
LANGEVIN MOLECULAR DYNAMICS DERIVED FROM EHRENFEST
DYNAMICS

ANDERS SZEPESSY

Abstract. Stochastic Langevin molecular dynamics for nuclei is derived from the Ehrenfest

Hamiltonian system (also called quantum classical molecular dynamics) in a Kac-Zwanzig
setting, with the initial data for the electrons stochastically perturbed from the ground state

and the ratio, M , of nuclei and electron mass tending to infinity. The Ehrenfest nuclei dy-

namics is approximated by the Langevin dynamics with accuracy o(M−1/2) on bounded time

intervals and by o(1) on unbounded time intervals, which makes the small O(M−1/2) friction

and o(M−1/2) diffusion terms visible. The initial electron probability distribution is a Gibbs

density at low temperture, derived by a stability and consistency argument: starting with any
equilibrium measure of the Ehrenfest Hamiltonian system, the initial electron distribution is

sampled from the equilibrium measure conditioned on the nuclei positions, which after long

time leads to the nuclei positions in a Gibbs distribution (i.e. asymptotic stability); by con-
sistency the original equilibrium measure is then a Gibbs measure. The diffusion and friction

coefficients in the Langevin equation satisfy the Einstein’s fluctuation-dissipation relation.
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1. Introduction to Ab Initio Molecular Dynamics

One method to simulate molecular motion is to use quantum classical molecular dynamics
(QCMD), also called Ehrenfest dynamics, where the nuclear positions Xn : [0,∞) → R3, n =
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1, . . . , N and the electron wave function ψ̄ : [0,∞)× R3J → C solve the Hamiltonian system

MẌt
n = −〈ψ̄t, ∂XnH(Xt)ψ̄t〉,(1.1)

i
d

dt
ψ̄t = H(Xt)ψ̄t,(1.2)

see [26], [17]. The wave function belongs to a Hilbert space with inner product 〈·, ·〉 and the
operator H(X) is self-adjoint in that Hilbert space. In computational chemistry the operator H,
the electron Hamiltonian, is precisely determined by the sum of kinetic energy of the electrons
and the Coulomb interaction between nuclei and electrons; the Hilbert space is then a subset of
L2(R3J) with symmetry conditions based on the Pauli exclusion principle for electrons, see [25],
[4]. Therefore the complex valued L2 inner product

〈ψ̄,H(X)ψ̄〉 :=
∫

R3J
ψ̄(x1, . . . , xJ)∗H(X)ψ̄(x1, . . . , xJ)dx1 . . . dxJ

is used here. The mass of the nuclei, which are much greater than one (electron mass), are the
diagonal elements in the diagonal matrix M .

The Ehrenfest dynamics (1.1-1.2) is a Hamiltonian system with the Hamiltonian

M−1 |p|2

2
+

1
2
〈φ,Hφ〉 =: HE

in the real variable
(
(X,φr), (p, φi)

)
=: (rE , pE), where p = MẊ,

(1.3) φ =: φr + iφi is the decomposition into real φr and imaginary φi parts,

〈φ, φ〉 = 2 and ψ̄ := φ/〈φ, φ〉1/2; the normalization φ/〈φ, φ〉1/2 is possible since the Schrödinger
equation (1.2) is linear and the norm 〈φt, φt〉 remains constant in time. Conequently, the Ehren-
fest dynamics conserves the energy HE . The superscript t denotes the time variable Xt := X(t),
in the fast electron dynamics time scale.

The Ehrenfest dynamics can be derived from the time-independent Schrödinger equation for
the full nuclei-electron system, see [27], and from the time-dependent Schrödinger equation, cf.
[3, 26]. The work [29] describes with examples some of the weaknesses and strengths of the
Ehrenfest approximation.

The Ehrenfest dynamics can be coarse-grained by eliminating the electron dynamics and
assuming the electron wave function is in its ground state Ψ0, satisfying the eigenvalue prob-
lem H(X)Ψ0(X) = λ0(X)Ψ0(X) for the lowest eigenvalue λ0(X), which reduces the Ehrenfest
dynamics (1.1)-(1.2) to so called Born-Oppenheimer dynamics [26]

MẌt
BO = −∂Xλ0(Xt

BO).

The large mass M � 1 together with the bounded forces ∂Xλ0(Xt
BO) ∼ 1 make the dynamics

slow and position increments are better studied in the slower time scale, where τ := M−1/2t and
τ̂ := M1/2τ = t,

d2

dτ2
X τ̂
BO = −∂Xλ0(X τ̂

BO),

since this dynamics does not depend on M ; we will use greek letters τ, σ, . . . to denote time in
the slow scale and latin letters t, s, . . . for time in the fast scale. The Born-Oppenheimer approx-
imation leads to accurate approximation of observables for the time-independent Schrödinger
equation, (

− (2M)−1∆X +H(X)
)
Φ(X, ·) = E Φ(X, ·),
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in the case electron eigenvalues do not cross:

(1.4) |
∫

R3N
g(X)〈Φ(X, ·),Φ(X, ·)〉dX −

∫
R3N

g(X)ρBO(dX)| = O(M−1)

for smooth functions g, see [27]. We use the big O and little o notation for

h(M) = O
(
f(M)

)
⇐⇒ ∃ C,M0 ∈ R such that |h(M)| ≤ Cf(M) for M > M0,

h(M) = o
(
f(M)

)
⇐⇒ lim

M→∞

h(M)
f(M)

= 0.

The first integral in (1.4) is the quantum mechanical measure of the nuclei-position observable
g(X) and

∫
R3N g(X)ρBO(dX) is the the micro canonical ensemble average of g(XBO), which

would be equal to limT→∞ T −1
∫ T

0
g(Xt

BO)dt if XBO would be ergodic. The two densities are
normalized so that

1 =
∫

R3N
〈Φ(X, ·),Φ(X, ·)〉dX =

∫
R3N

ρBO(dX).

The same result holds for the Ehrenfest dynamics replacing the Born-Oppenheimer dynamics;
however, this accuracy requires to know the initial electron wave function very precisely. It seems
reasonable to study randomness in the initial data of the electron wave function – the modeling
and accuracy with stochastic electron data ψ̄ in (1.2) is the purpose of this work.

The main inspiration for the stochastic model here is [12]-[11], by Kac, Ford and Mazur,
and in particular [30], where Zwanzig derives a Langevin equation for a heavy particle, from a
Hamiltonian system with the heavy particle coupled through a harmonic interaction potential to
a heat bath particle system. The stochastics enters by having the heat bath degrees of freedom
initially Gibbs distributed at a certain temperature, which after elimination of the heat bath
degrees of freedom yields a generalized Langevin equation for the heavy particle, including an
integral operator for the friction term – a so called memory term. An assumption of a limiting
continuous Debye heat bath frequency distribution and certain linear weak coupling behavior
then reduces the dynamics to a proper Langevin equation, where the integral kernel becomes a
point mass, i.e. an equation without memory terms.

This work shows, in Section 2, that Zwanzig’s model is closely related to the Ehrenfest Hamil-
tonian system and Sections 3-4 extends the ideas in [30] to the ab initio Ehrenfest dynamics (1.1)
for nuclei and the Schrödinger equation (1.2) for electrons (or other light particles). This means
that the electron wave function plays the role of the ”heat bath system”, the stochastics enters
as Gibbs distributed initial data for the electron wave function ψ̄, and the Gibbs measure is
parametrized by temperature. The approximating Langevin dynamics, for the nuclei positions
Xτ
L in the slow time scale, takes the form

Ẋτ
L = pτL
ṗτL = −∂Xλ0(Xτ

L)− K̂pτL + (2T )1/2K̂1/2Ẇ τ ,

at low temperature T � 1, where W is the standard Wiener process in R3N and the positive
3N × 3N friction/diffusion matrix K̂ = K̂(Xτ

L) is a certain small function (of the ground state
Ψ0) of order M−1/2.

The purpose of this work is to study some observables including time-correlation to precisely
determine the friction/diffusion matrix K̂ for the Langevin dynamics. The main idea is to use
the Hamiltonian structure of the Ehrenfest dynamics to formulate and determine stochastic
molecular dynamics in the canonical ensemble of constant number of particles constant volume
and constant temperature. Theorem 3.1 determines a specific friction matrix so that Langevin
dynamics approximates Ehrenfest dynamics for some observables including time-correlation,
in the canonical ensemble when the initial data for the electrons is a temperature dependent
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stochastic perturbation of its ground state; the accuracy is o(M−1/2) on bounded time intervals
(in the slow time scale of nuclei motion), which makes the O(M−1/2) small friction term visible.
Theorem 3.3 shows that the accuracy is o(1) on unbounded time intervals, assuming the time
correlation length, of the first variation of the observable with respect to momentum, is at most
of order M1/2; this result, valid for long time approximation, detects also the o(M−1/2) small
diffusion term. The main assumption for the results is related to the reduction to a point mass for
the integral kernel in the friction term. In contrast to [30] no explicit expression of the frequency
distribution of the coupling is used. Instead it is more generally assumed that the electron
eigenvalues form a continuum in the limit as M,J tend to infinity, so that the zero frequency
limit of the spectral representation of (H − λ0)∂XΨ0(X) exists, in the sense described in (3.13)
based on random matrices. A second assumption is that the `1 norm of the first variation of
the observable is bounded, which restricts the study to observables that are stable in the sense
discussed in Remark 3.2. The results also require the temperature to be low T � 1, all electron
eigenvalues to be separated and H̃ to depend smoothly on X.

The particles with coordinates x, in (1.1)-(1.2), can also be interpreted as a heat bath of
lighter particles consisting of both nuclei and electrons, i.e. not necessarily only of electrons,
so that the Langevin equation (3.18) also describes approximately the dynamics of heavy so
called Brownian particles. Theorems 3.1 and 3.3 therefore contribute to the central problem
in statistical mechanics to show that Hamiltonian dynamics of heavy particles, coupled to a
heat bath of many lighter particles with random initial data, can be approximately described by
Langevin’s equation, cf. [18]. Such heat bath studies initiates from the early pioneering work
[7],[22] and continues with more precise heat bath models, based on harmonic interactions, in
[12, 11] [30]. More recently these models of a heavy particle coupled to a heat bath are also
used for numerical analysis studies related to coarse-graining in molecular dynamics and weak
convergence analysis [28, 20] [16], for strong convergence analysis [2], and for computational
studies on nonlinear heat bath models [6, 19]. Langevin’s equation has also been derived from
a heavy particle colliding with an ideal gas heat bath, where the initial light particle positions
are modeled by a Poisson point process and initial particle velocities are independent Maxwell
distributed; the heavy particle collides elastically with the ideal gas particles and moves uniformly
in between, see [9, 8].

Five new issues here are:

• why shall the electron initial data be Gibbs distributed? If the electron data could have
other distributions it would lead to different results and one would have a problem to
predict the dynamics. Here the initial Gibbs distribution for the electrons is derived
from a stability and consistency argument in Section 2.1 providing the following closure
result: starting with any equilibrium measure of the Ehrenfest Hamiltonian system, the
initial electron distribution is sampled from the equilibrium measure conditioned on the
nuclei positions, which turns out to be a Gibbs density when the ground state energy
dominates and after long time it leads to the nuclei positions in a Gibbs distribution; by
consistency the original equilibrium measure is then a Gibbs measure.

• The slow nuclei dynamics compared to the fast electron dynamics is exploited, to find a
proper Langevin equation without using explicit heat bath frequencies.

• The error analysis uses the residual in the Kolmogorov equation, of the Langevin dynam-
ics, evaluated along the Ehrenfest dynamics, instead of the explicit solution available for
harmonic oscillators.

• A long time result uses exponential decay in time of the first variation of the observable
with respect to perturbations in the momentum.
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• The wave function ψ̄ needs to be normalized, which yields a global coupling of the random
initial data that is studied as a perturbation by an assumption of low temperature.

The two central ideas in deriving Langevin dynamics from coupling to a heat bath – to find the
friction mechanism in the heavy particle coupling to the dynamics of the lighter particles and
to find the diffusion from Gibbs fluctuations in initial data of the light particles – were already
the basis in [12, 11] and [30].

The outline of the paper is the following. Section 2 connects the Ehrenfest system to the
Zwanzig model and presents a uniqueness argument for the stochastic initial data. Section 3
formulates the stochastic data for the Ehrenfest model, including the normalization constraint,
and states the two theorems proved in Section 4.

2. Zwanzig’s Model and Derivation of Langevin Dynamics

This section reviews the heat bath model of Zwanzig [30], with his derivation of stochastic
Langevin dynamics from a Hamiltonian system, related to the earlier work [12]. The model
consists of heavy particles interacting with many light particles which are initially in a Gibbs
distribution; in this sense, it models heavy particles in a heat bath of light particles. A modifi-
cation of the general formulation in [30] is here to choose a special case closely resembling the
Ehrenfest dynamics. The model is as simple as possible to have the desired qualitative properties
of a system interacting with a heat bath.

The aim is to show that the Ehrenfest model is closely related to the Zwanzig model and to
give some understanding of simulating, at constant temperature, the coarse-grained molecular
dynamics of the heavy particles without resolving the lighter particles, using Langevin dynamics.
It is an example how stochastics enter into a coarse-grained model through elimination of some
degrees of freedom in a determinstic model, described by a Hamiltonian system. The original
model is time reversible while the coarse-grained model is not.

We consider Zwanzig’s model in [30] with N heavy particles and the particle positions X ∈
R3N and momentum p ∈ R3N in a heat bath with J light particles modes, with ”position”
coordinate x ∈ RJ and dual ”momentum” coordinate q ∈ RJ . Define, as a special case of
Zwanzig’s general model, the Hamiltonian

(2.1) HZ(X, p, x, q) :=
1
2
|p|2 + λ(X) +

m

2
〈x− Ψ̂(X), Ĥ(x− Ψ̂(X))〉+

1
2m
〈q, Ĥq〉

where the operator Ĥ is a constant positive definite Hermitian J × J matrix, the coupling is
represented by the function Ψ̂ : R3N → RJ , the bilinear form 〈·, ·〉 is now the Euclidian scalar
product in RJ , the light particle mass is m, the heavy particle mass is one and λ : R3N → R3N

is a given potential. This Hamiltonian yields the dynamics (in the slow time scale of the heavy
particles)

Ẍτ = −λ′(Xτ ) + 〈mĤ(x− Ψ̂(Xτ )), Ψ̂′(Xτ )〉,(2.2)

ẋτ = m−1Ĥqτ(2.3)

q̇τ = −mĤ(xτ − Ψ̂(Xτ )),(2.4)

where we use the notation Ψ′0(X) := ∂XΨ0(X). To resemble the Ehrenfest dynamics, we define
y := m−1q and obtain

ẋτ = Ĥyτ

ẏτ = −Ĥ(xτ − Ψ̂(Xτ ))
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which using ψ := x − Ψ̂(X) + iy shows the Zwanzig model written as a Schrödinger equation
coupled to heavy particle dynamics

Ẍτ = −λ′(Xτ ) + <〈mĤΨτ , Ψ̂′(Xτ )〉,

iψ̇τ = Ĥψτ − iΨ̂′(Xτ )Ẋτ ,
(2.5)

where <w denotes the real part of w ∈ C.
Let us compare the Zwanzig model to the Ehrenfest dynamics:

Lemma 2.1. The Ehrenfest dynamics (1.1)-(1.2) can be written in the slow time scale as

Ẍτ = −λ′0(Xτ ) + 2<〈H̃ψ̃τ ,Ψ′0(Xτ )〉 − 〈ψ̃τ , H̃ ′(Xτ )ψ̃τ 〉,

i
˙̃
ψτ = M1/2H̃(Xτ )ψ̃τ − iΨ′0(Xτ ) · Ẋτ ,

(2.6)

using the definitions

HΨ0 = λ0Ψ0, eigenvalue
HE(X,φr; p, φi) := |p|2

2 + λ0(X) + M1/2

2 〈φ, H̃φ〉, Hamiltonian
H̃ := H − λ0, operator splitting
ψ := φ√

φ·φ , M1/2/2 = 1/〈φ, φ〉, normalization
ψ̃ := ψ −Ψ0, wave function splitting,
τ = M−1/2t, slow time scale.

The lemma is proved in Section 3, see references (3.4) and (3.8), by direct application of the
definitions in the lemma. We note that the Zwanzig dynamics (2.5) and the Ehrenfest dynamics
(2.6) are similar and by choosing

Ψ̂(X) = Ψ0(X),

Ĥ = M1/2H̃,

m = 2M−1/2,

λ = λ0,

(2.7)

in the case that H̃ is constant (in the subspace orthogonal to Ψ0), the two models are identical,
since the quadratic interaction −〈ψ, H̃ ′ψ〉 vanishes. We also note that extending the Zwanzig
model (2.1) to a case when the matrix Ĥ : R3N → RJ ×RJ is a function of X yields exactly the
Ehrenfest model (2.6), including the quadratic interaction. We will see that the quadratic term
is negligible for sufficiently low temperature. Consequently, the results for the general Zwanzig
model are relevant for the Ehrenfest model; this section reviews the results from [30] and the
other sections extends them to the Ehrenfest model (with non constant H̃).

It seems reasonable to assume that the many initial positions and velocities of the light
particles are impossible to measure and determine precisely. Clearly, to predict the dynamics of
the heavy particle some information of the light particle initial data is necessary: we shall use
an equilibrium probability distribution for the light particles depending only on one parameter
– the temperature T . Section 2.1 presents a motivation for stochastic sampling of ψ(0) from the
Gibbs probability measure

Z−1 exp
(
−HZ(X0, p0, x, q)/T

)
dx1 . . . dxJdq1 . . . dqJ ,

Z :=
∫

R2J
exp

(
−HZ(X0, p0, x, q)/T

)
dx1 . . . dxJdq1 . . . dqJ .

(2.8)
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The distribution of the initial data ψ(0) = x0− Ψ̂(X0) + iq0/m, using for simplicity Ψ̂(X0) = 0,
becomes clear in an orthonormal basis {Ψj}Jj=1 of eigenvectors to Ĥ, with the corresponding
eigenvalues {λj}Jj=1, since writing ψ(0) =

∑J
j=1 γjΨj implies

m

2
〈ψ0, Ĥψ0〉 =

J∑
j=1

mλj
2
|γj |2 =

J∑
j=1

mλj
2

(|γrj |2 + |γij |2),

so that

(2.9) e−
m
2T 〈ψ

0,Ĥψ0〉dx1 . . . dxJdq1 . . . dqJ = e−
PJ
j=1

mλj
2T (|γjr |

2+|γji |
2)dγr1 . . . dγ

r
Jdγ

i
1 . . . dγ

i
J ,

where it is used that the orthogonal transformation to the coordinates x =
∑
j γ

r
jΨj and q =∑

j γ
i
jΨj has the Jacobian determinant equal to one and γj = γrj + γij is the decomposition into

real and imaginary parts as in (1.3). We conclude that the complex valued γj are all independent
with independent normal N(0, 2T/(mλj)) distributed real and imaginary parts, γjr and γji .

Given the path X, the linear equation (2.4) can by Duhamel’s representation be solved ex-
plicitly, with the solution

ψ(τ) = −
∫ τ

0

e−i(τ−σ)ĤΨ̂′(Xσ)Ẋσdσ + e−iτĤψ(0)︸ ︷︷ ︸
zτ

.(2.10)

Insert this representation into equation (2.2), for the heavy particle, to obtain

(2.11) Ẍτ = −λ′(Xτ )−
∫ τ

0

〈mĤ cos
(
(τ − σ)Ĥ

)
Ψ̂′(Xσ)Ẋσ, Ψ̂′(Xτ )〉dσ + <〈mĤzτ , Ψ̂′(Xτ )〉︸ ︷︷ ︸

ζτ

.

To determine the covariance Eγ [ζσ ⊗ ζτ∗], where Eγ denotes the expected value with respect to
the initial data γ, note that the product of the fluctuation terms(

〈. . .τ 〉+ 〈. . .τ 〉∗
)(
〈. . .σ〉+ 〈. . .σ〉∗

)
,

where 〈. . .τ 〉 := 〈mĤzτ/2,Ψ′(Xτ )〉, yields four terms. This sum of four terms can be written as
follows; use first that the initial data is ψ0 =

∑
j γjΨj , where {γj}j=1J forms a set of independent

normal distributed random variables, and then that {Ψj}Jj=1 is an orthonormal basis to obtain

Eγ [ζσ ⊗ ζτ∗] = Eγ
[1
2
<〈mĤe−iσĤψ0, Ψ̂′(Xσ)〉〈Ψ̂′(Xτ ),mĤe−iτĤψ0〉

]
+ Eγ

[1
2
<〈mĤe−iσĤψ0, Ψ̂′(Xσ)〉〈mĤe−iτĤψ0, Ψ̂′(Xτ )〉

]
' 1

2
<
∑
j,k

〈mλjΨj , e
iσĤΨ̂′(Xσ)〉〈mĤeiτĤΨ̂′(Xτ ),Ψk〉 Eγ [γ∗j γk]︸ ︷︷ ︸

=4Tδjk/(mλj)

+
1
2
<
∑
j,k

〈mλjΨj , e
iσĤΨ̂′(Xσ)〉〈Ψk,mĤe

iτĤΨ̂′(Xτ ), 〉Eγ [γ∗j γ
∗
k ]︸ ︷︷ ︸

=0

= 2T<
∑
j

〈Ψj , e
iσĤΨ̂′(Xσ)〉〈mĤeiτĤΨ̂′(Xτ ),Ψj〉

= 2T 〈mĤ cos
(
(τ − σ)Ĥ

)
Ψ′(Xσ),Ψ′(Xτ )〉;

(2.12)

we have in the second step, where a ' b ⇐⇒ a = b(1 + o(1)), used that X depends on γn in
such a way that the coupling between X and γn leads to lower order terms O(M−1/2), which
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is verified in Lemma 4.1. We see that the covariance of the Gaussian process, ζ : [0,∞) ×
{probability outcomes} → R3N ,

Eγ [ζσ ⊗ ζτ∗] ' 2T 〈mĤ cos
(
(τ − σ)Ĥ

)
Ψ̂′(Xσ), Ψ̂′(Xτ )〉 =: 2Tf(τ − σ),(2.13)

is the multiple 2T of the integral kernel for the friction term in the generalized Langevin equation
(2.11), forming a version of Einstein’s fluctuation-dissipation result.

The next step in Zwanzig’s modeling is to derive a pure Langevin equation for a special choice
of oscillation frequencies Ĥ and coupling Ψ̂. Write Ψ̂′(X) =:

∑J
j=1 Ψ̂′j(X)Ψj to obtain

〈Ĥ cos
(
(τ − σ)Ĥ

)
Ψ̂′(Xσ), Ψ̂′(Xτ )〉 =

∑
j=1

λj cos
(
(τ − σ)λj

)
Ψ̂′j(X

σ)Ψ̂′j(X
τ ).

Assume now that the frequencies λj are distributed so that the sum over particles is in fact an
integral over frequencies with a Debye distribution, i.e. for any continuous function h

(2.14) J−1
J∑
j=1

h(λj)→
∫ λd

0

h(λ)
3λ2

λ3
d

dλ,

and let the coupling between the heavy particle and the heat bath be linear satisfying

(2.15) 3λ3
j∂XiΨ̂j(Xσ)∂XkΨ̂j(Xτ ) = κikJ

−1

to obtain

fik(τ) =
mκik
λ3
d

sin(λdτ)
τ

, as J →∞.

Suppose that πm
2λ3
d
κ→ K̂ as λd →∞, then the integral kernel f(τ) converges weakly to a point

mass, since the change of variables ω = λdτ yields∫ ∞
0

sin(λdτ)
τ

h(τ) dτ =
∫ ∞

0

sinω
ω

h(
ω

λd
)dω →

∫ ∞
0

sinω
ω

dω︸ ︷︷ ︸
π/2

h(0)

which formally leads to the Langevin equation
dXτ = pτ dτ,

dpτ =
(
− λ′(Xτ )− K̂(Xτ )pτ

)
dτ +

√
2TK̂(Xτ ) dW τ ,

(2.16)

as λd → ∞ where W is the standard Wiener process with independent components in R3N

and K̂ is a constant 3N × 3N matrix; Theorems 3.1 and 3.3 verify a related limit carefully for
the Ehrenfest model by giving precise conditions, without using the Debye distribution and the
linear coupling. The relation (2.15) defines κ as a rank one matrix so that K̂ becomes positive
semi-definite.

This Langevin equation satisfies the ergodic limit

lim
T→∞

T −1

∫ T
0

g(Xt, pt) dt =
∫

R6N
g(X, p)µ(dX, dp)

for instance if the invariant measure

µ(dX, dp) =
e−(|p|2/2+λ(X))/T dX dp∫

R6N e−(|p|2/2+λ(X))/T dX dp
,

exists, λ and K̂ are smooth and K̂ has full rank cf. [23]. The assumption of a full rank positive
definite matrix K̂ is hence not satisfied in (2.16), but by considering a slightly perturbed friction
matrix, adding εI, the friction matrix becomes positive definite; we can also add εI, with 0 <
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ε = o(M−1/2), to the friction matrix K in (3.13) and the approximation results in Theorems 3.1
and 3.3 remain valid, i.e. such a small perturbation of K does not affect the convergence result.
The probability measure µ is then also the unique solution of the corresponding Kolmogorov
forward equation and it is the heavy particle marginal distribution of the Gibbs distribution

e−HZ(X,p,x,q)/T dX dp dx dq∫
R6N+2J e−HZ(X,p,x,q)/T dX dp dx dq

in (2.8). We conclude that sampling the light particles from the Gibbs distribution, conditioned
on the heavy particle coordinates, leads time asymptotically to having the heavy particle in the
heavy particle marginal of the Gibbs distribution: this fundamental stability and consistency
property is unique to the Gibbs distribution, as explained in the next subsection.

The purpose of this work is to apply Zwanzig’s derivation to the Ehrenfest model of nuclei
and electrons, acting as heavy and light particles, respectively. As we have seen the two models
are similar and the difference is that the operator H̃ is a function of X in the Ehrenfest model.
To still be in a setting close to the Zwanzig model, we assume therefore that the temperature
is low, so that the ground state dominates over small fluctuations, see (3.16). Three new issues
in the Ehrenfest model are the lack of an explicit solution for the electron wave function, the
non linear coupling of the wave function to the nuclei and the additional constraint to have a
normalized wave function 〈ψ0, ψ0〉 = 1, changing the initial distribution. The extension to a
non constant operator H̃ requires different mathematical tools as compared to the case with
an explicit solution. Here we will use estimates of the residual in the Kolmogorov backward
equation for the Langevin equation evaluated along the Ehrenfest dynamics. A main result is
to determine the diffusion/friction matrix without assuming explicit properties of the spectrum
of H̃, but instead use the separation of time scales in the nuclei and electron dynamics and a
continuous (possibly random) spectrum assumption of the limit H̃∞ of H̃ as M,J →∞.

To explain how this works, the idea is first sketched in the simpler setting of a constant H̃
and no random matrix, i.e. the Zwanzig model using the identification (2.7). The friction term,
from the generalized Langevin equation (2.11), is assumed to satisfy the equalities

lim
M→∞

2M1/2

∫ τ

0

<〈cos(σM1/2H̃)
d

dτ
Ψ0(Xτ−σ), H̃∂XΨ0(Xτ )〉dσ

= lim
M→∞

2
∫ M1/2τ

0

<〈cos(σ̂H̃)
d

dτ
Ψ0(Xτ−M−1/2σ̂), H̃∂XΨ0(Xτ )〉dσ̂

= 2
∫ ∞

0

lim
M→∞

<〈1σ̂≤M1/2τ H̃ cos(σ̂H̃)
d

dτ
Ψ0(Xτ−M−1/2σ̂)︸ ︷︷ ︸

=: ΓM (σ̂)

, ∂XΨ0(Xτ )〉 dσ̂

= 2
∫ ∞

0

〈H̃∞ cos(σ̂H̃∞)∂XΨ0(Xτ ), ∂XΨ0(Xτ )〉dσ̂ Ẋτ

=: K(Xτ )Ẋτ

(2.17)

where the first equality applies the change of variables σ̂ = M1/2σ, the second follows by
dominated convergence, if the sequence ΓM converges pointwise and is bounded by an L1(R)-
function |ΓM (σ̂)| ≤ Γ(σ̂), and the third equality uses the pointwise convergence of

H̃ cos(σ̂H̃)
d

dτ
Ψ0(Xτ−M−1/2σ̂),

based on σ 7→ d
dτΨ0(Xτ−σ) being continuous, Xτ−M−1/2σ̂ → Xτ , and an assumption on the

spectrum of H̃ → H̃∞ as J → ∞, for example the Debye distribution (2.14). In (3.14) the
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last integral is described by the spectrum. Note that K is a 3N × 3N matrix and that the
friction term in the Langevin equation (2.16), approximating Ehrenfest dynamics, becomes small
K̂ = M−1/2K = O(M−1/2).

2.1. The Gibbs Distribution Derived from Dynamic Stability. At the heart of Statistical
Mechanics is the Gibbs distribution

e−H(Y,Q)/T dY dQ∫
R6N e−H(Y,Q)/T dY dQ

for an equilibrium probability distribution of a Hamiltonian dynamical system

Ẏ τ = ∂QH(Y τ , Qτ )

Q̇τ = −∂YH(Y τ , Qτ )
(2.18)

in the canonical ensemble of constant number of particles N , volume and temperature T . Every
book on Statistical Mechanics gives a motivation of the Gibbs distribution, often based on
entropy considerations, cf. [10], [21]. Here we motivate the Gibbs distribution instead from
dynamic stability reasons. Consider a Hamiltonian system with light and heavy particles, with
position Y = (X,x), momentum Q = (p, q) and the Hamiltonian H = Hh(X, p) + Hl(X,x, q),
as in (2.1) with

(2.19) Hh = |p|2/2 + λ(X) and Hl = m
〈
x− Ψ̂(X), Ĥ

(
x− Ψ̂(X)

)〉
/2 + 〈q, Ĥq〉/(2m).

Assume that it is impractical or impossible to measure and determine the initial data (x0, q0)
for the light particles. Clearly it is necessary to give some information on the data to determine
the solution at a later time. In the case of molecular dynamics it is often sufficient to know
the distribution of the particles to determine thermodynamic relevant properties, as e.g. the
pressure-law. We saw in Section 2 that if the light particles have an initial probability distribu-
tion corresponding the Gibbs distribution conditioned on the heavy particle, then the invariant
distribution for the heavy particle is unique (in the limit of the Langevin equation) and given
by the Gibbs distribution for the heavy particle

e−Hh(X,p)/T dXdp∫
R6N e−Hh(X,p)/T dXdp

,

which, asymptotically for H` � Hh, approaches the heavy particle marginal distribution∫
R2J e

−H/T dXdpdxdq∫
R6N+2J e−H/T dXdpdxdq

of the Gibbs measure for the full Hamiltonian integrated over the light particle phase-space. This
stability that an equilibrium distribution of light particles leads to the marginal distribution of
the heavy particles holds only for the Gibbs distribution in the sense we shall verify below. Define
the set S of equilibrium measures that have this desired stability and consistency property more
precisely as follows:

(S) an equilibrium measure ν(X, p, x, q)dXdpdxdq belongs to S if the dynamics of the heavy
particles, with the light particles initially distributed according to ν(X0, p0, ·, ·)dxdq
(the equilibrium distribution conditioned on the heavy particle initial data), asymp-
totically after long time ends up with the heavy particles distributed according to∫

R2J
ν(X, p, x, q)dxdq dXdp (the heavy particle marginal of the original equilibrium mea-

sure).
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Consequently the heavy particle behavior over long time, using ν ∈ S, is consistent with the
assumption to start the light particles with the equilibrium distribution ν. Below we give condi-
tions so that S only contains the Gibbs measure. It is in fact the uniqueness of the Gibbs initial
probability distribution that makes a stochastic model of the dynamics useful: if we would have
to seek the initial distribution among a family of many distributions we could not predict the
dynamics in a reasonable way.

The consistency property (S) is in an abstract setting related to the study on Gibbs measures
for lattice systems in [21], where dynamics and conditioning with respect to initial heavy particles
is replaced by invariance for conditioning with respect to complement sets on the lattice, as the
lattice growths to infinity.

To derive this uniqueness of the Gibbs density, we consider first all equilibrium densities of
the the Hamiltonian dynamics and then use the consistency check (S) to rule out all except the
Gibbs density. There are many equilibrium distributions for a Hamiltonian system: the Liouville
equation (i.e. the Fokker-Planck equation for zero diffusion)

∂tf(H)︸ ︷︷ ︸
=0

+∂Y (∂QHf(H))− ∂Q(∂YHf(H)) = 0

shows that any positive (normalizable) function f , depending only on the Hamiltonian H and
not on time, is an invariant probability distribution

f
(
H(Y,Q)

)
dY dQ∫

R6N f
(
H(Y,Q)

)
dY dQ

for the Hamiltonian system (2.18). There may be other invariant solutions which are not func-
tions of the Hamiltonian but these are not considered here. Our basic question is now – which of
these functions f have the fundamental property that their light particle distribution generates
a unique invariant measure given by the heavy particle marginal distribution? We have seen
that the Gibbs distribution is such a solution. Are there other?

Write H = Hh +Hl and assume that the heavy particle Hamiltonian Hh dominates the light
particle Hamiltonian Hl, so that

(2.20)
Hl

Hh
� 1.

In a case based on N heavy particles and J light particles we typically have
Hl

Hh
= O(

J

N
)

which leads to the condition J � N ; in the next section we study the Ehrenfest model and show
that Hl/Hh is small at low temperature. Let

− log f(H) =: g(H)

and consider perturbations of the Gibbs distribution in the sense that the function g satisfies for
a constant C

limH→∞

∣∣∣g′′(H)H
g′(H)

∣∣∣ ≤ C
limH→∞

∣∣∣g′(H)H
g(H)

∣∣∣ ≤ C(2.21)

for instance, any monomial g satisfies (2.21). Taylor expansion yields for some α ∈ (0, 1)

− log f(H) = g(Hh +Hl)

= g(Hh) +Hl

(
g′(Hh) + 2−1g′′(Hh + αHl)Hl

)
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and (2.20) and (2.21) imply the leading order term

(2.22) − log f(H) ' g(Hh) +Hlg
′(Hh);

in words, this means that the heavy particle energy dominates and acts as a heat bath to find
the distribution for the light particles. Define the constant

(2.23) T = 1/g′
(
Hh(X0, p0)

)
.

The light particle distribution is then initially approximately given by

e−Hl/T dxdq∫
e−Hl/T dxdq

.

This initial distribution corresponds to a Gibbs distribution with the temperature

T = 1/g′
(
Hh(X0, p0)

)
and the derivation of (2.16) (alternatively Theorem (3.3)) leads to the heavy particle equilibrium
distribution

(2.24)
e−Hh/T dXdp∫
e−Hh/T dXdp

.

The equilibrium density f has by (2.20) and (2.21) the leading order expansion

− log f(H) = g(Hh +Hl)

= g(Hh) + g′(Hh + αHl)Hl

' g(Hh),

which leads to the heavy particle marginal distribution

(2.25)
e−g(Hh)dXdp∫
e−g(Hh)dXdp

.

The consistency requirement to have the heavy particle distribution (2.24) equal to the heavy
particle marginal distribution (2.25) implies that

g(Hh) = Hh/T.

We conclude that the quotient −H/ log f(H) is constant, where −H/ log f(H) = T is called the
temperature, and we have derived the Gibbs density f(H) = e−H/T . The next section applies
this derivation to the Ehrenfest model.

3. Data for the Ehrenfest Model and the Main Results

At low temperature one expects that the fast electron dynamics, compared to the slower
nuclei in the Ehrenfest dynamics, yields an electron wave solution that is almost in its ground
state Ψ0, which solves the electron eigenvalue problem

(3.1) HΨ0 = λ0Ψ0,

and is normalized 〈Ψ0,Ψ0〉 = 1; here λ0 = λ0(Xt) is the smallest eigenvalue of H = H(Xt) in
the considered Hilbert space (a subset of L2(dx)). The function

Ψ̂t := exp
(
− i
∫ t

0

λ0(Xs)ds
)
Ψ0(x;Xt)

satisfies

i
˙̂Ψt −HΨ̂t = i e−i

R t
0 λ0(Xs)ds d

dt
Ψ0(x;Xt),
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so that if the nuclei do not move, the wave function Ψ̂ solves the time dependent Schrödinger
equation; and if they move slowly, i.e. the L2-norm ‖Ψ̇0‖ is small, the function Ψ̂ is an ap-
proximate solution to the Ehrenfest dynamics. The approximation (Xt, Ψ̂), with Ψ̂ replacing ψ̄
in (1.1), is called Born-Oppenheimer molecular dynamics [26, 15] and it approximates observ-
ables of the time-independent Schrödinger equation for the electron-nuclei system with accuracy
O(M−1), when there is a spectral gap and no caustics, see [27]. The aim of this work is to study
molecular dynamics when the electron states ψ̄ are randomly perturbed from the ground state,
with a Gibbs distribution at positive temperature. To study the perturbation of the ground
state, make the transformation

(3.2) ψ̄(t, x) = e−i
R t
0 λ0(Xs)dsψ(t, x)

which implies that ψ solves the Schrödinger equation

(3.3) i
d

dt
ψt =

(
H(Xt)− λ0(Xt)

)︸ ︷︷ ︸
=:H̃(Xt)

ψt,

with the translated Hamiltonian H̃, and then use the Ansatz

ψ = γ̃0Ψ0 + ψ̃

for some constant γ̃0 ' 1 and expect ψ̃ : [0,∞)×R3J → C to be small. The Ansatz implies that
ψ̃ solves

(3.4) i
d

dt
ψ̃ = H̃(Xt)ψ̃ − iγ̃0

d

dt
Ψ0,

which yields the solution representation (of the same qualitative form as (2.10) in Zwanzig’s
model)

ψ̃t = S̃t,0ψ̃
0 − γ̃0

∫ t

0

S̃t,s Ψ̇s
0︸︷︷︸

∂XΨ0Ẋ

ds,

with the solution operator S̃ defined by

(3.5) S̃t,sϕ
s := ϕt

for the solution in the fast time scale

i
d

dt
ϕt = H̃(Xt)ϕt t > s.

The first term in the representation depends only on the initial data and the second term depends
only on the residual Ψ̇0. This splitting, inserted into the equation (1.1) for the nuclei, eliminates
formally the electrons and generates fluctuations, from stochastic initial data Ψ̃0, and friction,
through the coupling to Ψ̇0 = ∂XΨ0Ẋ, as explained in Section 2.

3.1. The Force on Nuclei. It is convenient to split the force on nuclei in (1.1) into two parts,
using the definition of ψ in (3.2),

〈ψ̄, ∂XH(X)ψ̄〉 = 〈ψ, ∂XH(X)ψ〉
= 〈ψ, ∂Xλ0(X)ψ〉+ 〈ψ, ∂X

(
H(X)− λ0(X)

)
ψ〉

= ∂Xλ0(X) + 〈ψ, ∂XH̃(X)ψ〉.
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With the Ansatz ψ = γ̃0Ψ0 + ψ̃, for a constant γ̃0 ' 1, the second term in the nuclear force
becomes

〈ψ, ∂XH̃(X)ψ〉 = |γ̃0|2〈Ψ0, ∂XH̃(X)Ψ0〉
+〈ψ̃, ∂XH̃(X)γ̃0Ψ0〉+ 〈γ̃0Ψ0, ∂XH̃(X)ψ̃〉
+〈ψ̃, ∂XH̃(X)ψ̃〉.

Use H̃Ψ0 = 0 and consequently

(3.6) ∂XH̃Ψ0 + H̃∂XΨ0 = 0

to obtain for the first term

〈Ψ0, ∂XH̃(X)Ψ0〉 = −〈Ψ0, H̃(X)∂XΨ0〉
= −〈H̃Ψ0︸ ︷︷ ︸

=0

, ∂XΨ0〉 = 0.

Let < denote the real part. The second terms are

(3.7)
〈ψ̃, ∂XH̃(X)γ̃0Ψ0〉+ 〈γ̃0Ψ0, ∂XH̃(X)ψ̃〉 = 2<〈ψ̃, ∂XH̃(X)γ̃0Ψ0〉

= −2<〈ψ̃, H̃(X)γ̃0∂XΨ0〉,

and we have obtained the forcing

(3.8) 〈ψ̄, ∂XH(X)ψ̄〉 = ∂Xλ0(X)− 2<〈ψ̃, H̃(X)γ̃0∂XΨ0(X)〉+ 〈ψ̃, ∂XH̃(X)ψ̃〉.

Lemma 4.1 shows that the third term, 〈ψ̃, ∂XH̃ψ̃〉, is negligible small at low temperature.

3.2. Stochastic Electron Initial Data. The next step, to determine the stochastic initial
data for ψ̃, applies the same reasoning as for the Zwanzig model in Sections 2.1. Similar to the
partition of the Zwanzig-Hamiltonian in (2.19), split the Ehrenfest-Hamiltonian into

HE =
|p|2

2
+ λ0(X)︸ ︷︷ ︸
Hh

+ 〈ψ̃, H̃ψ̃〉/〈ψ,ψ〉︸ ︷︷ ︸
Hl

and assume that the ”light” particle Hamiltonian Hl, associated to the perturbation of the wave
function, is much smaller than the heavy nuclei Hamiltonian Hh so that

Hl

Hh
� 1,

as implied by (3.16). Note that it is the Hamiltonian HE = |p|2/2 + λ0(X) + C〈ψ̃, H̃(X)ψ̃〉
that generates a Hamiltonian system, for any constant C, and not the normalized form |p|2/2 +
λ0(X) + 〈ψ̃, H̃(X)ψ̃〉/〈ψ,ψ〉; since the Hamiltonian system conserves the L2-norm 〈ψ,ψ〉 along
solution paths, the normalization can be put in the equation for p by taking C = 1/〈ψ,ψ〉, to get
the correct forces. In this section we therefore first seek the distribution of the non normalized ψ̃
and then when this distribution is found we normalize. Diagonalize and make a cut-off allowing
only the first J modes

ψ̃0 =
J∑
j=1

γjΨj(X0),

ψ0 = γ0Ψ0(X0) + ψ̃0,

C〈ψ, H̃(X0)ψ〉 = C〈ψ̃, H̃(X0)ψ̃〉 = C

J∑
j=1

λ̃j(X0)|γj |2,

(3.9)
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with the orthonormal eigenfunctions Ψj(X0) and eigenvalues λ̃j(X0) to H̃(X0). We see that
the initial light particle probability density satisfies

e−C〈ψ̃,H̃ψ̃〉/T dψ̃rdψ̃i = e−
PJ
j=1

Cλ̃j
T (|γjr |

2+|γji |
2)dγr1 . . . dγ

r
Jdγ

i
1 . . . dγ

i
J ,

since the orthogonal transformation from (ψ̃r, ψ̃i) to (γr1 , . . . , γ
r
J , γ

i
1, . . . , γ

i
J) has the Jacobian

determinant equal to one, as in (2.9). Consequently,

{γj | j = 1, . . . J} are independent, with independent real and imaginary parts

normal N
(
0, T/(λ̃j(X0)C)

)
distributed.

(3.10)

Assume now that the ground state energy dominates, i.e. T is chosen low enough so that

(3.11)

∑J
j=1 |γj |2

|γ0|2
= o(1),

and take

C−1 =
J∑
j=0

|γj |2 ' |γ0|2.

This means that the forces generated by ψ = ψ̃+ γ0Ψ0 =
∑J
j=0 γjΨj(X0) should be normalized

by dividing by (
∑J
j=0 |γj |2) = 〈ψ,ψ〉. Since there are very many eigenvalues this is almost the

same as dividing by the expected value

C−1 =
J∑
j=0

|γj |2 ' Eγ [〈ψ,ψ〉] = |γ0|2 +
J∑
j=1

T

Cλ̃j(X0)
,

which is solvable for the requirement

(3.12)
J∑
j=1

T/λ̃j � 1,

included in assumption (3.11). The normalized wave initial function becomes

J∑
j=0

γ̃jΨj(X0) :=
J∑
j=0

γj

(
∑J
k=0 |γk|2)1/2

Ψj(X0) '
J∑
j=0

γj
|γ0|

Ψj(X0)

where in particular γ̃0 ' 1.
The size of J is chosen so that the condition Hl/Hh � 1 holds, implying by (2.22) the light

particles to be approximately Gibbs distributed: since the normalized light and heavy particle
Hamiltonian satisfies

Eγ [Hl] ' Eγ [
J∑
j=1

λ̃j |γj |2/|γ0|2] ' TJ

and Hh = |p|2/2 + λ0 ∼ N , the condition Hl/Hh � 1 holds provided N � TJ .
To derive the Langevin equation the spectrum of H̃ will be used and the main assumption

is that the distribution of eigenvalues λ̃j approaches a continuum limit as J → ∞. Such a
continuum can be achieved in at least two different ways: either each event of H̃(X) generates
a continuum density in a deterministic way, as in (2.17), or the spectrum of H̃(X) becomes
sensitive towards small perturbations of X and generates a random matrix H̃∞ which has a
probability distribution with a continuous distribution of eigenvalues. The stochastic continuum
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limit based on random matrices can be formulated as follows. Assume that H̃ satisfies the
following limit, cf. (2.11) and (2.17),

Kmn(Xτ )

:= Eγ
[
2 lim
M,J→∞

∫ τM1/2

0

<〈S̃τ̂ ,τ̂−σ̂∂XnΨ0(Xτ−σ̂M−1/2
), H̃(Xτ )∂XmΨ0(Xτ )〉dσ̂|Xτ ],

(3.13)

so that the limit K forms 3N × 3N matrix. In the fast time scale σ̂ the nuclei positions
σ̂ 7→ Xτ−M−1/2σ̂ change slowly so that Xτ−M−1/2σ̂ → Xτ , as M → ∞, and the solution
operator would satisfy S̃τ̂ ,τ̂−σ̂ → e−iσ̂H̃(Xτ ), for σ̂ ∼ 1, if H̃ would be independent of J and M ,
so that by dominated convergence as in (2.17) the integral would satisfy

∫ τM1/2

0

<〈S̃τ̂ ,τ̂−σ̂Ψ′0(Xτ−σ̂M−1/2
), H̃Ψ′0(Xτ )〉dσ̂

→
∫ ∞

0

〈cos(σ̂H̃)Ψ′0(Xτ ), H̃Ψ′0(Xτ )〉dσ̂.

We may instead assume that H̃(Xτ−M−1/2σ̂) does not converge but its average along the solution
path becomes random in the sense that the solution operator S̃τ̂ ,τ̂−σ̂ tends to e−iσ̂H̃∞ , where H̃∞
is a random matrix, as M → ∞. That is, as M and J tend to infinity, the solution operator’s
average of the matrix H̃(Xτ−M−1/2σ̂) becomes a random matrix H̃∞(Xτ ) and its probability
distribution has a continuum spectral decomposition with eigenvalues λ̃∞j arbitrary close. An
assumption of such a random matrix seems consistent with our model:

• assume that the eigenvalues λ̃n are a distance of order c apart, where c > 0 may be
small and tending to zero as J tends to infinity (giving the continuum of eigenvalues in
the deterministic case);

• in the limit (3.13) a small time step of size M−1/2 makes an increment M−1/2p in the
position X which yields an increment of size O(M−1/2) in each matrix component H̃ij ;

• since the size J of the matrix H̃(X) is at the same time growing, the eigenvalue gaps
could asymptotically be filled with a continuous density, if J is sufficiently large.

Assuming the existence of the following spectral representation, the limit can by the Fourier
transform, Fh(σ̂) :=

∫
R e

iσ̂λh(λ)dλ and its inverse h(λ) = 2π
∫

R e
−iσ̂λFh(σ̂)dσ̂, be written

K(Xτ ) =
∫ ∞

0

∫ ∞
0

2 cos(σ̂λ)Γ(λ,Xτ )dλ︸ ︷︷ ︸
=F Γ(σ̂,Xτ )

dσ̂

=
∫ ∞

0

F Γ(σ̂, Xτ )dσ̂

= π Γ(0, Xτ ),

(3.14)
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where Γ ∈ L1(R)∩L2(R)∩C(R) is defined by a spectral decomposition, based on the eigenfunc-
tions {Ψ∞j }∞j=1 and eigenvalues {λ̃j}∞j=1 of H̃∞,

E[〈cos(σ̂H̃∞)∂XnΨ0(X), H̃∞(X)∂XmΨ0(X)〉 | X]

=
∞∑
j=1

E[cos(σ̂λ̃j)〈∂XnΨ0(X),Ψ∞j 〉〈H̃∞∂XmΨ0(X),Ψ∞j 〉 | X]

=
∫

R
cos(σ̂λ)

∑
j∈{n: λ̃n∈[λ,λ+dλ)}

E[〈∂XnΨ0,Ψ∞j 〉〈H̃∞∂XmΨ0,Ψ∞j 〉 | X]

︸ ︷︷ ︸
=:Γnm(λ,X)dλ

,

and the expected value is with respect to the random matrix H̃∞. An indication of this size of J is
provided by Wigners Semi-Circle Law saying that symmetric matrices of size J , with independent
identically distributed entries with mean zero, variance J−1 and bounded moments, have the
density of eigenvalues semi-circle distributed asymptotically as J → ∞, i.e. the continuum
density is

√
4− ρ21|ρ|≤2 dρ/(2π), cf. [1]. Since in our case the variance of the matrix elements is

O(M−1), we could chose J ∼M to fill gaps of size one, if the matrix elements were independent
identically distributed; this would then fill the smaller gaps of size c. It is a challenge to really
determine the distributions for the matrix elements.

For assumption (3.13) to make sense the eigenvalue distribution must approach a continuum
density, so that the integral kernel decays in time and Γ(0, X) is well defined; to have a positive
limit it is necessary that the density of states does not vanish around the origin, which excludes
a spectral gap in H̃∞ around the origin. The condition Γ(0, X) being positive semi-definite can
also imply that 〈Ψ′0,Ψ′0〉 is infinite – Section 4.6 gives a motivation for such a setting based on
the Thomas-Fermi model.

3.2.1. Slow Nuclear Dynamics. The Ehrenfest dynamics (1.1), (1.2) can be written as a Hamil-
tonian system in the slow time scale

Ẋτ = pτ

ṗτ = −∂Xλ0 − 〈φτ , ∂XH̃(Xτ )φτ 〉/〈φ, φ〉
i

M1/2 φ̇
τ = H̃(Xτ )φτ ,

with the Hamiltonian
|p|2

2
+ C〈φ, H̃(X)φ〉+ λ0(X),

using the constant C = M1/2/2 = 1/〈φ, φ〉 and letting ψτ̂ = φτ/〈φτ , φτ 〉1/2 for the initial
data ψ0 =

∑J
n=0(

∑J
k=0 |γk|2)−1γnΨn(X0); here we change to the simpler notation (Xτ , pτ ) for

position and momentum in the slow time scale, although to be consistent with (1.1)-(1.2) it
should have been (X τ̂ , pτ̂ ). The change to the variable ψ leads to

dXτ

dτ
= pτ ,

dpτ

dτ
= −〈ψτ , ∂XH(Xτ )ψτ 〉,

i

M1/2

dψτ

dτ
= H̃(Xτ )ψτ .

(3.15)
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3.3. The Main Result. Let W τ denote the standard Brownian process (at time τ) in R3N

with independent components. To simplify the notation, assume that all nuclei have the same
mass M � 1 = electron mass; this can easily be extended to varying nuclear masses much larger
than the electron mass. We apply the notation ψ(x,X) = O(M−α) also for complex valued
functions, meaning that |ψ(x,X)| = O(M−α) holds uniformly in x and X.

We will use the following assumptions for the electron eigenvalues λ̃j and electron Hamiltonian
H̃

(3.16)

T supX
∑J
j=1

|∂X λ̃j(X)|`1(R3N )

λ̃j(X)
= o(M−1/2),

supX ‖|H̃∂XΨ0(X)|`1(R3N )‖L1(dx) = O(1),
supX |∂XkH̃(X)|+ supX |∂XjXkH̃(X)| = O(1),

σ 7→ H̃(Xσ) is real analytic on (0,∞),
|λ̃n − λ̃m| > c for n 6= m and c−1 = o(M1/5),PJ

j=1 |γj |
2

|γ0|2 = o(1).

The conditions are motivated and used as follows. The first condition in (3.16) implies that
the quadratic forcing term 〈ψ̃, H̃ ′ψ̃〉 becomes negligible. The fourth and fifth assumption (that
the electron eigenvalues do not cross conditions along solution paths) are used in the Born-
Oppenheimer approximation Lemma 4.3. The last condition used for the initial wave function
distribution in (3.12) means that T is small enough so that

(3.17) 1 ' |γ0|2 �
J∑
j=1

T λ̃−1
j '

J∑
j=1

|γj |2,

which implies that the condition Hl/Hh � 1 holds and sampling from the Gibbs distribution
becomes the only option, in the sense of Section 2.1. If the density of states would be uniform
and λ̃1 = J−1, we would need T = o(1/ log J) since (3.17) yields

1� T

J∑
j=1

λ̃−1
j ' T

∫ J

J−1

dλ

λ
= 2T log J,

and in general we expect that (3.17) implies that T → 0 as J →∞.
As for the Zwanzig model studied in [28, 20], [16], the following result compares expected

values of Hamiltonian dynamics, having stochastic initial data γ for the light particles, with
Langevin dynamics where the stochasticity enters through the Wiener process W . We use
the notation Ez[w] for the expected value of w with respect to the distribution generated by the
random z, the eigenvalue λ0 denotes the ground state electron energy (3.1) of H with normalized
ground state Ψ0 and λ̃j are the translated eigenvalues of H − λ0 =: H̃.

Theorem 3.1. Assume that condition (3.16) and the friction limit (3.13) hold, the temperature
T is low enough to satisfy T

∑J
j=1 λ̃

−1
j = o(1), and the Ehrenfest electron initial data is given by

(3.9)-(3.10), then the Itô Langevin dynamics

(3.18)
dẊτ

L = −∂XLλ0(Xτ
L)dτ −M−1/2K(Xτ

L)Ẋτ
Ldτ +

√
2TM−1/2K1/2(Xτ

L)dW τ ,

Ẋτ
L := dXτL

dτ , 0 < τ < T ,
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with deterministic initial data X0
L = X and p0

L = p, approximates Ehrenfest dynamics (3.15)
with accuracy ∣∣∣Eγ[g(XT , pT ;X, p)

∣∣ X0 = X, Ẋ0 = p
]

− EW
[
g(XTL , Ẋ

T
L ;X, p)

∣∣ X0
L = X, Ẋ0

L = p
]∣∣∣ = o(M−1/2),

(3.19)

as M →∞, for any bounded function g : R3N ×R3N → R, provided the Langevin expected value
function

u(Y, q, τ ; T ) := EW [g(XTL , Ẋ
T
L ;X, p) | Xτ

L = Y, Ẋτ
L = q]

has bounded derivatives of order one and two along the Ehrenfest solution∫ T
0

∑
j

|∂pju(Xσ, pσ, σ; T )| dσ = O(1),

∫ T
0

∑
j,k

(
|∂pjpku(Xσ, pσ, σ; T )|+ |∂Xjpku(Xσ, pσ, σ; T )|

)
dσ = O(1).

(3.20)

The approximation result uses a non interacting particle, with given velocity equal to one and
position coordinate X0 = τ , that acts as the time coordinate, so that e.g. transport coefficients
as diffusion D can be studied

D = EW [(6NT )−1|XTL −X0
L|2︸ ︷︷ ︸

=g(XTL , Ẋ
T
L ;X0

L,p
0
L)

| X0].

Since (X0
L, p

0
L) is deterministic and fixed for each path, we simplify the notation and write g(Y, q)

instead of g(Y, q;X0
L, p

0
L).

Remark 3.2. It is well known that not all functions g(XTL , Ẋ
T
L ) (such as g(X, p) = maxj |pj |)

are accurately computable in a molecular dynamics simulation with many particles; assumption
(3.20) restricts the study to observables g that are stable with respect to perturbations in the
initial data (X0

L, Ẋ
0
L) in the norm `1. We consider expected values E[g(XTL , p

T
L )] where typically

g =
∑N
j=1 gj/N is a mean over (particle related) real-valued functions gj with gj(X, p) = O(1)

and
N∑
n=1

|∂Xng(X, p)| =
N∑
n=1

|
N∑
j=1

∂Xngj(X, p)
N

| = O(1).

Here, for each derivative ∂Xn , mainly finitely many j contribute to the sum. Similarly we assume
that

∑N
n=1 |∂Xnu(X, p, σ)| = O(1). This means that g measures global properties, related to

thermodynamic quantities, e.g. the diffusion D with g =
∑N
j=1 |Xj −X0

j |2/(6NT ).

Assumption (3.20) limits T to bounded times, since the correlation time is expected to grow
as M1/2, explained as follows. Let K be constant, then ẊL =: pL solves an Ohrnstein-Uhlenbeck
equation, which means that

pτL = (2TM−1/2K)1/2

∫ τ

0

eM
−1/2(σ−τ)KdWσ

−
∫ τ

0

λ′0(Xσ)eM
−1/2(σ−τ)Kdσ + p0e−M

−1/2Kτ

and the dependence of pτ on pσ decays exponentially eM
−1/2(σ−τ)K . If also λ′0 = 0, the process

pτ is Gaussian with mean zero and covariance

2Te−M
−1/2K|τ−σ| + e−M

−1/2K(τ+σ)(E[|p0|2]− 2T )
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and the corresponding ∂pu(·, σ; τ) decays exponentially e−M
−1/2|τ−σ|, giving the correlation

length ∫ τ

0

∂pu(·, σ; τ)dσ = O(M1/2);

Section 4.5 presents a motivation for this property also in the case with a general force λ′0(X),
using the theory of large deviations for the rare events of escapes from equilibria at low temper-
ature.

Theorem 3.3. Assume that condition (3.20) in Theorem 3.1 is replaced by

(3.21) lim
τ→∞

∫ τ

0

|Du(Xσ, pσ, σ; τ)|`1 dσ = O(M1/2), D := ∂p, ∂pp, ∂Xp,

i.e. the time-correlation length with respect to sensitivity in p is at most of size M1/2, then
Langevin dynamics approximates long time observables of Ehrenfest dynamics

(3.22) lim
T→∞

T −1
∣∣ ∫ T

0

Eγ
[
g(Xτ , pτ )]− EW

[
g(Xτ

L, Ẋ
τ
L)
]
dτ
∣∣ = o(1) as M →∞.

The combination of the two theorems shows that this Langevin dynamics is in a sense an
accurate approximation of Ehrenfest dynamics for both short and long time. The small dissipa-
tion term M−1/2KpL in (3.18) is visible in the convergence rate o(M−1/2); the small diffusion
parameter TM−1/2K = o(M−1/2) can be detected in the long time convergence rate o(1), since
the invariant measure is

e−(|p|2/2+λ0(X))/T dXdp∫
R3N+J e−(|p|2/2+λ0(X))/T dXdp

and this holds if and only if the diffusion coefficient is (2TM−1/2K)1/2, provided the dissipation
term is M−1/2KpL. That is, the Langevin dynamics (3.18) satisfies Einstein’s fluctuation-
dissipation result: the square of the diffusion coefficient is the dissipation coefficient times twice
the temperature, as in (2.13).

Remark 3.4. The Hamiltonian dynamics generated from the time-independent Schrödinger
equation, studied in [27], is closely related to the Ehrenfest dynamics where the Hamiltonian
HE is essentially replaced by the slightly perturbed Hamiltonian

HE + (2M)−1G(X)
∑
n

∆Xn(〈φ, φ〉/G(X))

for a certain bounded function G(X), which is different for caustic and non caustic states.
Therefore, it seems likely that similar approximation results hold when the Langevin dynamics
is compared to this Schrödinger Hamiltonian dynamics.

4. Error Estimates

4.1. The Dynamics. We shall approximate the nuclei motion in the Ehrenfest dynamics by
(XL, pL) defined from the Ito-Langevin dynamics

(4.1)
ẊL = pL
ṗL = −∂Xλ0(XL)−M−1/2K(XL)pL + (2TM−1/2)1/2K1/2(XL)Ẇ .

To simplify the analysis of the coupling between (X, p) and the thermal fluctuations induced by
γ̃n, introduce the electron wave functions {ψ̃n | n = 0, 1, . . .} which initially are eigenfunctions
and solve

(4.2)
i

M1/2

˙̃
ψτn = H̃(Xτ )ψ̃τn, ψ̃0

n = Ψn(X0),
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to obtain the normalized description

(4.3) ψτ̂ =
J∑
n=0

γn(∑J
k=0 |γk|2

)1/2 ψ̃n =:
J∑
n=0

γ̃nψ̃n

where γn, defined in (3.9), are independent normal distributed with mean zero and variance
T/(Cλ̃n(X0)) ' (|γ0|T )/λ̃n for n = 1, . . . J , using (3.12) and (3.11). The Schrödinger dynamics
(4.2) shows that {ψ̃τn | n = 0, 1, . . .} forms an orthogonal set

(4.4)
d
dτ 〈ψ̃n, ψ̃m〉 = 〈−iM1/2H̃ψ̃n, ψ̃m〉+ 〈ψ̃n,−iM1/2H̃ψ̃m〉

= 〈ψ̃n, iM1/2H̃ψ̃m〉+ 〈ψ̃n,−iM1/2H̃ψ̃m〉 = 0,

since the initial data {ψ̃0
n | n = 0, 1, . . .} is orthogonal.

4.2. Proof of the Theorem. Define for the given observable g : R3N × R3N → R and the
Langevin dynamics (Xτ

L, p
τ
L), in (4.1), the expected value function

u(y, τ) := EW [g(XTL , p
T
L ) | (Xτ

L, p
τ
L) = y],

which solves the Kolmogorov backward equation

(4.5)
∂τu+ p · ∂Xu−

(
∂Xλ0(X) +M−1/2K(X)p

)
· ∂pu

+
∑3N
n=1

∑3N
n=1M

−1/2TKmn(X)∂pmpnu = 0 τ < T
u(·, T ) = g.

The goal is to analyze the error Eγ [g(XT , pT )] − EW [g(XTL , p
T
L )] of the heavy nuclei in the

Ehrenfest dynamics approximated by the Langevin dynamics, for given deterministic initial
data X0 = X0

L, p
0 = p0

L. This error can be written as the residual of the Langevin Kolmogorov
solution (4.5) along the Ehrenfest dynamics (Xτ , pτ )

Eγ [g(XT , pT ) | X0 = X, p0 = p]− EW [g(XTL , p
T
L ) | X0

L = X, p0
L = p]

= Eγ [u(XT , pT , T ) | X0 = X, p0 = p]− u(X, p, 0)

= Eγ [u(XT , pT , T )− u(X0, p0, 0) | X0 = X, p0 = p].

The expected value in right hand side will be written as an integral over time where the assump-
tion (3.20) makes the integral bounded. Since all remaining expected values are with respect to
the initial data γ we simplify by writing E = Eγ .

Telescoping cancelation, the Kolmogorov equation and the nuclei forces

ṗ = −∂Xλ0(X) + 2<〈ψ̃, H̃(X)γ̃0∂XΨ0(X)〉 − 〈ψ̃, ∂XH̃(X)ψ̃〉
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in (3.8) imply

E[u(XT , pT , T )− u(X0, p0, 0) | X0, p0] =
∫ T

0

E[ du(Xτ , pτ , τ) | X0, p0]

=
∫ T

0

E[∂τu(Xτ , pτ , τ) + Ẋτ · ∂Xu(Xτ , pτ , τ) + ṗτ · ∂pu(Xτ , pτ , τ) | X0, p0] dτ

=
∫ T

0

E
[

(Ẋτ − pτ )︸ ︷︷ ︸
=0

·∂Xu(Xτ , pτ , τ)

+
(
ṗτ + λ′0(Xτ ) +M−1/2K(Xτ )pτ

)
· ∂pu(Xτ , pτ , τ)

− TM−1/2K(Xτ )∂ppu(Xτ , pτ , τ) | X0, p0
]
dτ

=
∫ T

0

E
[(

2<〈ψ̃, γ̃0H̃Ψ′0〉 − 〈ψ̃, H̃ ′ψ̃〉 −M1/2K(Xτ )pτ
)
· ∂pu(Xτ , pτ , τ)

− TM1/2K(Xτ )∂ppu(Xτ , pτ , τ) | X0, p0
]
dτ.

(4.6)

Consider the solution (X, p, ψ) to the Ehrenfest dynamics (3.15) and define for the Schrödinger
equation

iϕ̇τ = M1/2H̃(Xτ )ϕτ , τ ≥ σ
ϕσ = w

the solution operator in the slow time scale

Sτ,σw := ϕτ .

The definition ψ = ψ̃ + γ̃0Ψ0 yields the representation

ψ̃t = −γ̃0

∫ τ

0

Sτ,σΨ̇0(Xσ)dσ + Sτ,0ψ̃
0

= −γ̃0

∫ τ

0

Sτ,σΨ̇0(Xσ)dσ +
∑
n>0

γ̃nψ̃
τ
n

(4.7)

which implies

<〈ψ̃, H̃Ψ′0〉 = −|γ̃0|2<〈
∫ τ

0

Sτ,σΨ̇0(Xσ)dσ, H̃Ψ′0〉+ <〈
J∑
n=1

γ̃nψ̃
τ
n, H̃Ψ′0〉.

Lemma 4.1. There holds

lim
M→∞

−M1/2E
[
2|γ̃0|2<〈

∫ τ

0

Sτ,σΨ̇0(Xσ)dσ, H̃Ψ′0(Xτ )〉 | Xτ , pτ
]

= K(Xτ )pτ ,

lim
M→∞

M1/2E
[
2<〈

J∑
n=1

γ̃nψ̃
τ
n, H̃Ψ′0(Xτ )〉 · ∂pu(Xτ , pτ , τ) |Xτ , pτ

]
= TK(Xτ )∂ppu(Xτ , pτ , τ),

lim
M→∞

M1/2E
[
〈ψ̃τ , H̃ ′ψ̃τ 〉 · ∂pu(Xτ , pτ , τ) | Xτ , pτ

]
= 0.

(4.8)

The lemma and (4.6) imply

E[u(XT , pT , T )− u(X0, p0, 0) | X0 = X, p0 = p] = o(M−1/2)

which proves Theorem 3.1.
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Proof of the Lemma. The first limit: the friction term. We have

|γ̃0|2 =
|γ0|2

|γ0|2 +
∑J
k=1 |γk|2

= 1 +O(
∑J
k=1 |γk|2

|γ0|2
).

The last condition in (3.16) implies

(4.9)
∑J
k=1 |γk|2

|γ0|2
= o(1).

The first statement follows then directly from the definition of K in (3.13), by the change of
variables M1/2(τ −σ) = σ̂ and integration of solution operator S̃τ̂ ,σ̂ = Sτ,σ in the fast time scale

−M1/2<〈
∫ τ

0

Sτ,σΨ̇0(Xσ)dσ, H̃Ψ′0〉

=
∫ τM1/2

0

<〈S̃τ̂ ,τ̂−σ̂Ψ′0(Xτ−σ̂M−1/2
), H̃Ψ′0(Xτ )〉dσ̂.

The second limit: the diffusion term. Define the first variation

∂γ̃k(X, p, ψ) =: (X ′k, p
′
k, ψ

′
k), k > 0,

which satisfies the linearized Ehrenfest system

(4.10)

Ẋ ′ = p′,

ṗ′k = −X ′k · ∂XXλ0(X)− 2<〈ψ̃k, ∂XH̃(X)ψ〉 − 〈ψ,X ′k · ∂XXH̃ψ〉
−2<〈

∑
n γ̃n∂γ̃k ψ̃n, ∂XH̃ψ〉,

i
˙̃
ψ′m = M1/2H̃ψ̃′m +M1/2X ′ · ∂XH̃ψ̃m,

(X, p, ψ)′(0) = 0,

where ψ =
∑J
n=0 γ̃nψ̃n. The asymptotic result ψ ' γ̃0ψ̃0 ' Ψ0, obtained from (4.9) and the

Born-Oppenheimer approximation ψ̃0 ' Ψ0 in Lemma 4.3, together with Duhamel’s representa-
tion show that

(4.11)
(X, p, ψ)′n(τ) = −2

∫ τ
0
G·p(τ, σ)<〈ψ̃n, ∂XH̃(X)ψ〉(σ)dσ

' −2
∫ τ

0
G·p(τ, σ)<〈ψ̃σn, H̃∂XΨσ

0 〉dσ

where G is the linear solution operator for (4.10) solving

Ġ = AG, τ > σ and G(σ, σ) = I;

here

A = A(Xτ , ψτ ) :=

 0 I 0
−λ′′0 − 〈ψ, H̃ ′′ψ〉 0 −2<〈(γ̃1, . . . , γ̃J), H̃ ′ψ〉
−iM1/2H̃ ′B 0 −iM1/2H̃I


is the matrix in the right hand side of (4.10) and the J × J matrix B is diagonal with ψ̃j , j =
1, . . . J in the diagonal. We need information about the short time behavior of G(τ, σ) as σ → τ .
For short time the Green’s function takes the form G(τ, σ) = e(τ−σ)A and we have
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Lemma 4.2. There holds
Gpp(τ, σ)→ I as σ → τ

GXp(τ, σ) = O(τ − σ) for 0 ≤ τ − σ = o(M−1/4),

∂γ̃m ψ̃
τ
n =

3N∑
k=1

M1/2

∫ τ

0

∫ τ

ς

∂XkH̃(Xσ)
∫ σ

ς

Gpp(υ, ς)dυdσ︸ ︷︷ ︸
O((τ−ς)2)

〈ψ̃ςm, ∂XkH̃(Xς)ψς〉dς ψ̃τn.
(4.12)

The proof is in the end of this section. We will now use the first variation with respect to γ̃m
in (4.11) to verify the second limit in (4.8). We know that

E[γ̃n] = E[
γn

(|γ0|2 +
∑J
j=1 |γj |2)1/2

] = 0,

since γn is normal distributed with mean zero. Consequently, if (X, p, ψ) would be independent
of γ̃n the expected value

M1/2E[2<〈γ̃nψ̃τn, γ̃0H̃Ψ′0(Xτ )〉 · ∂pu(Xτ , pτ , τ)]

would be zero. We shall use the first variation with respect to γ̃n to determine how (X, p, ψ)
depend on γ̃n. The coupling can be split into two terms – one term that considers the coupling
between the two factors 〈γ̃nψ̃τn, γ̃0H̃Ψ′0(Xτ )〉 and ∂pu(Xτ , pτ , τ) and one term with the intrinsic
coupling in the first factor 〈γ̃nψ̃τn, γ̃0H̃Ψ′0(Xτ )〉. The coupling between the two factors is

J∑
m=1

M1/2

∫ τ

0

∫
R

E
[
2<〈γ̃nψ̃τn, γ̃0H̃Ψ′0(Xτ )〉2<〈ψ̃σm, γ̃0H̃

′ψσ〉×

(
Gpp(τ, σ)∂ppu(Xτ , pτ , τ) +GXp(t, σ)∂Xpu(Xτ , pτ , τ)

) ∣∣∣ γ̃rm + iγ̃im︸ ︷︷ ︸
=γ̃m

]
(dγ̃rm + idγ̃im)dσ.

(4.13)

The intrinsic coupling is equal to
J∑

m=1

M1/2

∫ τ

0

∫
R

E
[
2<〈γ̃nψ̃τn, γ̃0∂X(H̃Ψ′0)GXp(τ, σ)〉

× 2<〈ψ̃σm, γ̃0H̃
′ψσ〉∂pu(Xτ , pτ , τ)

∣∣∣ γ̃rm + iγ̃im

]
(dγ̃rm + idγ̃im)dσ

+
J∑

m=1

M1/2

∫
R

E
[
2<〈γ̃n∂γ̃m ψ̃τn, γ̃0H̃Ψ′0(Xτ )〉 · ∂pu(Xτ , pτ , τ)

∣∣ γ̃rm + iγ̃im
]
(dγ̃rm + idγ̃im)

(4.14)

where the first variation ∂γ̃m ψ̃n is expressed in terms of G in (4.12).
Let us first study the coupling (4.13) between the two factors. The forcing has the asymptotics

H̃ ′ψ =
J∑
n=0

γ̃nH̃
′ψ̃n

' γ̃0H̃
′ψ̃0

' γ̃0H̃
′Ψ0

= −H̃Ψ′0

since
∑J
n=1 γ̃nψ̃n is asymptotically smaller than γ̃0ψ̃0 in L2(dx), by the last condition in (3.16),

and ψ̃0 ' Ψ0 by Lemma 4.3. This simplified forcing is used to evaluate to coupling below. The
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first variation shows that the first term in the perturbation in p due to γm becomes∫ τ

0

∫ γ̃m

0

(
Gpp(τ, σ)∂ppu+GXp(τ, σ)∂pu

)
〈ψ̃σn, H̃Ψ′0(Xσ)〉〈H̃Ψ′0(Xτ ), ψ̃τm〉︸ ︷︷ ︸

=:F (γ̂m)

× |γ̃0|2γ̃ndγ̂m dσ.

(4.15)

The last condition in (3.16) implies that |γ̃0|2 ' 1, so that

|γ̃0|2γ̂∗ndγ̂n ' γ̂∗ndγ̂n

and the expected perturbation, for m = n, becomes∫
R

∫ τ

0

∫ γ̃n

0

F (γ̂n)γ̂rndγ̂
r
n dσ

e−Cλ̃n|γ
r
n|

2/T dγrn√
2πT/(Cλ̃n)

'
∫

R

∫ τ

0

∫ γ̃rn

0

F (0)γ̂rndγ̂
r
n dσ

e−Cλ̃n|γ
r
n|

2/T dγrn√
2πT/(Cλ̃n)

=
∫ τ

0

∫
R
F (0)

|γ̃rn|2

2
e−Cλ̃n|γ

r
n|

2/T dγrn√
2πT/(Cλ̃n)

dσ

'
∫ τ

0

∫
R
F (0)

|γrn|2

2|γ0|2
e−λ̃n|γ

r
n|

2/(T |γ0|2)dγrn√
2πT |γ0|2/λ̃n

dσ

=
∫ τ

0

F (0)
T

2λ̃n
dσ.

(4.16)

The imaginary part γin gives an identical contribution. To see that that the approximation
F (γ̃n) ' F (0) holds, we can similarly use the coupling applied to F to find its dependence on
γ̃n

F (γ̃n) = F (0) +
∫ τ

0

∫ γ̃n

0

Gpp(τ, σ)∂pF 〈H̃Ψ′0(Xτ ), ψ̃τn〉γ0dγ̂n dσ + . . . .

We see that the dependence on γ̃n is small and proportional to

〈H̃Ψ′0, ψ̃n〉 = O(
√

∆λ) = o(1)

where ∆λ is the distance between the eigenvalues. Therefore the perturbation (4.15) in F due
to γ̃n is small

F (γn) = F (0) +O((∆λ)1/2) ' F (0).

The expected value of the coupling between γ̃n and γ̃m, for m 6= n, is to leading order equal to
zero, since ∫

R
F (0)

γ∗nγm
2|γ0|2

e−λ̃m|γm|
2/(T |γ0|2)dγm√

2πT |γ0|2/λ̃m
= 0 .
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The first non zero expected value for n 6= m can again be obtained by expanding F with respect
to both γ̃m and γ̃n

F (γ̃m) = F (0) +
∫ τ

0

∫ γ̃m

0

Gpp(τ, σ)∂pF 〈H̃Ψ′0(Xτ ), ψ̃τm〉γ̃0dγ̂m dσ + . . .

= F (0) +
∫ τ

0

∫ γ̃m

0

∫ τ

0

∫ γ̃n

0

Gpp(τ, σ)∂ppF 〈H̃Ψ′0(Xτ ), ψ̃τm〉γ̃0

×Gpp(τ, ς)〈H̃Ψ′0(Xτ ), ψ̃τn〉γ̃0dγ̂n dςdγ̂m dσ

(4.17)

and it takes a similar form as the coupling with only one factor γ̃n but now a product of two
such coupling factors appear. We will see below that the each integral gains a factor of M−1/2

(4.18)
∫ τ

0

F (0)
T

λ̃n
dσ = O(M−1/2),

so that the quadratic term with both factors γ̃n and γ̃m is negligible small O(M−1).
The function F contains the product

(4.19)
(
〈. . .τn〉+ 〈. . .τn〉∗

)(
〈. . .σm〉+ 〈. . .σm〉∗

)

and can be analyzed by the four terms 〈. . .τn〉〈. . .σm〉 similar as in (2.12), now using the solution
operator Sts instead of the explicit solution e−iM

1/2(τ−σ)H̃ . The following five steps show that the
expected value of the fluctuations takes the same form as the friction term in the first statement
of (4.8):

1. in the first step the error term comes from (X, p) being slightly dependent on γ̃n – this
coupling yields a small error term as estimated in (4.16),

2. the second step uses the first condition in (3.16) to deduce that 1/λ̃0
n and 1/λ̃τn are close,

as explained in (4.21)-(4.22),
3. the third step uses that ψ̃n = Ψn + o(1), as derived in Lemma 4.3, to replace a factor of
λ̃−1
n with H̃−1,

4. the fourth step applies J → ∞, that 〈(Sτσ)∗H̃Ψ′0(Xτ ),Ψ′0(Xσ)〉 is finite, and that the
orthonormal set {ψ̃n}∞n=1 in (4.4) forms a basis in the L2(RJ) orthogonal complement
of ψ̃0, and

5. the fifth step uses that Ψ0 is orthogonal to ∂XΨ0 and ψ̃0 ' Ψ0, proved in Lemma 4.3,
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we write the four terms formed from (4.19) as the sum of two real parts as follows

(4.20)

2<E[
∑J
n=1〈Sτ,σγ̃nψ̃σn, H̃∂XΨτ

0〉〈H̃∂XΨσ
0 , γ̃nψ̃

σ
n〉 | Xτ ]

+2<E[
∑J
n=1〈Sτ,σγ̃nψ̃σn, H̃∂XΨτ

0〉〈γ̃nψ̃σn, H̃∂XΨσ
0 〉 | Xτ ]

'︸︷︷︸
1.

2<E
[∑J

n=1〈Sτ,σψ̃σn, H̃∂XΨτ
0〉〈H̃∂XΨσ

0 , ψ̃
σ
n〉E[γ̃∗nγ̃n] | Xτ

]︸ ︷︷ ︸
'2T (λ̃0

n)−1

+2<E
[∑J

n=1〈Sτ,σψ̃σn, H̃∂XΨτ
0〉〈ψ̃σn, H̃∂XΨσ

0 〉 | Xτ
]
E[γ̃∗nγ̃

∗
n]︸ ︷︷ ︸

=0

= 4<E
[∑J

n=1〈Sτ,σψ̃σn, H̃∂XΨτ
0〉〈H̃∂XΨσ

0 , ψ̃
σ
n〉 Tλ̃0

n

| Xτ
]

' 4<E
[∑J

n=1〈Sτ,σψ̃σn, H̃∂XΨτ
0〉〈∂XΨσ

0 , H̃ψ̃
σ
n〉 Tλ̃σn | X

τ
]

' 4T<E
[∑J

n=1〈Sτ,σψ̃σn, H̃∂XΨτ
0〉〈∂XΨσ

0 , ψ̃
σ
n〉 | Xτ

]
' 4T<E

[∑∞
n=1〈ψ̃σn, (Sτ,σ)∗H̃∂XΨτ

0〉〈∂XΨσ
0 , ψ̃

σ
n〉 | Xτ

]
'︸︷︷︸
5.

4T<E
[∑∞

n=0〈ψ̃σn, (Sτ,σ)∗H̃∂XΨτ
0〉〈∂XΨσ

0 , ψ̃
σ
n〉 | Xτ

]
= 4T<E

[
〈∂XΨσ

0 , (Sτ,σ)∗H̃τ∂XΨτ
0〉 | Xτ

]
= 4T<E

[
〈Sτ,σ∂XΨσ

0 , H̃
τ∂XΨτ

0〉 | Xτ
]
.

In the second step we used that

(4.21)
1

λ̃n(X0)
=

1
λ̃n(Xσ)

(1− (X0 −Xσ) · ∂X λ̃n
λ̃n

).

where the error term

(4.22) T
∑
n>0

(X0 −Xσ) · ∂X λ̃n
λ̃n

≤ |X0 −Xσ|`∞ |Tλ−1
n λ′n|`1 = o(M−1/2)

is negligible by the first and last assumption in (3.16). We see that the main fluctuation term
takes the same form as the friction term, so that the first limit in (4.8) proves the second limit
and we have obtained the leading order contribution in the second statement of (4.8). It remains
the verify that the other terms in (4.13) are negligible, but first comes the proof of Lemma 4.2.

Proof. (Lemma 4.2) A way to understand that the large M1/2 factor in the ψ̃′ equation of
(4.10) does not pollute the estimate of G in short time intervals is to eliminate ψ′ through the
representation

ψ̃′n(τ) = M1/2

∫ τ

0

X ′(σ) · ∂XH̃(Xσ)dσ ψ̃τn,

obtained from the last equation in (4.10). The ψ′-term in the ṗ′ equation can then be written as

2<〈
∑
n

γ̃nψ̃
′
n, ∂XH̃ψ〉 = 2M1/2<〈

∫ τ

0

X ′(ς) · ∂XH̃(Xς)dς ψτ , ∂XH̃ψτ 〉,

which yields the following additional source term in the right hand side to the equation for the
Green’s function

R(τ, σ) :=2M1/2<〈
∫ τ

σ

∫ ς

σ

Gpp(ς, υ) · ∂XH̃(Xς) ψτ , ∂XH̃ψτ 〉 dυdς

= M1/2

∫ τ

σ

∫ τ

υ

〈Gpp(ς, υ) · ∂XH̃(Xς) ψτ , ∂XH̃ψτ 〉dςdυ

= M1/2O((τ − σ)2)Gpp(τ, τ).
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This remainder leads by Duhamel’s representation to a small contribution∫ τ

σ

e(τ−σ)ÃR(τ, σ)dσ = M1/2O((τ − σ)3)

to G ' I + (τ − σ)Ã, provided M1/2(τ − σ)2 = o(1), where Ã is the submatrix in (4.10) with ψ′

eliminated

Ã :=
[

0 I

−λ′′0 − 〈ψ, H̃ ′′ψ〉 0

]
.

Therefore, the bound (4.12) holds for M1/2(τ − σ)2 = o(1) and we will use it for much shorter
time intervals, satisfying M1/2(τ − σ) = O(1).

The other coupling in (4.13) based on 〈γ̃nψ̃′n, H̃Ψ′0〉∂pu with

ψ̃′τn =
3N∑
k=1

M1/2

∫ τ

0

X ′k(σ) · ∂XkH̃(Xσ)dσ ψ̃τn

and

X ′(σ) =
∫ σ

0

p̃′(υ)dυ =
∫ σ

0

∫ υ

0

Gpp(υ, ς)〈ψ̃ςn, H̃∂XΨς
0〉dςdυ

yields by the change of the order of integration

ψ̃′τn = M1/2

∫ τ

0

∫ σ

0

∫ υ

0

Gpp(υ, ς)∂XH̃σ〈ψ̃ςn, H̃∂XΨ0(Xς)〉dςdυdσ ψ̃τn

=
∑
k

M1/2

∫ τ

0

∫ τ

ς

∂XkH̃(Xσ)
∫ σ

ς

Gpp(υ, ς)dυdσ︸ ︷︷ ︸
O((τ−ς)2)

〈ψ̃ςn, H̃∂XkΨ0(Xς)〉dς ψ̃τn,
(4.23)

which finishes the proof of (4.12). �

The quadratic factor (τ − ς)2dς in (4.23) yields by a change to the fast time scale a factor
M−3/2, where (τ − ς)2 gives the extra factor M−1 as compared to (4.18), and the component
wise bound on ∂XkH̃ij together with the `1 bound on H̃Ψ′0 in (3.16) show that the ψ̃′-term in
the intrinsic coupling (4.14) vanishes asymptotically.

The other terms in (4.13) and (4.14) depending on X ′ includes the factor GXp(τ, σ), which
introduces the additional factor τ−σ (as compared to the p′ term with the factor Gpp ∼ 1) in the
slow time scale, which in the integration of the fast scale τ − σ = M−1/2σ̂ yields an extra factor
of M−1/2 as compared to the case (4.20) with Gpp(τ, σ) ' 1. Therefore, the terms depending on
X ′ in (4.13) and (4.14) are asymptotically negligible.

The third limit: the quadratic term. The last statement in (4.8) has by the first condition in
(3.16) and (4.22) its main contribution from the diagonal part

J∑
n=1

E[|γ̃n|2〈ψ̃τn, ∂XH̃(Xτ )ψ̃τn〉 · ∂pu(Xτ , pτ , τ)]

=
J∑
n=1

E[T λ̃−1
n (X0)〈ψ̃τn, ∂XH̃(Xτ )ψ̃τn〉 · ∂pu

(
1 + o(1)

)
]

=
J∑
n=1

T E[〈ψ̃τn, λ̃−1
n λ̃′n(Xτ )ψ̃τn〉 · ∂pu

(
1 + o(1)

)
]

= o(M−1/2).
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The off diagonal contribution yields as in (4.17) two factors

∑
n,m

T

∫ τ

0

Fλ̃−1
n dσ T

∫ τ

0

Fλ̃−1
m dσ

which gives a factor M−1 so that the off diagonal part is negligible.

4.3. The Born-Oppenheimer Approximation. The purpose of this section is to study the
evolution (4.2) of ψ̃n:

Lemma 4.3. Assume that i ˙̃
ψn = M1/2H̃ψ̃n holds with the initial data ψ̃0

n = Ψn(X0), then the
orthogonal decomposition ψ̃n = ψ̄n ⊕ ψ⊥n , where ψ̄n = αΨn for some α ∈ C, satisfies

(4.24) 〈ψn(t)⊥, ψn(t)⊥〉1/2 = o(1).

Proof. Let ψτn := eiM
1/2 R τ

0 λ̃σndσψ̃τn and make the decomposition ψn = ψ̄n ⊕ ψ⊥n , where ψ̄τn
is an eigenvector of H̃(Xτ ), satisfying H̃τ ψ̄τn = λ̃τnψ̄

τ
n for the eigenvalue λ̃τn ∈ R. The similar

decomposition of ψ̃n in the lemma is related by the factor eiM
1/2 R τ

0 λ̃σndσ. This Ansatz is motivated
by the zero residual

(4.25) Rψn := ψ̇n + iM1/2(H̃ − λ̃n)ψn = 0

and the small residual for the eigenvector

〈( ˙̄ψn)\, ψ̄n〉 = 0
M1/2(H̃ − λ̃n)ψ̄n = 0,

where

(4.26) w(X) = 〈Ψn(X), w(X)〉Ψn(X)⊕ w(X)\

denotes the orthogonal decomposition in the eigenfunction direction Ψn and its orthogonal
complement. The constructions of the linear operator R in (4.25), the orthogonal splitting
ψn = ψ̄n ⊕ ψ⊥n and the projection \ in (4.26) imply

0 =
(
R(ψ̄n + ψ⊥n )

)\
= R(ψ̄n)\ +R(ψ⊥n )\

= R(ψ̄n)\ +R(ψ⊥n )

so that

ψ̇⊥n = −iM1/2(H̃ − λ̃n)ψ⊥n − (Rψ̄n)\

and we have the solution representation, as in (4.7),

(4.27) ψ⊥n (τ) = Sτ,0 ψ
⊥
n (0)︸ ︷︷ ︸
=0

−
∫ τ

0

Sτ,σ
(
Rψ̄n(σ)

)\︸ ︷︷ ︸
=αp·∂XΨn

dσ,
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where S is the solution operator Sτ,0ψ0
n = ψτn in the slow time scale. Integration by parts

introduces the factor M−1/2 we want∫ τ

0

Sτ,σRψ̄n(σ)\dσ =
∫ τ

0

iM−1/2 d

dσ
(Sτ,σ)(H̃ − λ̃n)−1Rψ̄n(σ)\dσ

=
∫ τ

0

iM−1/2 d

dσ

(
Sτ,σ)(H̃ − λ̃n)−1Rψ̄n(σ)\

)
dσ

−
∫ τ

0

iM−1/2Sτ,σ
d

dσ

(
(H̃ − λ̃n)−1(Xσ)Rψ̄n(σ)\

)
dσ

= iM−1/2(H̃ − λ̃n)−1Rψ̄n(τ)\ − iM−1/2Sτ,0(H̃ − λ̃n)−1Rψ̄n(0)\

−
∫ t

0

iM−1/2Sτ,σ
d

dσ

(
(H̃ − λ̃n)−1(Xσ)Rψ̄n(σ)\

)
dσ.

(4.28)

The spectral gap assumption in (3.16), i.e. |λ̃m − λ̃n| > c for m 6= n (which excludes multiple
eigenvalues), implies by diagonalization on the orthogonal complement of Ψn

‖(H̃ − λ̃n)−1Rψ̄n(0)\‖2L2(dx) =
∞∑
m 6=n

(λ̃m − λ̃n)−2|〈Ψm, Rψ̄n(0)\〉|2

=
∞∑
m 6=n

(λ̃m − λ̃n)−2λ̃−1
m |〈Ψm, H̃

1/2Rψ̄n(0)\〉|2

≤ c−3‖H̃1/2Rψ̄n(0)\‖2L2(dx) = O(c−3)

and the analogous estimate

‖ d
dσ

(
(H̃ − λ̃n)−1(Xs)Rψ̄n(s)\

)
‖L2(dx) = O(c−5/2),

which inserted in (4.27) proves the Lemma for bounded time intervals.
The evolution on longer times requires another idea: one can integrate by parts recursively

in (4.28) and assume that the constructed expansion∫ τ

0

Sτ,σRψ̄n(σ)\dσ =
[
βR̃− β d

dσ
(βR̃) + β

d

dσ

(
β
d

dσ
(βR̃)

)
− . . .

]σ=τ

σ=0
,

β := iM−1/2Sτ,σ(H̃ − λ̃n)−1,

R̃ := Rψ̄n(σ)\,

converges, which we do by requiring σ 7→ H̃(Xσ) to real analytic.
�

4.4. Proof of Theorem 3.3.

Proof. Use the estimate

T −1

∫ T
0

Eγ
[
g(Xτ , pτ )

]
− EW [g(Xτ

L, Ẋ
τ
L)
]
dτ

= o(M−1/2)T −1

∫ T
0

∫ τ

0

Eγ [|Du(Xσ, pσ, σ; τ)|`1 ]dσdτ

from (4.6) and (4.13) in the proof of Theorem 3.1 to obtain

T −1

∫ T
0

Eγ
[
g(Xτ , pτ )

]
− EW [g(Xτ

L, Ẋ
τ
L)
]
dτ = o(1),



STOCHASTIC MOLECULAR DYNAMICS DERIVED FROM QCMD 31

based on the assumption ∫ τ

0

|Du(Xσ, pσ, σ; τ)|`1dσ = O(M1/2),

where Du is used for the combination of derivatives ∂pu, ∂ppu, ∂Xpu appearing in the estimates
of the proof of Theorem 3.1. �

4.5. A Motivation for limτ→∞
∫ τ

0
∂pu(Xσ, pσ, σ; τ)dσ = O(M1/2). This section gives a mo-

tivation for the assumption in Theorem 3.3 that
∫∞

0
∂pu(Xσ, pσ, σ)dσ = O(M1/2), based on

stochastic flows.
Using the expected value E = EW with respect to the Wiener process in this section, we have

the representation,

∂pu(X, p, σ; τ) = ∂pE[g(Xτ
L, p

τ
L) | Xσ

L = X, pσL = p]

= E[∂pσLg(Xτ
L, p

τ
L) | Xσ

L = X, pσL = p]

= E[∂Xg(Xτ
L, p

τ
L)
∂Xτ

L

∂pσL
+ ∂pg(Xτ

L, p
τ
L)
∂pτL
∂pσL

| Xσ
L = X, pσL = p]

(4.29)

where the stochastic flow (∂X
ς
L

∂pσL
,
∂pςL
∂pσL

) =:
(
X ′L(ς;σ), p′L(ς;σ)

)
solves the linear equation

d

dς
X ′L(ς;σ) = p′L(ς;σ)

d

dς
p′L(ς;σ) = −∂XXλ0(Xς

L)X ′L(ς;σ)− K̄p′L(ς;σ)

in the special case when diffusion coefficient K̄ := M−1/2K = M−1/2k I is a constant multiple
of the identity, with k > 0. To simplify the writing we use the notation ∂XXλ0(X) =: λ′′0(X) for
the Hessian of λ0. Let the matrix in the right hand side be denoted by

Â(ς) :=
[

0 I
−λ′′0(Xς

L) −K̄

]
.

The discrete time levels σ = ς0, . . . , ςN̂ = τ yields for sufficiently small time step ∆t := ςn+1− ςn,
the representation

(4.30)
[
X ′L(ς;σ)
p′L(ς;σ)

]
'
( N̂∏
n=1

e∆tÂ(ςn)
) [ 0

I

]
:= e∆tÂ(ςN )e∆tÂ(ςN−1) . . . e∆tÂ(ς1)

[
0
I

]
.

To estimate this product we will use the Euclidian matrix norm ‖A‖ := supY ∈R6N |AY |/|Y |,
which is bounded by the square root of the largest eigenvalue of A∗A and satisfies the product
rule

‖
N̂∏
n=1

e∆tÂ(ςn)‖ ≤
N̂∏
n=1

‖e∆tÂ(ςn)‖.

To study these exponentials, we need information about the spectrum and therefore we diag-
onalize the matrix Â(ςn) and define the matrix

Q =
[
a+ a−
I I

]
,

where

a± := −1
2
K̄ ± i

(
λ′′0(ςn)− 4−1K̄2

)1/2
.
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The matrix Q transforms Â(ςn) into block diagonal form

Q−1Â(ςn)Q =
[
a+ 0
0 a−

]
,

since K̄ and λ′′0 commute (it is only here we use that K̄ is a multiple of the identity). Write the
eigenvalues of the Hermitian matrices a± as −k/2±i(λ̄m−k2/4)1/2. When λ̄m−k2/4 is positive,
the real part of the eigenvalue is negative equal to −k/2 and when λ̄m − k2/4 is negative the
real part of the eigenvalue is bounded by (k2/4− λ̄m)1/2−k/2. Introduce therefore the function

−k/2 + (k2/4− λ̄(ςn))1/2
+ := −k/2 +

√
max
m

(0, k2/4− λ̄m(ςn)),

which bounds the real part of the eigenvalue, to obtain the spectral bound

‖e∆tÂ(ςn)‖ ≤ exp
(

∆t
(
− k/2 + (k2/4− λ̄(ςn))1/2

+

))
and consequently

‖
N̂∏
n=1

e∆tÂ(ςn)‖ ≤
N̂∏
n=1

exp
(

∆t
(
− k/2 + (k2/4− λ̄(ςn))1/2

+

))

= exp
( N̂∑
n=1

∆t
(
− k/2 + (k2/4− λ̄(ςn))1/2

+

))
' exp

(∫ τ

σ

(
− k/2 + (k2/4− λ̄(ς))1/2

+

)
dς
)
.

(4.31)

The theory of large deviations tells us that for low temperature T � 1, Langevin solution paths
Xς
L spend long time around stable equilibria, where λ̄m > 0, and at some rare events they

make short time τe (of order one in the slow scale) excursions between such equilibria, see [13].
The number of such rare events in a time interval [0, τ − σ] can be approximately modelled by
a Poisson process mτ−σ with the intensity ξ, proportional to e∆λ0/T ∼ e−1/T (for a negative
potential difference −∆λ0 := λ0(X) − λ0(Y ) ∼ 1). Let κ := maxX

(
k2/4 − λ̄(X)

)1/2
+

, and
β := teκ.

The estimates (4.30) and (4.31) together show that∣∣∣ [ ∂pkXL(ς;σ)
∂pkpL(ς;σ)

] ∣∣∣ ≤ exp
(∫ τ

σ

(
− k/2 + (k2/4− λ̄(ς))1/2

+

)
dς
)

so that representation (4.29) implies the bound

lim
T→∞

T −1

∫ T
0

∫ τ

0

|∂pu(Xσ, pσ, σ; τ)|`1dσdτ

≤ C lim
T→∞

T −1

∫ T
0

∫ τ

0

e
R τ
σ
−k/2+(k2/4−λ̄(ς))

1/2
+ dςdσdτ

= C lim
τ→∞

∫ τ

0

E[e
R τ
σ
−k/2+(k2/4−λ̄(ς))

1/2
+ dς ]dσ
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for some constant C bounding Q, where the expected value is taken with respect to the Poisson
process. This expected value can then roughly by estimated by

E[e
R τ
σ
−k/2+(k2/4−λ̄(ς))

1/2
+ dς ] ≤ E[e−k(τ−σ)/2+βmτ−σ ]

= e−(ξ+k/2)(τ−σ)
∞∑
m=0

eβm
(
ξ(τ − σ)

)m
m!

= e

(
(eβ−1)ξ−k/2

)
(τ−σ).

Since T � logM , we have a tiny intensity ξ ∼ e−1/T � k ∼M−1/2, which implies

(eβ − 1)ξ − k/2 < −k/3

and we conclude that

lim
T→∞

T −1

∫ T
0

∫ τ

0

|∂pu(Xσ, pσ, σ; τ)|`1dσdτ = O(M1/2).

4.6. A Motivation for Non Zero Friction. Note that to have non zero friction and dissipation
requires Γ(0, X) > 0, in (3.13), which together with 〈H̃1/2Ψ′0, H̃

1/2Ψ′0〉 '
∫

R Γ(λ,X)dλ being
finite implies that 〈Ψ′0,Ψ′0〉 '

∫
R λ
−1Γ(λ,X)dλ = ∞. To have an infinite L2-norm is possible

with a slow decay as |xj | → ∞, for instance that ∂XnΨ0 decays as |xj−Xn|−α with 1/2 < α ≤ 3/2
for large |xj | j = 1, . . . J , using spherical symmetry. Is such a decay reasonable in reality? The
Thomas-Fermi model can be used to motivate that ∂XΨ0 could decay as |x|−1.

The Thomas-Fermi model for ground state energies, using an electron density in R3, is asymp-
totically exact for large systems where the number of electrons, J , and the total nuclear charge,
Z, tend to infinity, see [24]. Its electron density

(4.32) ρ = Φ3/2/γ, γ := (3π2)2/3,

satisfies for the neutral case J = Z the Thomas-Fermi equation

−∆xΦ +
4

3π
Φ3/2 = 4π

N∑
n=1

Znδ(x−Xn),

and for the derivative

(4.33) ∂Xρ = 3Φ1/2∂XΦ/(2γ),

we obtain

−∆x∂XnΦ +
2
π

Φ1/2∂XnΦ = −4πZnδ′(x−Xn).

The solution ∂XΦ then roughly behaves as the derivative of the Green’s function, which decays
as |x|−2. One can observe the decay |Ψ0| = ρ1/2 ∼ |x|−3, see [24]. This implies by (4.33) and
(4.32) that ∂XΨ0 has the desired decay

∂Xρ/ρ
1/2 ∼ Φ1/2∂XΦ/Φ3/4 ∼ ∂XΦ/Φ1/4 ∼ |x|∂XΦ ∼ |x|−1.

4.7. Other Initial Electron Distributions. This section compares our model of initial data
with two other models of electron initial data, having given probabilities to be in mixed states
or in pure eigenstates. It turns out that Einstein’s fluctuation-dissipation result, which holds
for our Hamiltonian system model using the Gibbs distribution does not hold for the traditional
canonical distribution. To sample from the Gibbs equilibrium is standard in classical Hamiltonian
statistical mechanics but it seems so far non standard for Ehrenfest quantum dynamics.
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4.7.1. Canonical Mixed States. Let qj denote the density of state j in the initial data ψ0

composed of mixed states. In the usual setting of a canonical Gibbs-Boltzmann distribution
qj = e−λ̃j/T /

∑
j e
−λ̃j/T , which follows from maximizing the von Neumann entropy defined by

−
∑
j qj log qj , with the probability and energy constraints

∑
j qj = 1 and

∑
j λ̃jqj = constant,

see [14]. The stochastic model for the variable |γj |2, measuring in (3.9) and (3.10) the probability
to be in electron state j, is different: the chi-square distribution of λ̃j |γj |2/T contains both the
weight to be in electron state j and the spatial density of this state.

4.7.2. Canonical Pure States. Assume, instead of (3.9), that ψ0 is a pure electron eigenstate
eiαjΨj with probability

(4.34) qj := e−λ̄j/T (
∑
`

e−λ̄`/T )−1

(and independent random phase shifts αj uniformly distributed on [0, 2π]) for j = 0, . . . , J̃ , and
write ψ0 =:

∑
j≥0 γ̌jΨj which has the covariance E[(γ̌j)∗γ̌k] = qjδjk. Let Ψ̄0(X) = γ̌0 Ψ0(X).

Then the fluctuations are very different from the case in Theorem 3.1, since E[(<〈ψ̃0, H̃∂XΨ̄0〉)2]
is zero due to E[γ̌∗j γ̌k γ̌

∗
0 γ̌0] = 0 for j, k > 0. We assume in (3.9) that the electron-nuclei system

is in a pure eigenstate of the full Schrödinger equation, cf. [27], and that does not mean that
the electrons have to be in eigenstates of the electron operator H for fixed nuclei positions.
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den Flüssigkeiten suspendierten Teilschen, Ann. Phys. 17 (1905) 549–560.
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