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1 Introduction

Let Ω be a bounded domain in RN , with N ≥ 3; consider the following semi-
linear elliptic problem





−∆u = λg (x, u) + |u|2∗−2 u, x ∈ Ω

u > 0 x ∈ Ω

u = 0 x ∈ ∂Ω

(1)

where 2∗ = 2N/ (N − 2) is critical from the viewpoint of the Sobolev embed-
ding H1

0 (Ω) ⊂ L2∗ (Ω), and g (x, u) is a lower-order perturbation of u2∗−1, in
the sense that limu→+∞ g (x, u) /u2∗−1 = 0. As well known, if g satisfies suitable
assumptions, solutions of (1) correspond to critical points of the functional

Ψ (u) =
1

2

∫

Ω

|∇u|2 dx− λ
∫

Ω

G (x, u) dx− 1

2∗

∫

Ω

|u|2∗ dx,

where G (x, u) =
∫ u
0 g (x, t) dt. Since the embedding H1

0 (Ω) ⊂ L2∗ (Ω) is not
compact, the functional Ψ does not satisfy the Palais-Smale condition: hence
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the standard variational arguments do not apply. For equations with critical
growth, nontrivial solution may non exists: a well-known nonexistence result
due to Pohozaev [6] asserts that if Ω is starshaped and λ ≤ 0 there is no
solution (different from the trivial one) of the problem





−∆u = λu + |u|2∗−2 u x ∈ Ω

u > 0 x ∈ Ω

u = 0 x ∈ ∂Ω.

(2)

In recent years this situation of lack of compactness has been extensively
investigated (see for example [5]); according to the behaviour of g and the
kind of results one wants to prove, topological or variational methods turn
out to be more appropriate. When g is superlinear, for example g = |u|p−1 u,
1 < p < 2∗ − 1, variational tools, such as minimax arguments, provide the
existence of a nontrivial positive solution; on the contrary when g is sublinear,
for example g = |u|p−1 u, 0 < p < 1, sub- and super-solutions are quite
convenient. In particular we recall the following known existence results for
problem (1):

• The first existence result is due to Brezis-Nirenberg [2]; in a pioneering
result, they showed that, when g (x, u) = u, there exists a nontrivial positive
solution if λ ∈ (λ∗, λ1), with λ∗ = 0 for N ≥ 4 and 0 < λ∗ (Ω) < λ1 for
N = 3 (λ1 denoting the first eigenvalue of −∆ relative to the homogeneous
Dirichlet problem in Ω). In the same work they also proved an existence
result for equation (1) when g, roughly speaking, has a linear or superlinear
growth near zero and near infinity: in this case there is again bifurcation
from infinity in λ = 0 for N ≥ 4 , whereas for N = 3 it can not be guaranteed
in the entire subcritical growth range of the term g.

• Later, Ambrosetti-Brezis-Cerami [1] established the existence of two positive
solutions for 0 < λ < Λ when g = uq with 0 < q < 1 and N ≥ 3, thanks
to the combined effects of the sublinear and superlinear terms. The first
solution is found using sub- and super-solutions; in contrast with the pure
concave case, a second positive solution is found by variational arguments.
Moreover, they proved that the first solution, uλ, is such that ‖uλ‖∞ → 0
as λ ↓ 0, while the second solution, wλ, (if Ω is strictly starshaped) has a
nonlimited norm, that is, ‖wλ‖∞ →∞ as λ ↓ 0.

One may ask if the superlinear/sublinear growth of the subcritical term can
be weakened in these existence results, e. g., considering subcritical terms pre-
senting superlinear or subliner asymptotic behaviour near zero or near infinity.
In fact, the proofs presented by Brezis-Nirenberg in [2] and by Ambrosetti-
Brezis-Cerami [1] can be generalized with some technicalities to subcritical
terms presenting, respectively, a superlinear or sublinear asymptotic behav-
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iour near the origin: for example, it is not hard to prove the existence of a
positive solution for problem (1) if N ≥ 5 and g(x, u) satisfies the following
assumptions





(i) g (x, u) = |u|p−1 u for |u| < 1, x ∈ Ω, p > 1

(ii) ∃δ > 0 : g (x, s) ≥ 0 ∀ |x| < δ, ∀s > 0,

(3)

and the existence of two positive solutions for λ ∈ (0, Λ) if N ≥ 3 and g(x, u)
satisfies





(i) g (x, u) = |u|p−1 u for |u| < 1, x ∈ Ω,

0 < p < 1, p < p1 < 2∗ − 1

(ii) |u|p−1 u ≤ g (x, u) ≤ |u|p1−1 u for |u| ≥ 1, x ∈ Ω.

(4)

We note that the behaviour of the subcritical term near the origin seems to
determine the structure of bifurcation from infinity for problem (1): that is, it
seems not possible to obtain similar existence results assuming only superlin-
ear or sublinear growth near infinity. In lower dimensions, however, the effect
of the pure convex/concave behaviour of the subcritical term assumes an in-
creasing role, that can not be replaced by the analogous asymptotic behaviour
of g near zero: for example, in the pure convex case considered in [2] the exis-
tence results are valid for N ≥ 4, whereas for N = 3 a nonexistence result is
given; assuming convexity near the origin, instead, the existence results can be
extended, in general, only for N ≥ 5, as we will prove exhibiting a counterex-
ample. The aim of this paper is to point out the difference between the pure
convex/concave case and the case of convex/concave growth of the subcritical
term near the origin in lower dimensions: based on a celebrated Identity due
to Pohozaev [6], we construct special classes of nonlinear problems which do
not have nontrivial solutions bifurcating from infinity in λ = 0 (if the domain
Ω is strictly starshaped), according to the behaviour of the subcritical term
g (x, u) and to the dimension N . In particular, we prove that the first critical
dimension is N = 4, which is somehow in contrast with the pure convex case
considered in [2]. We remark that the class of subcritical terms presented here
has superlinear growth near the origin, whereas the growth near infinity can be
sublinear or superlinear; sublinear growth near the origin, instead, determines
bifurcation from infinity for all N ≥ 3, either for convex or for concave behav-
iour of g near infinity, as one can prove following [1] with slight modifications:
that is, the role of the asymptotic behaviour of the subcritical term g(x, u)
near infinity does not determine the structure of bifurcation of problem (1).
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2 Recalls from potential theory and elliptic estimates

Let Ω be a bounded (smooth) domain in RN , with N ≥ 3. We will exhibit two
classes of subcritical terms g(x, u) such that problem (1) does not admit any
positive solution when λ is close to zero and N = 3, 4. The proofs rely on the
so-called Pohozaev’s identity [6]: suppose u is a smooth function satisfying




−∆u = f(u) x ∈ Ω

u = 0 x ∈ ∂Ω
(5)

where g is a continuous function on R and Ω is a (smooth) starshaped domain.
Then we have

(
1− 1

2
n

) ∫

Ω

f (u) · udx + n
∫

Ω

F (u) dx =
1

2

∫

Ω

(x · ν)

(
∂u

∂ν

)2

ds (6)

where

F (u) =

u∫

0

f (t) dt

and ν denotes the outward normal to ∂Ω. We will combine the Pohozaev’s
identity (6) together with some standard elliptic inequalities and the weak
interpolation inequality, which we briefly recall in the following (see [4]).
Let us consider a domain Ω ⊆ RN ; denote with D(Ω) the space of the test
functions and with D’(Ω) the space of distributions, that is, the dual space
of D(Ω). Let us recall the definition of the Green’s functions for the Poisson’s
equation in RN ,

G(x) =− 1

2π
ln |x| N = 2

G(x) =
1

(N − 2)µ(SN−1)
|x|2−N N 6= 2 (7)

where µ(SN−1) is the area of the unit sphere SN−1 ⊆ RN . It is well known that
for every u ∈ L1

loc, the function

ku(x) = (G ∗ u)(x) =
∫

Ω

G(x− y)u(y)dy
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satisfies

ku ∈ L1
loc(Ω)

(8)

−4ku = u ∈ D’(Ω)

if the function y 7→ G(x− y)u(y) is summable over Ω for almost every x. On
the other hand, applying the Young’s inequality

‖g ∗ h‖p ≤ Cq,r,p,N‖g‖q‖h‖r if
1

q
+

1

r
= 1 +

1

p
, p, q, r ≥ 1

with g = G, h = u and r = 1, we have that

‖ku‖p ≤ Cq,r,p,N‖G‖p‖u‖1. (9)

Therefore, combining (7),(8) and (9) we can conclude that the operator 4−1

is bounded from L1 to Lp with p ∈ [1, 3) if N = 3, and from L1 to Lp with
p ∈ [1, 2) if N = 4; that is, for every v ∈ L1 there is u ∈ Lp (with p satisfying
the previous conditions) such that

4u = v

(10)

‖u‖p≤Cp,N‖v‖1 = Cp,N‖4u‖1.

If p = 3 and N = 3, or, respectively, if p = 2 and N = 4, (10) are not verified;
in this case, however, we can apply the notion of weak Lp spaces (see [4]).
Consider the space of all measurable functions u such that

[u]q,w = sup
α>0

α · µ{x : |u(x)| > α}1/q < ∞; (11)

this space is called weak Lq-space Lq
w(RN). Any function in Lq(RN) is in

Lq
w(RN): simply note that

‖u‖q
q ≥

∫

|u|>α

|u(x)|qdx ≥ αq · µ{x : |u(x)| > α}

so that

‖u‖q
q ≥ [u]qq,w.
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The expression (11) does not define a norm; nevertheless, there is an alterna-
tive expression, equivalent to (11), that is indeed a norm: it is given by

‖u‖q,w = sup
A

1

µ(A)1/r

∫

A

|u(x)|dx. (12)

where 1/q + 1/r = 1 and A denotes an arbitrary measurable set of measure
µ(A) < ∞. In particular, u(x) = |x|−λ is in Lq

w(RN) with q = N/λ, N > λ > 0
and

‖u‖N/λ,w =
N

N − λ

[
µ(SN−1)

N

]λ/N

.

The weak Young inequality states that for g ∈ Lq
w(RN) and ∞ > p, q, r > 1

with 1/p + 1/q + 1/r = 2, the following inequality holds:

∫

RN

∫

RN

f(x)g(x− y)h(y)dxdy ≤ Cp,q,r‖f‖p‖g‖q,w‖h‖r; (13)

taking λ = N/q and g(x) = |x|−λ the weak Young inequality (13) is equivalent
to the Hardy-Littlewod-Sobolev inequality,

∫

RN

∫

RN

f(x)|x− y|−λh(y)dxdy ≤ CN,λ,p‖f‖p‖h‖r

with p, r > 1, 0 < λ < N and 1/p + λ/N + 1/r = 2. In particular, the sharp
constant in the weak Young inequality is the same as for the Hardy-Littlewood-
Sobolev inequality. Observe that we can also view the Young inequality as the
statement that the convolution is a bounded map from Lp(RN)× Lq

w(RN) to
Ls(RN), that is

‖f ∗ g‖s ≤ Cq,s,p,N‖g‖q,w‖f‖p if
1

p
+

1

q
= 1 +

1

s
, p, q, s > 1. (14)

A final inequality involving the Lq
w spaces is the weak interpolation inequality:

if u ∈ Lp
w ∩ Lr, then

‖u‖q ≤ Kq,r,p,N‖u‖a
p,w‖u‖1−a

r with
1

q
=

a

p
+

1− a

r
. (15)

This inequality will allow us to combine the estimates obtained from the Po-
hozaev’s identity with the elliptic estimates (10).
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3 Nonexistence results

In this section we construct two classes of nonlinear elliptic problems with
critical growth which don’t admit any positive solution near λ = 0. The proof
of nonexistence is based on Pohozaev’s identity and on the elliptic estimates
presented in the previous section. From now on suppose Ω is strictly starshaped
about the origin, so that (x · ν) > c > 0 a.e. on ∂Ω. We discuss separately the
two cases, N = 3 and N = 4.

3.1 The case N = 3.

We assume here that N = 3 and

g(u) =




|u|p−1 · u |u| < 1, 1 < p

|u|q−1 · u |u| ≥ 1, 0 < q ≤ 3
(16)

Then we have the following result.

Theorem 1 Let Ω be strictly starshaped about the origin; suppose that u is a
solution of problem (1), with g given by (16). Then

λ ≥ λ0 (q, p, Ω) > 0

if 1 < p, 0 < q ≤ 3.

Proof of Theorem 1. This Theorem is a slight extension of Theorem 2.4 in [2],
so we will be brief. By Pohozaev’s identity (6), since Ω is strictly starshaped,
we have

λ
5− q

2(q + 1)

∫

|u|≥1

|u|q+1dx + λ
5− p

2(p + 1)

∫

|u|<1

|u|p+1dx

+3λ · µ {x ∈ Ω |u| ≥ 1} q − p

(q + 1)(p + 1)
=

1

2

∫

∂Ω

(x, ν)

∣∣∣∣∣
∂u

∂ν

∣∣∣∣∣
2

dx ≥

c (
∫
Ω |∆u| dx)2 .

(17)
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We discuss separately the different cases.

(i) If 1 < q = p ≤ 3, the subcritical term g defined by (16) reduces to
the case considered in Theorem 2.4 in [2], where the result is obtained
by means of interpolation inequality and standard elliptic estimates. We
omit the details.

(ii) If 3 ≥ q > p > 1, then q − p > 0 and

‖u‖q+1
q+1 ≥

∫

|u|≥1

|u|q+1dx > µ {x ∈ Ω : |u| ≥ 1} ,

so that

λc(p, q)
(
‖u‖q+1

q+1 + ‖u‖p+1
p+1

)
≥ c‖∆u‖2

1. (18)

Combining interpolation inequality (eventually the weak one, (15)) as
in Theorem 2.4 in [2] we can obtain the following inequalities:

‖u‖q+1 ≤ c‖∆u‖
2

q+1

1

‖u‖p+1 ≤ c‖∆u‖
2

p+1

1

so that

‖u‖q+1
q+1 + ‖u‖p+1

p+1 ≤ c‖∆u‖2
1 ≤ λc(p, q)

(
‖u‖q+1

q+1 + ‖u‖p+1
p+1

)
;

this implies directly λ ≥ λ0 > 0.

(iii) If 5 > p > q > 1, then q − p < 0 and (17) implies directly

λc (q, p) ‖u‖q+1
q+1 ≥ c ‖∆u‖2

1 ,

where q ∈ (1, 3], so that we can conclude as in [2].

(iv) If 5 > p > 1 > q > 0, (17) implies

λc (q, p) ‖u‖2
2 ≥ c ‖∆u‖2

1 ,

since q− p < 0; on the other hand, by standard elliptic estimates (10),

‖4u‖2
1 ≥ c ‖u‖2

2 ,

so that

λ ≥ λ0.

(v) Finally, if p ≥ 5 > q, (17) implies either

λc (q, p) ‖u‖q+1
q+1 ≥ c ‖∆u‖2

1 ,
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if q ∈ (1, 3], or

λc (q, p) ‖u‖2
2 ≥ c ‖∆u‖2

1

if q ∈ (0, 1). In both cases we can conclude as previously.

The proof of Theorem 1 is now complete.

3.2 The case N = 4.

We assume here that N = 4 and

g(u) =




|u|p−1 · u |u| < 1, 1 < p

|u|q−1 · u |u| ≥ 1, 0 < q < 1
(19)

Then we have the following result.

Theorem 2 Let Ω be strictly starshaped about the origin; suppose that u is a
solution of problem (1), with g given by (19). Then

λ ≥ λ0(q, p, Ω) > 0.

Proof of Theorem 2. By Pohozaev’s identity (6), since Ω is strictly starshaped,
we have

λ
3− q

q + 1

∫

|u|≥1

|u|q+1dx + λ
3− p

p + 1

∫

|u|<1

|u|p+1dx

+4λ · µ {x ∈ Ω : |u| ≥ 1} q − p

(q + 1)(p + 1)
≥ c




∫

Ω

|4u|dx




2

.

(20)

Observe that q − p < 0 since 0 < q < 1 < p, from (19). We discuss separately
the different cases.

(i) If 1 < p < 2, (20) implies

λ
3− q

q + 1

∫

|u|≥1

|u|q+1dx + λ
3− p

p + 1

∫

|u|<1

|u|p+1dx ≥ c ‖4u‖2
1 . (21)
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By potential theory,

u ≤ v =
c

|x|2 ∗ |4u|

and |x|−2 ∈ L2
w; this yields, by definition (12),

‖4u‖2
1 ≥ c‖u‖2

2,w. (22)

Let us now consider separately the two integral terms in (21). On one
hand, applying the weak interpolation inequality (15) we have

∫

|u|<1

|u|p+1dx ≤ c‖χ{|u|<1}u‖(p+1)a
2,w ‖χ{|u|<1}u‖(1−a)(p+1)

3 (23)

where 1
p+1

= a
2

+ 1−a
3

, that is, a = 4−2p
p+1

. Since 1 < p < 2, (23) implies

∫

|u|<1

|u|p+1dx≤ c‖u‖2(2−p)
2,w {

∫

|u|<1

|u|3}p−1

≤ c‖u‖2(2−p)
2,w {

∫

|u|<1

|u|p+1}p−1;

then
∫

|u|<1

|u|p+1dx ≤ c‖u‖2
2,w. (24)

On the other hand, by the equivalent definition of weak-L2 norm, (11)

∫

|u|≥1

|u|q+1dx =
∫

|u|≥1

dx

|u|∫

0

(q + 1)αqdα

=

1∫

0

(q + 1)αqdα
∫

|u|≥1

dx +

∞∫

1

(q + 1)αqdα
∫

|u|≥α

dx

=

1∫

0

(q + 1)αqµ{|u| ≥ 1}dα +

∞∫

1

(q + 1)αqµ{|u| ≥ α}dα

≤‖u‖2
2,w + ‖u‖2

2,w

∞∫

1

(q + 1)
1

α2−q
dα

=
2

1− q
‖u‖2

2,w. (25)

Combining (21), (22), (24) and (25) yields

10



∫

|u|≥1

|u|q+1dx +
∫

|u|<1

|u|p+1dx≤ c‖u‖2
2,w ≤ ‖4u‖2

1

≤ cλ{
∫

|u|≥1

|u|q+1dx +
∫

|u|<1

|u|p+1dx};

this implies directly λ ≥ λ0 > 0.

(ii) If 2 ≤ p < 3, observe that

λ
3− q

q + 1

∫

|u|≥1

|u|q+1dx + λ
3− p

p + 1

∫

|u|<1

|u|p+1dx

≤ λc(q, p){
∫

|u|≥1

|u|q+1dx +
∫

|u|<1

|u|s+1dx}

with s ∈ (q, p)∩ (1, 2); hence we can repeat the proof given in previous
point with s instead of p.

(iii) If p ≥ 3, then (20) implies

λ
3− q

q + 1

∫

|u|≥1

|u|q+1dx ≥ c




∫

Ω

|4u|dx




2

,

and we can conclude directly as in point (i).

The proof of Theorem 2 is now complete.
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