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a b s t r a c t

This paper presents an investigation into generalised Bayesian analysis of warranty contracts, using sets
of prior distributions within the theory of imprecise probability. Explicit expressions are derived for
optimal lower and upper bounds for the expected profit for the manufacturer of a product,
corresponding to an imprecise negative binomial model for which two sets of prior distributions are
studied. The results can be used to set a maximum value of compensation such that the manufacturer's
expected profit remains positive, under vague prior knowledge.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Warranties are important aspects of many contracts between
consumers and manufacturers. Typically, decisions about such con-
tracts must be made at an early stage, when the available knowledge
about the product reliability might be vague. While the Bayesian
approach is attractive to investigate warranties, meaningfully assigning
a single prior distribution might be difficult and it might not fully
reflect available information. In particular, if one attempts to model lack
of prior information, the generalised Bayesian approach using theory of
imprecise probability, in which sets of prior distributions are used
instead of a single prior distribution, provides an attractive framework
for inference that can be used to analyse warranty contracts.

An introduction to general theory of imprecise probability has
been presented by Augustin et al. [1], while an earlier detailed
mathematical introduction to such theory was presented by
Walley [2]. Introductions and overviews of imprecise probability
with specific attention to topics in reliability and risk have been
presented by the current authors [3–5]. The problem studied in
this paper concerns a basic model for warranties, proposed by
Singpurwalla [6] and also mentioned by Aven [7]. It does not
include detailed analysis of real-world warranty data, which is an
important and challenging topic which could benefit from analysis
with the use of statistical methods based on imprecise probabil-
ities. Recent contributions to statistical methods for analysis of
real-world warranty data, including many further references, have
been presented by Wu [8] and Gupta et al. [9]. Standard Bayesian

analysis of warranty claim data has been proposed by many
authors, for example, Stephens and Crowder [10], Chen and
Popova [11], Wu and Huang [12], and Akbarov and Wu [13].

Section 2 introduces the basic setting for the analysis of warranty
contracts considered in this paper. Section 3 presents a standard
Bayesian approach for such an analysis, which is generalised through
the use of an imprecise probability model in Section 4. While this
model is closely related to popular imprecise probability models, it
has a quite obvious disadvantage which is addressed in Section 5,
effectively by using a restricted set of prior distributions. The main
results presented in this paper are explicit expressions for the lower
and upper expected profits for the manufacturer with a specified
warranty contract. These are optimal lower and upper bounds and
they enable valuation of compensation under this contract in order
for the expected profit to remain positive. The presented imprecise
probability models only assume vague prior knowledge and explicitly
reflect this through these lower and upper bounds. The results are
illustrated by examples in the respective sections. The paper ends
with some concluding remarks in Section 6. Detailed proofs of the
propositions in this paper are presented in an appendix.

2. Warranty contract analysis

Consider a scheme of typical warranty contracts as proposed by
Singpurwalla [6] and also considered by Aven [7]. The scheme
models the exchange of items from a large collection of similar items
between a manufacturer (seller A) and a consumer (buyer B).

Let n be the number of items that the buyer would like to
purchase. These items are supposed to be exchangeable with
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regard to their intended functioning and to have independent and
identically distributed (iid) failure behaviour. Each item is required
to be used for τ units of time, so the iid assumption for their
lifetimes implies that each item meets this requirement with the
same probability and the random success of any item in doing so is
independent of that of other items, conditional upon the value of
this probability. Throughout this paper, and in line with common
practice, the probability of an item functioning successfully over
the period considered is assumed to be high, so failures are relati-
vely rare. It is assumed that an item can only fail once.

Suppose that the buyer B is willing to pay x monetary units, say
dollars, per item, and is prepared to tolerate at most a total of z
failures for all the n units in the time interval ½0; τ�. For each failure
in excess of z, the buyer B needs to be compensated at the rate of y
dollars per item. In effect, the quantity τ can be viewed as the
duration of a warranty. One of the questions of interest is determi-
nation of the maximum compensation y per item in order for the
seller to keep a non-negative expected profit.

Suppose that it costs c dollars to produce a single unit of the
item, then the sale of n units at price x leads to income nðx�cÞ
dollars for seller A. If the buyer B experiences z or fewer failures
in ½0; τ�, then this income is equal to A's profit. However, if B
experiences i4z failures in ½0; τ� then A's liability is ði�zÞy leading
to total profit of nðx�cÞ�ði�zÞy dollars.

Formally, the number of failing items in the given time period of
length τ should be modelled by a Binomial distribution. However, due
to the reasonable assumption that failures during this period are
relatively rare, it is common practice [6] to use the Poisson distribu-
tion as approximation, this simplifies computation and is assumed
henceforth in this paper. In this model, the parameter reflecting the
quality of the items is the failure rate λ, which represents the average
number of failing items among n items during a unit time interval. Let
pðijλÞ denote the probability for the event that exactly i items will fail
during the time interval ½0; τ�. For known value of the parameter λ,
this probability is

pðijλÞ ¼ ðλτÞi expð�λτÞ
i!

: ð1Þ

Note that, while these probabilities are positive for all integers iZ0,
the assumption that items will only fail quite rarely implies that pðijλÞ
for i4n will be neglectably small, hence the approximation men-
tioned above remains reasonable. The corresponding expected profit
for seller A, denoted by G (for ‘gain’), for known value of λ, is

EλG¼ nðx�cÞ�y
Xn

i ¼ zþ1

ði�zÞpðijλÞ: ð2Þ

In this paper, the scenario considered is that seller A will aim at non-
negative expected profit, so EλGZ0. Of course, this could be replaced
with a different target for the expected profit, the mathematical
analysis would be easily adapted and is not discussed further. If the
seller has strong background information concerning the failure rate
λ, it may be possible to consider it to be known. However, in many
applications such information is not available. The Bayesian approach,
reviewed in the following section, is the standard method for dealing
with a not fully known failure rate.

3. Standard Bayesian approach

If the parameter λ is unknown, it can be considered as a
random quantity for which a probability density function πðλjθÞ
can be assumed. In this case, the Bayesian approach can be applied
for computing the expected profit, which is determined as the

unconditional expected value

EG¼
Z
Ω
EλG � πðλjθÞ dλ¼ nðx�cÞ�y

Xn
i ¼ zþ1

ði�zÞ
Z
Ω
pðijλÞ

�πðλjθÞ dλ:
Here θ is the vector of parameters of π and Ω¼Rþ is the set of
possible values of λ. The corresponding probability of exactly k
failures occurring during a period of length τ is

PðkÞ ¼
Z
Ω
pðkjλÞ � πðλjθÞ dλ:

The Bayesian approach enables prior information, mainly based
on expert judgement, to be combined with data. Suppose that the
prior distribution πðλjθÞ reflects the expert's opinion about the
possible values for λ prior to collecting any information. Suppose
that data become available of the following form: n items have
been tested for m periods, which can be of variable length.
Suppose that the number of failing items, out of n, during period
jAf1;…;mg is kj, and that the length of this period is τj. It should
be noted that a more general scenario, with numbers of items
being tested during the different periods not being equal to n, is
quite straightforward to analyse following a similar setting but
with the parameter λ explicitly related to a single item; this is left
as an exercise for the reader, the current restriction simplifies the
presentation and does not really limit the model with regard to
the main new results as presented in the following sections.

It is convenient in Bayesian analysis to choose a prior distribu-
tion such that resulting computations in order to derive the
posterior distribution are easy, which particularly occurs when a
conjugate prior distribution is used. This leads to a posterior
distribution belonging to the same parametric family of distribu-
tions as the prior distribution [14]. The Gamma distribution is a
conjugate prior for the parameter λ of the Poisson distribution. Its
parameters are θ¼ ða; bÞ, with a40, b40, and it has the prob-
ability density function

πðλja; bÞ ¼Γða; bÞ ¼ 1
ΓðaÞb

aλa�1 exp ð�bλÞ; λ40:

where ΓðaÞ is the gamma function.
Suppose that data become available for n items during m time

periods, as described above, and let K ¼ k1þ…þkm and T ¼
τ1þ…þτm. The corresponding posterior predictive probability
for the event that, out of n further items, k will fail during a time
period length τ can be derived by standard Bayesian methods [14].
These probabilities, for kZ0, are given by the Negative Binomial
distribution and are equal to

PðkÞ ¼ΓðaþKþkÞ
ΓðaþKÞk!

bþT
bþTþτ

� �aþK τ
bþTþτ

� �k

: ð3Þ

Note again that these P(k) are positive for all kZ0, but with
relatively few items failing these probabilities for k4n will be
extremely small, ensuring that the approximate model does not
lead to complications.

Returning to the warranty model analysed in this paper, as
introduced in Section 2, the expected profit for the manufacturer is
equal to

EG¼ nðx�cÞ�y
Xn

k ¼ zþ1

ðk�zÞΓðaþKþkÞ
ΓðaþKÞk!

bþT
bþTþτ

� �aþK τ
bþTþτ

� �k

:

ð4Þ
This standard Bayesian scenario is illustrated by Example 1.

Example 1. Suppose a buyer is considering to purchase n¼100
items at a cost of x¼20 dollars per item. Suppose that it costs
c¼16 to produce each single item. Let the time period considered
be of length τ¼ 1 and suppose that the buyer would be willing to
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accept only z¼1 failure for all 100 items during this period.
Suppose that also 100 items have been tested, over three time
periods which were all also of length 1, and assume that the
numbers of failing items per time period were k1 ¼ 0, k2 ¼ 1,
k3 ¼ 1. To derive the posterior probabilities for the model
described above, the sufficient statistics for these data are the
total length of the periods for the tests, T¼3, and the total number
of failing items during these tests, K ¼ k1þk2þk3 ¼ 2. Assume that
the prior distribution was the Gamma distribution with para-
meters a¼1 and b¼1, then the corresponding expected profit is
equal to

EG¼ 100 � 4�y
X100
k ¼ 2

ðk�1ÞΓð3þkÞ
Γð3Þk!

4
5

� �3 1
5

� �k

¼ 100 � 4�y � 0:262:

This implies that the expected profit for the seller A is non-
negative if and only if

100 � 4�y � 0:262Z0

and hence that A would be willing to pay up to 1527 dollars in
compensation per item, for any number of items that would fail
during the warranty period of length 1 apart from one item, which
was the number deemed to be acceptable to fail by the buyer B. Of
course, there are likely to be further aspects which the seller A
may need to take into account to set a realistic level of compensa-
tion, for example additional costs and risk of large losses. Including
such aspects is conceptually straightforward in combination with
the posterior distribution presented here.

It should be noted that the negative binomial distribution is
widely applied in many areas, including marketing research,
insurance and risk management, where events of interest are
relatively rare. When applying the Bayesian approach, as outlined
in this section, the choice of prior distribution in general, or more
specifically the choice of the parameters a and b if one assumes
the conjugate Gamma prior distribution, is nontrivial if one has
little or no meaningful prior information about the frequency of
failures. It has become a standard procedure, in such situations, to
use a so-called ‘noninformative’ prior distribution.

Many methods for determining noninformative prior distribu-
tions in the Bayesian framework have been proposed in the
literature. Many methods apply the Bayes–Laplace postulate,
which is also known as the principle of insufficient reason [15].
According to this principle, the prior distribution should be uni-
form. However, this choice meets some difficulties or problems.
The first problem is that the uniform distribution is not invariant
under reparametrisation. If one has no information, for instance,
about a parameter ϕ, then one also has no information about 1=ϕ,
but a uniform distribution for ϕ does not correspond to a uniform
distribution for 1=ϕ. Another possible problem with the uniform
prior is that if the parameter space is infinite, the uniform prior is
improper because it does not integrate to one. The corresponding
posterior distribution may well be proper, but for example in case
of data containing zero failures, in the setting considered in this
paper, the posterior distribution may remain improper, hence not
enabling conclusions in terms of expected values. Walley [16]
gives a number of examples illustrating possible problems and
shortcomings of the principle of insufficient reason. A detailed
review of other methods for constructing a noninformative prior
has been presented by Syversveen's [17].

Another interesting approach to modelling absence of prior
information within a Bayesian framework of statistics is based on
using a class M of prior distributions instead of a single prior
distribution [1,16]. This overcomes many of the problems related
to selecting a single noninformative prior. Typically, when interest
is in an event U, the class of prior distributions is reflected by

corresponding lower and upper probabilities for the event U,
denoted by P ðUÞ and P ðUÞ, respectively, which are defined by as

PðUÞ ¼ inffPπðUÞ : πAMg; PðUÞ ¼ supfPπðUÞ : πAMg:

As pointed out by Walley [16] and Syversveen [17], the class M
is “not a class of reasonable priors, but a reasonable class of
priors”. This means that each single member of the class is not a
reasonable model for prior ignorance, because no single distribu-
tion can model ignorance satisfactorily. However, the whole class
can be considered to provide a reasonable model for prior igno-
rance. When one has little prior information, the upper probability
of a non-trivial event should be close to one and the lower
probability should be close to zero. One can interpret this, in
terms of precise probabilities, as reflecting that the prior prob-
ability for the event of interest can be anywhere within the range
from 0 to 1. It is particularly attractive to define such classes of
prior distributions in a manner such that the conjugacy property is
maintained, hence leading to quite straightforward updating of the
prior class to a class of posterior distributions when data become
available. Examples of such models are Walley's imprecise Dirich-
let model [16], which has been applied to a variety of scenarios in
reliability [18–20], and, more generally, imprecise probability
models for inference in exponential families [21]. In the following
sections, two related models using classes of prior distributions in
the generalised Bayesian framework are presented for the basic
warranty problem discussed in this paper.

4. Imprecise negative binomial model I

To simplify presentation, it is convenient to let us replace the
parameters a and b in the expression for the Negative Binomial
distribution P(k) as by α and s, such that a¼ sα and b¼s. This
replacement is proposed by Quaeghebeur and de Cooman [21] in
their paper devoted to imprecise models for inference in expo-
nential families, and follows a similar parametrisation used by
Walley [16] for the imprecise Dirichlet model. Then

PðkÞ ¼ΓðsαþKþkÞ
ΓðsαþKÞk!

sþT
sþTþτ

� �sαþK τ
sþTþτ

� �k

:

A convenient way to construct an imprecise probability model
is by using the set of all Negative Binomial distributions with fixed
hyperparameter s and with arbitrary αZ0. Note that this corre-
sponds to applying the same reparametrisation for the underlying
Gamma prior distribution for the parameter λ of the Poisson
model, and taking the corresponding class of prior distributions.
By dealing with the set of distributions instead of a single
distribution, one derives lower and upper bounds for EG instead
of a precise value as corresponds to a single distribution, which is
in line with the lower and upper probabilities as discussed above.
These lower and upper bounds can be obtained by minimising and
maximising EG over all values of α in ½0;1Þ.

The expected profit for the seller A, with the replaced para-
meters, is of the form

EG¼ nðx�cÞ�y
Xn

k ¼ zþ1

ðk�zÞΓðsαþKþkÞ
ΓðsαþKÞ � k!

sþT
sþTþτ

� �sαþK τ
sþTþτ

� �k

:

The hyperparameter s40 determines the influence of the prior
distribution on posterior probabilities and the expected profit. In
particular, if s¼0, then the posterior distribution

PðkÞ ¼ΓðKþkÞ
ΓðKÞk!

T
Tþτ

� �K τ
Tþτ

� �k

:

is totally determined only by information in the form of K and T.
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Proposition 1. If yZ0, then the expected profit EG as a function of
the parameter α has a single minimum.

The expected number of failures X under conditions K¼0 and
T¼0 is computed as

EX ¼ a=b¼ α:

So the parameter α for the Negative Binomial distribution can be
interpreted as the prior expected number of failing items out of n
items, which are all used for a time period of unit length.
Assuming that the prior expected number of failures may be
arbitrary from 0 to 1 and using Proposition 1, the following
optimal lower and upper bounds for the expected profit are
derived corresponding to the model presented in this section.
Note that the upper expected profit is not proven as it is
straightforward.

Proposition 2. The upper expected profit, denoted by EG, is achieved
for α-1 and is equal to

EG¼ nðx�cÞ:

It follows from Proposition 2 that the upper bound for the
expected profit is noninformative. It assumes an ideal case when
we get the maximally possible expected profit. The value of
compensation y can be accepted arbitrarily in this case.

Proposition 3. The lower bound for the expected profit, denoted by
EG, is achieved at the point α0 which is the root of the equation

Xn
k ¼ zþ1

Zk �
ΓðsαþKþkÞ
ΓðsαþKÞ vsαþK

Xk�1

i ¼ 0

1
sαþKþ i

þ lnv

 !
¼ 0; ð5Þ

where

Zk ¼
ðk�zÞð1�vÞk

k!
; v¼ sþT

sþTþτ
:

The point α0 belongs to interval ½α1;αn� z�. Here α1 and αn-z are roots
of equations

Xz
i ¼ 0

1
sαþKþ i

þ ln
sþT

sþTþτ

� �
¼ 0;

Xn�1

i ¼ 0

1
sαþKþ i

þ ln
sþT

sþTþτ

� �
¼ 0;

respectively.

Proposition 3 provides a simple way for numerical computation
of the lower bound for the expected profit EG. According to the
proof of this proposition, Eq. (5) has a unique root. Moreover,
bounds for possible values of the root can be simply computed.
This implies that (5) can be solved by means of one of the well-
known numerical methods, for example, gradient methods or the
bisection method.

Note that the limit value of the expected profit for α-0, before
any observations, is nðx�cÞ, i.e., values of the expected profit for
α-1 and for α-0 coincide and are equal to the upper bound EG.
This interesting fact is explained in the following way by setting
K ¼ T ¼ 0. The case α-0 means that the number of failing items
tends to zero and seller A does not need to compensate the failed
items. Non-zero probabilities of failures P(k) by α-1 are con-
centrated at values kbn. The restricted value of n is the main
reason of the unexpected behaviour of the lower bound for the
expected profit EG as a function of the parameter α. This fact gives
us the idea to study the expected profit under condition of large
values of n.

Proposition 4. If yZ0 and n-1, then the expected profit EG is a
decreasing function of the parameter α.

Proposition 4 implies that we can apply the property of
monotonicity of the expected profit for very large values of n.

Example 2. Consider again the scenario of Example 1, which is
now used to illustrate the imprecise model presented in this
section, in order to compute an interval for the values of y
corresponding to non-negative expected lower and upper bounds
for the profit for seller A. Assume that the hyperparameter s is set
equal to 1, then the upper bounds for the expected profit is
EG¼ 400. The lower bound for the expected profit is the root of
the equation

X100
k ¼ 2

ðk�1ÞΓðαþ2þkÞ
Γðαþ2Þk! 0:8αþ2 � 0:2k ln 0:8þ

Xk�1

i ¼ 0

1
αþ2þ i

 !
¼ 0;

which is α0 ¼ 330. At that, the bounds for α0 can also be computed
using Proposition 3. They are α1 ¼ 2:48 and αn� z ¼ 398:5. The
function

Q ðαÞ ¼
Xn

k ¼ zþ1

ðk�zÞPðk;αÞ

is shown in Fig. 1. Moreover, the function Q ðαÞ at point α0 ¼ 330
has value Q ð330Þ ¼ 77:112. The pessimistic value of y can be
derived from the equation 100 � 4�y � 77:112¼ 0. The solution is
y¼5.19.

Hence the upper bound for y is undetermined. The lower
bound for y is determined from the equation EG¼ 0 and is
y ¼ 5:19. This means that, in the worst case scenario with all
items failing, compensation of 5.19 dollars per item would be the
maximum in order to avoid a loss, which follows from the
difference between the selling price and production costs. This
situation is addressed further in the following section.

In order to compare these values it is interesting just to apply
the Poisson distribution with the parameter λ¼ K=T ¼ 2=3 in the
standard warranty model, so without learning in the Bayesian
framework. The corresponding expected profit is

EG¼ 100 � 4�y
X100
i ¼ 2

ði�1Þð2=3Þ
i expð�2=3Þ

i!

¼ 100 � 4�y � 0:18:

This would lead to y¼2222 as maximum possible compensation in
order for A to keep nonnegative expected profit. Clearly, the above
calculated lower value for y forms an interval which contains this
value corresponding to replacing λ by the empirical value K/T.

Fig. 1. The function Q ðαÞ.
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5. Imprecise Negative Binomial model II

The imprecise Negative Binomial model I, as presented in the
previous section, has one major problem when applied to the
warranty model considered in this paper. Namely, the upper
bound for the expected profit, as derived in Proposition 2, does
not depend on data observations due to it being attained for the
limit situation α-1. Therefore, another model for constructing a
set of Negative Binomial distributions for the warranty model is
now proposed. Similar to model I, this is based on the generalised
Bayesian approach with a class of Gamma prior distributions for
the parameter λ of the Poisson distribution, but now the possible
range of values for α is limited. The proposal followed here is to
take as the set of parameters (a,b) all values within the triangle
given by end-points ð0;0Þ, ðsa;0Þ, ð0; sbÞ, with hyperparameters
sa40 and sb40. Note that this implies that, a priori, all ‘rates of
occurrence of failures’ a=bA ½0;1Þ are represented by pairs (a,b)
within this set. This can again be considered to represent lack of
prior information. Next the posterior lower and upper expected
profits in the warranty model, using this set of parameters, are
derived.

However, before getting the bounds for the expected profit, we
consider some properties of EG as a function of the second
parameter b.

Proposition 5. If yZ0, then the expected profit EG of Eq. (4), as a
function of the parameter b, has a single minimum in the interval
½0;1Þ or it is decreasing over this interval.

Let us represent the function EG in Eq. (4) as EG¼ nðx�cÞ�
yQ ða; bÞ. Then the minimum of EG corresponds to the maximum of
Q ða; bÞ. It follows from the proof of Proposition 5 that the condition
for the function Q ða; bÞ to have its maximum at point bZ0 for
fixed a is

Xn
k ¼ zþ1

ðk�zÞPðkÞððaþKÞτ�ðbþTÞkÞ:

Here P(k) is defined by Eq. (3). If the optimal value of b is negative,
then the function Q ða; bÞ is decreasing.

If we take sa such that it is less than some aoptðbÞ which
provides the maximum of Q ða; bÞ for a fixed b, then Q ða; bÞ
increases for arsa, for every b. This implies that the smallest
value of Q ða; bÞ is achieved at a¼0. Then the minimum of Q ð0; bÞ is
achieved at b¼ sb if sb is larger than the optimal value of b
providing the minimum of Q ð0; bÞ. Together with Proposition 5,
this enables us to formulate the following proposition which
determines the upper bound for the expected profit.

Proposition 6. Suppose that Q ð0; bÞ achieves its maximum at
b¼ bopt. Let us take sbZbopt . Then the upper expected profit EG is
achieved at ða; bÞ ¼ ð0; sbÞ and is equal to

EG¼ nðx�cÞ�y
Xn

k ¼ zþ1

ðk�zÞΓðKþkÞ
ΓðKÞk!

sbþT
sbþTþτ

� �K τ
sbþTþτ

� �k

:

Here bopt is defined as the solution of the equation:

Xn
k ¼ zþ1

ðk�zÞΓðKþkÞ
ΓðKÞk!

bþT
bþTþτ

� �K τ
bþTþτ

� �k

ðKτ�ðbþTÞkÞ ¼ 0:

ð6Þ
If bopto0, then the function EG is increasing as a function of b and
we take bopt ¼ 0.

In the same way, we formulate another proposition which deter-
mines the lower bound for the expected profit.

Proposition 7. Let us consider a set of values of bA ½0; sb�. The lower
expected profit EG is determined by means of the optimisation
problem:

EG¼ nðx�cÞ�y � max
bA ½0;sb �

Q ða0ðbÞ; bÞ;

where a0ðbÞ is the root of Eq. (5) in Proposition 3 under the condition
that sα is replaced by a and v is computed as

v¼ bþT
bþTþτ

:

If the obtained value of a0ðbÞ satisfies condition a0ðbÞ4sa, then
a0ðbÞ takes the value sa.

It follows from Proposition 7 that EG can only be computed
numerically by considering all possible values bA ½0; sb� in a
predefined grid.

Corollary 1. Before taking any observations into account, hence
solely based on the set of prior distributions as described for model II
in this section, and assuming sa40 and sb40, the optimal upper
bound for the expected profit for seller A is EG¼ nðx�cÞ.

It is interesting to point out that the lower bound for the
expected profit does not have a similar trivial form due to
restricted values of n.

The Negative Binomial model II for the basic warranty scenario
considered in this paper, is illustrated in the following example.

Example 3. Consider again the scenario of Example 1, where now
model II is applied in order to determine the interval of values of y,
following the same arguments as in Example 2, and assuming that
sa ¼ 1 and sb ¼ 1.

First, we solve Eq. (6), i.e.,

X100
k ¼ 2

ðk�1ÞΓð2þkÞ
Γð2Þk!

bþ3
bþ3þ1

� �2 1
bþ3þ1

� �k

2 � 1�ðbþ3Þkð Þ ¼ 0:

This equation has a negative solution. Therefore, the function
Q ð0;bÞ is decreasing as function of b and the value of the
hyperparameter sb can be taken arbitrarily in the interval ð0;1Þ.

EG¼ 100 � 4�y
X100
k ¼ 2

ðk�1ÞΓð2þkÞ
Γð2Þk!

1þ3
1þ3þ1

� �2 1
1þ3þ1

� �k

¼ 100 � 4�y � 0:14:

Let us solve the problem maxbA ½0;1�Q ða0ðbÞ; bÞ. It turns out that
Q ða0ðbÞ;bÞ achieves its maximum at b¼1, where a0ð1Þ ¼ 332:8.
Hence, the optimal lower bound for the expected profit is attained
for a¼ sa ¼ 1, leading to

EG¼ 100 � 4�y
X100
k ¼ 2

ðk�1ÞΓð1þ2þkÞ
Γð1þ2Þk!

1þ3
1þ3þ1

� �1þ2 1
1þ3þ1

� �k

¼ 100 � 4�y � 0:262:

Hence, the upper bound for y, determined by setting EG¼ 0, is
y ¼ 2;857. The lower bound for y, determined by setting EG¼ 0, is
y ¼ 1;527, which is identical to the value for the “precise” model
as derived in Example 1. The bounds differ substantially from the
value under model I as derived in Example 2, which is a direct
consequence of the restriction of the prior range of values of α.

To consider some further aspects of interest in the proposed
model II, Fig. 2 shows the lower and upper bounds for y for various
values of the hyperparameters sa ¼ sb ¼ s. This clearly illustrates
the increased imprecision for larger values of s, the specific value
to use must be based on judgement of the topic experts.

L.V. Utkin et al. / Reliability Engineering and System Safety 138 (2015) 31–39 35



It is further of interest to illustrate the dependence of the lower
and upper bounds for lnðyÞ on z. For the model with s¼1, Fig. 3
shows these bounds for some values of z, where it is assumed that
not too many of the n¼100 items are likely to fail during the time
period considered, as failures are assumed to be quite rare. Both
these lower and upper bounds for y are, of course, increasing as
functions of z, with particularly the upper bound increasing rapidly
due to the small number of failing items in the observed data.

Finally, it is interesting to consider how the total time T of the
data observations influences the lower and upper bounds for lnðyÞ.
For fair comparison, the corresponding values of the total number
K of failures over this time period are defined such that the
empirical failure rate, given by K/T, is constant and is kept at the
value 2=3 (see Example 2). The corresponding values are shown in
Fig. 4. Clearly, the imprecision, that is the width of the interval
½y; y�, decreases as T increases, which is in line with intuition as the

amount of imprecision logically decreases as a function of the
number of available data observations, and y tends to a limit value
which can be determined from Eq. (2) with pðijλ¼ 2=3Þ.

6. Concluding remarks

This paper has introduced two imprecise probability models for
a basic warranty scenario, which can be used to guide the
compensation offered by a seller of units in case too many items
fail during the warranty period. The proposed models are closely
related, with model I being arguably the intuitively more logical
one, but it has a disadvantage that is overcome by model II. The
explicit derivations of formulae for the lower and upper expected
profits for these two models are powerful results that make
application and analysis of the models straightforward. Of course,
there are many aspects related to practical warranty decisions that
require more detailed study in order to develop imprecise prob-
ability models and inferential approaches for them, these provide
interesting challenges for future research.
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Appendix A. Proof of Proposition 1

Let us introduce notation w¼ sαþK , v¼ ðsþTÞ=ðsþTþτÞ and
consider the function

Q ðwÞ ¼
Xn

k ¼ zþ1

ðk�zÞ ΓðwþkÞ
ΓðwÞ � k!ð1�vÞkvw:

We aim to prove that the function Q(w) has a single maximum
in interval ½0;1Þ for w (the expected profit has a single minimum
in interval ½0;1Þ for α). Without loss of generality, we take z¼0
and integer values of w for simplicity. Let us transform the
function Q(w) as follows:

Q ðwÞ ¼
Xn
k ¼ 1

1
ðk�1Þ!

ΓðwþkÞ
ΓðwÞ ð1�vÞkvw: ð7Þ

Hence, we can represent the function Q(w) through the following
derivatives:

Q ðwÞ ¼ vwð1�vÞ
ΓðwÞ

Xn
k ¼ 1

ðwþk�1Þ…k � 1�vð Þk�1

Fig. 2. The lower and upper bounds for lnðyÞ for various values of the hyperpara-
meter s.

Fig. 3. The lower and upper bounds for lnðyÞ for various values of z.

Fig. 4. The lower and upper bounds for lnðyÞ for various values of T.

Fig. 5. Typical curves of the function EGk for k¼ 1;…;4.
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¼ �1ð Þwv
wð1�vÞ
ΓðwÞ

Xn
k ¼ 1

ð1�vÞwþk�1
� �ðwÞ

v

where �ð ÞðwÞ
v denotes the wth derivative over v. The above implies

that

Q ðwÞ ¼ �1ð Þwv
wð1�vÞ
ΓðwÞ

ð1�vÞw� 1�vð Þwþn

v

� �ðwÞ

v
:

It is easy to show that

ð1�vÞw
v

� �ðwÞ

v
¼ 1

v

� �ðwÞ
¼ �1ð Þw w!

vwþ1:

Then we get

Q ðwÞ ¼ �1ð Þwv
wð1�vÞ
ΓðwÞ �1ð Þw w!

vwþ1�
ð1�vÞwþn

v

� �ðwÞ

v

 !

or

Q ðwÞ ¼ 1�v
v

w� �1ð Þwv
w 1�vð Þ
ΓðwÞ

ð1�vÞwþn

v

� �ðwÞ

v
:

Let us use the expression for differentiation of the product of
two functions

f � gð ÞðnÞ ¼
Xn
k ¼ 0

n

k

� �
f ðn�kÞgðkÞ:

Here
n

k

� �
¼ n!=ðk!ðn�kÞ!Þ. Then we get

ð1�vÞwþn � 1
v

� �ðwÞ

v
¼
Xw
k ¼ 0

w

k

� �
ð1�vÞwþn� �ðw�kÞ 1

v

� �ðkÞ

¼ ð�1Þw
Xw
k ¼ 0

w

k

� �
ðwþnÞ…ðnþkþ1Þ � ð1�vÞnþk

� k!
vkþ1

:

As a result, we obtain

Q ðwÞ ¼ 1�v
v

w

�w
Xw
k ¼ 0

1
ðw�kÞ!ðwþnÞ…ðnþkþ1Þ � ð1�vÞnþkþ1vw�k�1

 !

or

Q ðwÞ ¼ 1�v
v

w

�w
Xw
k ¼ 0

1
k!
ðwþnÞ…ðwþn�kþ1Þ � ð1�vÞwþn�kþ1vk�1

 !
:

Hence, there holds

Q ðwÞ ¼ 1�v
v

w

�1�v
v

w
Xw
k ¼ 0

wþn
k

� �
ð1�vÞwþn�kvk

 !
;

or

Q ðwÞ ¼ 1�v
v

w
Xwþn

k ¼ wþ1

wþn

k

� �
ð1�vÞwþn�kvk:

After replacing the summation index, we finally get

Q ðwÞ ¼ ð1�vÞvw�1w
Xn
k ¼ 1

wþn

n�k

� �
ð1�vÞn�kvk

or

Q ðwÞ ¼ ð1�vÞvw�1w
Xn�1

k ¼ 0

wþn

k

� �
ð1�vÞkvn�k:

For arbitrary values of w, we have

Q ðwÞ ¼ ð1�vÞvw�1w

�
Xn�1

k ¼ 1

ð1�vÞkvn�k

k!
ðwþnÞ…ðwþn�kþ1Þþvn

 !
:

Another form of the same function is

Q ðwÞ ¼ 1�v
v

vwþnw

�
Xn�1

k ¼ 1

1
k!

1�v
v

� �k

ðwþnÞ…ðwþn�kþ1Þþ1

 !
: ð8Þ

Both polynomials before vw in (7) and (8) have the nth power.
The derivative of function (8) is

Q 0ðwÞ ¼ 1�v
v

vwþn
Xn�1

k ¼ 1

1
k!

1�v
v

� �k

ðwþnÞ…ðwþn�kþ1Þ

� 1þ
Xk�1

i ¼ 0

w
wþn� i

þw ln v

 !
þ1�v

v
vwþnð1þw ln vÞ:

For clarity, we write the above sum starting from index zero

Q 0ðwÞ ¼ 1�v
v

vwþn
Xn�1

k ¼ 0

1
k!

1�v
v

� �k

�ðwþnÞ…ðwþn�kþ1Þ

� 1þ
Xk�1

i ¼ 0

w
wþn� i

þw ln v

 !
:

One can see that the root of the equation Q 0ðwÞ ¼ 0 is between
w1ðk1Þ and w1 k1þ1ð Þ for some k, where w1ðk1Þ is the root of an
equation produced from the expression in parentheses, which is of
the form:

1
w
þ
Xk1 �1

i ¼ 0

1
wþn� i

¼ � ln v:

Then we have to find k, k1 and w satisfying the system of
equations

Xk�1

i ¼ 0

1
wþ i

¼ � ln v;

1
w

þ
Xk1 �1

i ¼ 0

1
wþn� i

¼ � ln v:

8>>>>><
>>>>>:

If a solution of the above system is unique, then we have
proven the proposition. Suppose that the solution is not unique.
Let w0ðkÞ be a root of the equation

Xk�1

i ¼ 0

1
wþ i

¼ � ln v;

and w1ðkÞ be a root of the equation

1
w
þ
Xk�1

i ¼ 0

1
wþn� i

¼ � ln v; k¼ 1;…;n:

It is obvious that the sequences w0ðkÞ
� 	

and w1ðkÞ
� 	

are
increasing. It is also obvious that there exist k and k1 such that
the root wn of the equation Q 0ðwÞ ¼ 0 satisfies the following
inequalities:

Xk�1

i ¼ 0

1
wnþ i

Z� ln vZ
Xk
i ¼ 0

1
wnþ i

;
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1
wn

þ
Xk1 �1

i ¼ 0

1
wnþn� i

Z� lnvZ
1
wn

þ
Xk1
i ¼ 0

1
wnþn� i

:

So, we get a new expression for Q(w) following from (8)

Q ðwÞ ¼ 1�v
v

w
Xn�1

k ¼ 0

1
k!
ðwþnÞ…ðwþn�kþ1Þð1�vÞkvwþn�k;

which can be rewritten for integer w as

Q ðwÞ ¼ 1�v
v

w
Xn�1

k ¼ 0

wþn

k

� �
ð1�vÞkvwþn�k:

We introduce the function

PðwÞ ¼ Q ðwÞ
1�v
v

w
¼
Xn�1

k ¼ 0

wþn

k

� �
ð1�vÞkvwþn�k:

First, we will prove that this function is monotone and
decreasing. Second, we will prove that the function �P0ðwÞ=PðwÞ
is increasing. Then the equation Q 0ðwÞ ¼ 0 has a unique root which
defines the maximum of the function Q(w). Indeed, it follows from
the equality Q 0ðwÞ ¼ 0 that

1�v
v

PðwÞþ1�v
v

wP0ðwÞ ¼ 0:

Hence, there holds

�P0ðwÞ
PðwÞ ¼

1
w
: ð9Þ

Consequently, if the function �P0ðwÞ=PðwÞ is increasing, then
equality (9) has a unique root.

Now we have to prove that the function P(w) is decreasing, this
is done in two steps.

First, we show that the inequality Pðwþ1ÞrPðwÞ holds. It
follows from the equality

wþn

k

� �
¼ wþn

k

� �
þ wþn

k�1

� �

that the function Pðwþ1Þ is represented as

Pðwþ1Þ ¼
Xn�1

k ¼ 1

wþnþ1
k

� �
ð1�vÞkvwþn�kþ1þvwþnþ1

¼
Xn�1

k ¼ 1

wþn

k

� �
þ wþn

k�1

� �� �
ð1�vÞkvwþn�kþ1þvwþnþ1:

Hence

Pðwþ1Þ ¼
Xn�1

k ¼ 1

wþn

k

� �
1�vð Þkvwþn�kþ1

þ
Xn�2

k ¼ 0

wþn

k

� �
ð1�vÞkþ1vwþn�kþvwþnþ1:

The above implies

Pðwþ1Þ ¼
Xn�1

k ¼ 1

wþn

k

� �
1�vð Þkvwþn�kðvþ1�vÞ

� wþn

n�1

� �
ð1�vÞnvwþ1þð1�vÞvwþnþvwþnþ1:

Consequently, we can write

Pðwþ1Þ ¼ PðwÞ� wþn

n�1

� �
ð1�vÞnvwþ1rPðwÞ: ð10Þ

As the second step, we prove that the function �P0ðwÞ=PðwÞ is
increasing, i.e., we prove that

�P0ðwþ1Þ
Pðwþ1ÞZ�P0ðwÞ

PðwÞ :

Equality (10) can be rewritten as follows:

Pðwþ1Þ ¼ PðwÞ� 1
ðn�1Þ!ðwþnÞ…ðwþ2Þð1�vÞnvwþ1:

By differentiating we get

P0ðwþ1Þ ¼ P0ðwÞ� wþn

n�1

� �
ð1�vÞnvwþ1

�
Xn�2

i ¼ 0

1
wþn� i

þ lnðvÞ
 !

ð11Þ

Now we consider the difference

P0ðwþ1ÞPðwÞ�P0ðwÞPðwþ1Þ
and prove that it is not larger than zero. By using (10) and (11), we
obtain

P0ðwþ1ÞPðwÞ�P0ðwÞPðwþ1Þ

¼ P0ðwÞ� wþn

n�1

� �
ð1�vÞnvwþ1

Xn�2

i ¼ 0

1
wþn� i

þ lnðvÞ
 ! !

PðwÞ

�P0ðwÞ PðwÞ� wþn
n�1

� �
ð1�vÞnvwþ1

� �

¼ � wþn

n�1

� �
ð1�vÞnvwþ1

Xn�2

i ¼ 0

1
wþn� i

þ lnðvÞ
 !

PðwÞ

þ wþn

n�1

� �
ð1�vÞnvwþ1P0ðwÞ:

Now we have to prove that

P0ðwÞ�
Xn�2

i ¼ 0

1
wþn� i

þ lnðvÞ
 !

PðwÞr0:

This is obvious due to

P0ðwÞ ¼
Xn�1

k ¼ 0

Ck
wþnð1�vÞkvwþn�k

Xk�1

i ¼ 0

1
wþn� i

þ lnðvÞ
 !

rPðwÞ
Xn�2

i ¼ 0

1
wþn� i

þ lnðvÞ
 !

;

which completes the proof.

Appendix B. Proof of Proposition 3

We consider the kth term EGk of the sum in the expression for
EG, without parameters which do not depend on α and k,

EGk ¼ �ðk�zÞΓðwþkÞ
ΓðwÞ � k!v

wð1�vÞk:

Here w¼ sαþK and v¼ ðsþTÞ=ðsþTþτÞ. Denote

Z ¼ ðk�zÞð1�vÞk
k!

Z0;

and rewrite the kth term as follows:

EGk ¼ �Z
ΓðwþkÞ
ΓðwÞ vw:

Differentiating the above expression gives

dEGk

dw
¼ Z � ΓðwþkÞ

ΓðwÞ vw ψ ðwÞ�ψ ðwþkÞ� ln v
� �

:

Here ψ ðxÞ ¼ d=dx lnΓðxÞ is the digamma function. Hence, we can
write the following condition for the extremum:

ln vþψ ðwþkÞ�ψ ðwÞ ¼ 0:
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Note that 0ovr1, which implies that ln vr0. On the other
hand, ψ ðwþkÞ�ψ ðwÞ is a decreasing function of wZ0 because

ψ ðwþkÞ�ψ ðwÞ ¼
Xk�1

i ¼ 0

1
wþ i

:

Moreover, ψ ðwþkÞ�ψ ðwÞZ0. Therefore, there exists a single
point w0 for which ψ w0þkð Þ�ψ w0ð Þ ¼ � ln v. If wrw0 then

ψ ðwþkÞ�ψ ðwÞZψ w0þkð Þ�ψ w0ð Þ
due to fact that function ψ ðwþkÞ�ψ ðwÞ is decreasing. This implies
that ln vþψ ðwþkÞ�ψ ðwÞZ0 and

dEGk

dw
r0;

because ZZ0 and vwΓðwþkÞ=ΓðwÞZ0. If w4w0 then

ψ ðwþkÞ�ψ ðwÞrψ w0þkð Þ�ψ w0ð Þ
and

dEGk

dw
Z0:

The above implies that w0 is a global minimum of EGk.
According to Proposition 1, there is a unique minimum point

α0. Typical curves of the function EGk for different k are depicted in
Fig. 5. One can see from the figure that every term EGk has a single
minimum whose existence has been proved above. Moreover, the
value of αk corresponding to the minimum of EGk is less than the
value of αkþ1 corresponding to the minimum of EGkþ1. This
follows from the inequality

Xk�1

i ¼ 0

1
wþ i

r
Xk
i ¼ 0

1
wþ i

and condition ln vþψ ðwþkÞ�ψ ðwÞ ¼ 0. This implies that the
minimum of the sum of all EGk should be located between α1

and αn-z.

Appendix C. Proof of Proposition 4

Without loss of generality, we again take z¼0 for simplicity.
Then we can write

EG¼ nðx�cÞ�y
X1
k ¼ 1

kPðkÞ

¼ nðx�cÞ�y � EX:
Here the expectation EX for the Negative Binomial distribution

is defined as EX ¼ τðaþKÞ=ðbþTÞ. Hence, there holds

EG¼ nðx�cÞ�yτðsαþKÞ=ðsþTÞ;
as was to be proved.

Appendix D. Proof of Proposition 5

Let us represent the function EG as EG¼ nðx�cÞ�yQ ðbÞ. Then we
have to prove that the function Q(b) has a single maximum. Without
loss of generality we again take z¼0 for simplicity. By differentiating Q
(b) we obtain the following condition for the maximum

Xn
k ¼ 1

kPðk; bÞððaþKÞτ�ðbþTÞkÞ ¼ 0:

Here Pðk; bÞ is used to denote the probability given in Eq. (3).
Let us consider the case n¼1, which gives

ðaþKÞτ¼ bþT :

It is obvious that we have a single non-negative root of the above
equation if ðaþKÞτ�TZ0. Suppose that the proposition is valid

for some n, i.e., there is a value of b denoted bn such that Q(b)
achieves the maximum at point bn. By induction, we write the
following condition of the maximum for the case nþ1:

bnþ1þT ¼ ðaþKÞτPn
k ¼ 1 kPðk; bÞþðaþKÞτðnþ1ÞPðnþ1; bÞPn

k ¼ 1 k
2Pðk; bÞþðnþ1Þ2Pðnþ1; bÞ

:

We will prove that there is a single value of bnþ1 satisfying the
above condition. We write the above equality in the following
short form:

βðαþPðnþ1; bÞÞ ¼ γþλPðnþ1; bÞ;
where β¼ bnþ1þT , α¼ ðaþKÞτ=ðbnþTÞ=ðnþ1Þ2, γ ¼ ðaþKÞτ=
ðnþ1Þ2, λ¼ ðaþKÞτ=ðnþ1Þ. First, note that Pðnþ1; bÞ has a maximum
(see the similar case n¼1). Now we prove that βðαþPðnþ1; bÞÞ has a
maximum if Pðnþ1; bÞ has a maximum. Indeed, in this case
P0ðnþ1; bÞ ¼ 0 holds. Then for the function βPðnþ1; bÞ we can write

ðβPðnþ1;bÞÞ0 ¼ β0Pðnþ1; bÞþβP0ðnþ1; bÞ
¼ Pðnþ1; bÞþβP0ðnþ1; bÞ ¼ 0:

The above condition is valid if P0ðnþ1; bÞr0 at point bnþ1.
Then βP0ðnþ1; bÞ is increasing function by bZbnþ1. At the same
time Pðnþ1; bÞ is decreasing as function of bZbnþ1. This implies
that they intersect in a single point, as was to be proved.

The case when the function Q(b) is decreasing is obvious if
bnþ1r0.
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