimiza-
tion problem, minimization of (19) according to the input and
output sequences. Search for the parameter vector which can
minimize (19) in n + m + 1 dimensional space.

4. Analysis of Convergence

Analyze one element of the parameter vector without loss of
generality:

t+1 t t t
Vij = w * Vl.j + ¢ * rand,; * (P;] —Xl.j)

t t
+¢, * rand, (Pg. —Xi].) (21)
t+1 t t+1
X =X+ V.
Equations (21) can be simplified as follows:

v(t+1)=wv(t)+¢ *rand, = (p; — x (t))

+c * rand2 * (Pg - X (t)) (22)

x(t+1)=x@)+v(t+1).



Equations (22) can be converted into the following discrete
dynamic system:

v(t+1)

= wv(t) - (¢ * rand, + ¢, * rand,)

¢ * rand; * p; + ¢, * rand, * p,
| x (t) —
¢, * rand, + ¢, * rand,

¢ *rand; * p; + ¢, * rand, *
x(t+1)—1 1*Pit G 2% Pg

¢ *rand, + ¢, * rand,

=wv(t) + (1 - (¢ = rand; + ¢, * rand,))

¢ *rand; * p; + ¢, * rand, * Py
. t) — .
*(®) ¢ * rand; + ¢, * rand,
(23)

The individual optimal position of a particle and the global
optimal position of the swarm are usually unchangeable. The
above two equations can be simplified as follows:

v(t+1)=wv(t)—cz(t)
(24)
z+ D =wv(t)+(1-¢c)z(t).

So the above system can be rewritten as a discrete autono-
mous system:

Y(t+1)=AY (t), (25)

where Y (t) = [v(¢) Z(t)]T, A=[vr-].

w l-c
The equilibrium in Lyapunov sense can be obtained by the
following equations:

(I-A)Y,=0. (26)

If det(I — A) = ¢ # 0, there is only one equilibrium.
The characteristic equation of autonomous system can be
expressed as follows:

M-(l-c+w)d+w=0. (27)

Characteristic root is the two following equations:

w+l-c+\(w+1-¢)—-4w

L 2

(28)
wt+l-c—\(w+1-¢)*-4w
2= 5 .

Theorem 1. The sufficient and necessary condition of auton-
omous system (25) converging to the equilibrium state is as

follows:
max {|A,| |A,)} < 1. (29)

Therefore the sufficient and necessary condition can be obtained
as follows:

lw| <1
(30)
0<c<d4.
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FIGURE 1: The results of nonlinear function needing to be optimized
versus Times.

5. Numerical Simulation

5.1. Experiment One. Consider the following third-order
continuous system with time delay. The input signal is
random signal sequence with amplitude of 4:

452 + 65 0.8

453 + 1552 + 1755+ 1

g(s)

There are six parameters needed to be identified. They can be
expressed as the following vector:

O=1[b, b a; a, a; L]. (32)

The settings of identification method based on AEPSO
algorithm are as follows. The identification window s is set
to 1000. The number of particles N = 200. The number of
iteration generations Times = 1000. The local learning factor
¢, = 1.3. The global learning factor ¢, = 1.7. The inertia
weight w decreases form 0.9 to 0.1 with the iteration. The
search range of parameters mentioned above is [0, 20].

The results of the nonlinear function needing to be
optimized are shown in Figure 1.

The error § of parameters estimation can be calculated by
the following equation:

6= M % 100%. (33)
11l
The error § of parameters estimation is shown in Figure 2.
The parameters estimation is shown in Table 1. From
Figures 1-2, we can see that the results of the nonlinear
optimized function and the error of parameters estimation
§ are becoming smaller as Times increases. From Table 1, the
parameters estimation is becoming closer to the true values
with iteration. The identification method based on AEPSO
algorithm is effective for continuous system with time delay
according to the results of experiment one.
Now we will use MATLAB system identification toolbox
to identify that system, because the MATLAB identification



Journal of Control Science and Engineering

0.7

0.6 +

0.5

0 200 400 600 800 1000

Times

FIGURE 2: The error § of parameters estimation versus Times.

TABLE 1: Estimation of parameters.

Times b, b, a, a, a, L 5(%)
1 43001 3.6775 4.7041 15.8040 4.4133 0.8062 54.46
100 3.9306 3.0649 3.8284 12.0910 9.8059 0.8043 35.67
200 3.6863 3.2186 3.6900 11.7114 10.7010 0.8015 32.91
300 3.6091 3.3414 3.6158 11.6022 10.7973 0.8000 32.62
400 29136 4.1961 2.9262 10.7083 12.8079 0.8003 27.70
500 2.5226 5.4856 2.5382 10.9166 15.6515 0.7986 20.28
600 2.6645 5.7444 2.6757 11.5040 16.3083 0.7994 16.95
700 3.7783 6.0790 3.7766 14.5121 17.5467 0.7996 2.40
800 3.9280 6.0538 3.9294 14.8759 17.6169 0.8000 0.84
900 3.9867 6.0446 3.9872 15.0075 17.6055 0.8000 0.47
1000 3.9997 6.0106 4.0000 15.0090 17.5290 0.8000 0.14

True
value

6 4 15 175 0.8

toolbox identifies process system by fitting the transfer
function of process system. But due to the limitation of
MATLAB identification toolbox, it can identify the process
system model as follows:

K(1+Tzx*s)

—Td=xs
(1 + (20 * Tw) s + (Tw)zsz) (1+Tp = s)e

(34)

The process system transfer function obtained by MAT-
LAB system identification toolbox can be shown as follows:

5.78 x 10%s + 0.005793

0001825 (35)
2.9495% + 9.687s% + 16.66s + 1

It can be obviously seen that the transfer function
obtained by MATLAB system identification toolbox is com-
pletely wrong. The parameters which we need cannot be
identified efficiently by the identification toolbox. So we can
draw the conclusion that identification algorithm mentioned
in this paper is more effective than traditional identification
toolbox on identification of nonlinear system.

Best |

100 150 200

Times

FIGURE 3: The results of nonlinear function needing to be optimized
versus Times.

5.2. Experiment Two. Identify a second-order system which
is similar to the heat-transfer system of frequency induction
furnace. The second-order continuous system with time delay
is as follows. The input signal is unit step signal

6 —4s

GO = GrD@n+ D’

(36)
There are four parameters needed to be identified. They
can be expressed as the following vector:

0=[K T, T, L]. (37)

The settings of identification method based on AEPSO
algorithm are as follows. The identification window s is set
to 1000. The number of particles N = 100. The number of
iteration generations Times = 200. The local learning factor
¢ = 1.3. The global learning factor ¢, = 1.7. The inertia
weight w decreases form 0.9 to 0.1 with the iteration. The
search range of parameters mentioned above is [0, 30].

The results of the nonlinear optimized function and the
error § of parameters estimation are shown in Figures 3 and
4, respectively.

The parameters estimation of the second-order system
with iteration is shown in Table 2.

From Table 2, we can see that the step response of contin-
uous system can be used to identify the system. The proposed
identification method in this paper has no restrictions on
input signal.

Now we will identify that system by MATLAB system
identification toolbox. Fit the following transfer function
model:

K e—Td*s
(1+Tp, xs)(L+Tp, =s)

(38)

The transfer function obtained by MATLAB system
identification toolbox can be shown as follows:
5.9902
(1 +19.9651s) (1 + 5.9793s)

—4.9955s

(39)
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FIGURE 4: The error § of parameters estimation versus Times.
TABLE 2: Estimation of parameters.
Times K T, T, L 6 (%)
1 6.0794 51238 17.8664 6.3655 14.96
20 5.9288 6.1143 17.8270 5.1525 1115
40 6.0121 6.5824 20.1386 3.5830 3.30
60 6.0044 6.2609 19.8547 3.8584 1.50
80 5.9985 6.2603 19.8246 3.8509 1.57
100 5.9962 6.2567 19.8341 3.8470 1.55
120 6.0000 6.0510 19.9795 3.9592 0.31
140 6.0000 6.0381 19.9858 3.9694 0.23
160 5.9998 5.9995 19.9996 3.9979 0.01
180 5.9999 6.0057 19.9969 3.9968 0.03
200 6.0000 6.0040 19.9973 3.9978 0.02
True value 6 6 20 4

The error § of parameters estimated by the identification
method mentioned by this paper is 0.02%. The error §; of
parameters obtained by MATLAB identification toolbox is
4.51%. Because of § < &, the method mentioned in this paper
is obviously superior to the system identification toolbox. In
order to observe this kind of superiority more directly, the
step response of the system transfer function identified by the
mentioned method in this paper and MATLAB identification
toolbox can be painted in Figure 5.

The step responses of transfer function obtained by
different methods are painted in Figure 5. The blue circles
represent step response of system identified by MATLAB
identification toolbox. The green solid line represents step
response of system identified by method mentioned in this
paper. The red rectangles represent step response of the
original system. The system transfer function obtained by
system identification toolbox in MATLAB is very accurate
and bestfits has reached 95.22%. But by comparison of the
error of parameter estimated and step response in Figure 5,
we can draw the conclusion that the identification method
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FIGURE 5: The step response of the system transfer function
identified.

mentioned in this paper is more effective than traditional
methods.

6. Conclusion

The paper discusses how to identify the heat-transfer process
system of frequency induction furnace. An identification
method of general continuous system with time delay based
on AEPSO algorithm has been proposed. Experiment one
demonstrates the proposed identification method’s effec-
tiveness for general continuous system. Experiment two
shows that the heat-transfer process system of frequency
induction system can be identified by the proposed method.
The proposed method has advantage over the method in
literature [3-6]. There are no special restrictions on the input
signal. Through the comparison experiment with traditional
MATLAB identification toolbox, we can see that the proposed
method is more effective.
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