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Abstract 

  

Cantilevered shaft-rotor systems consisting of disk and profiled shafts are considered. The procedures for the 

determination of the deflection, slope, shear force and bending moment at the extremities of the shaft are used. Transfer 

Matrix Method is used for the computation of the resonance, critical speed or whirling frequency conditions. Here shaft-

rotor has three portions namely convergent, neck and divergent portion.  For particular profiles, shaft length and rotor 

speeds, the response of the system are determined for the establishment of the dynamic characteristics. A built-in shaft-

rotor system with one disk and 1N force on the disk is investigated for illustration purposes. Hence the analysis of the 

shaft whose radius is the function of length has been done. 
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1. Introduction 

 
1
 Rotating Shafts are employed in industrial machines like 

steam and gas turbines, internal combustion engines, 

compressors and pumps for power transmission. With 

increasing demand for power and high speed 

transportation, study of vibratory motion becomes 

essential. Rotor Dynamics deal with dynamics of rotating 

machinery. It is different from structural vibrations 

analysis because of the gyroscopic moments. Basic idea of 

Transfer Matrix Method was first put forth by Holzer for 

finding natural frequencies of torsional systems. Later 

adapted by Myklestad for computing natural frequencies 

of airplane wing. Prohl applied it to rotor-bearing systems 

and included gyroscopic moments in his computations. 

Lund [4] showed how system damping could be accounted 

for including self-exciting influences, such as oil whip and 

internal frictions. The above developments leads to the 

method came to be known as “The Transfer Matrix 

Method” (TMM).  The design of shaft-rotor systems 

includes computation of the critical speed. An improved 

method for calculating critical speeds and rotor stability is 

done by Murphy and Vance. Whalley and Abdul Ameer 

used frequency response analysis for profiled shafts to 

study dynamic response of distributed-lumped shaft rotor 

system. They studied the system behaviour for the shafts 

with diameters which are functions of their lengths. They 

derived an analytical method which uses Euler-Bernoulli 

beam theory in combination with transfer matrix method 

(TMM). Here, profiled shaft with two disks have been 

considered with the method TMM for Frequency 
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Response Calculation and then is validated with Whalley 

and Ameer for a single disk. 

 

2. Mathematical modeling 

 

2.1 Shaft Model 

 

Input and output relationship for the distributed parameter 

shaft model (Whalley and Ameer, 2009) is given by, 

 

(             ) ᵀ = F(s) (             ) ᵀ 
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The elements of F(s) are- 

 

   = 
(cosh ( ) cos ( )) / 2l l 

   

   = 
(sinh ( ) sin ( )) / 2l l 

   

   =
(cosh ( ) cos ( ))l l 

&   

   = 
(sinh ( ) sin ( ))l l 

   

 

Where ( ) ( )x l x   , l = length of the distributed 

parameter shaft, 
1 1 1

2 2 4( ) ( ( ) ( ))x s L x c x  and 
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2.2 Rigid disk model 

 

The output vector from the shaft will become the input for 

the rigid rotor model. i.e., for single disk and shaft model, 

we have 
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Hence 

 

(Y3(s), θ3(s), My3(s), Qy3(s))
T 

= 

      R(s) (Y2(s), θ2(s), My2(s), Qy2(s)) 

 

Where, 

 

R(s)= 

2

1 0 0 0

0 1 0 0

0 1 0

0 0 1

J s

ms

 
 
 

  
 
 

 

 

3. Numerical Results 

 

3.1 Cantilever Shaft-rotor system with a disk 

 

A cantilever rotor shaft system with one disc at free end is 

shown for illustration purposes in Fig. 1. Effects of 

bearings are neglected. As we proceeded in above 

sections, in the same way for the system illustrated in 

Fig.3 can be formulated as- 

 

H(s) =. ( )  ( ) 
 

(  ( )   ( )) (  ( )   ( )) (   ( )    ( ))  and 

(   ( )    ( )) are the deflections, slopes, bending 

moments and shear forces at the fixed and free end 

respectively. 
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Input-output vectors relationship is given by: 
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After applying the boundary conditions, we getdeflection 

3y  at the free end of the system, so we will ultimately get 

the Transfer Function. For example, TF will be obtained 

for NN=20, 40 and 60 respectively.  

 

 
Fig. 1 Cantilever rotor with a disc 

 

Validation: The profile equation for the shaft-rotor 

(Whalley and Ameer, 2009) is given by- 

 
2( ) 0(1 ( ))r x r NN x   

 

For NN=25, r0=0.005 and 10,000 rpm, for single disk we 

get approximately the same results as in (Whalley and 

Ameer, 2009).  

 
Fig. 2 The Bode plot for profiled shaft with single disk 

 

3.2 Convergent-divergent shaft rotor system 

 

 
Fig. 3 Convergent divergent shaft rotor system with 1 N 

force at the tip 

 

Fig. 3 shows the convergent-divergent shaft-rotor system 

for the illustration purpose. The profile equation for the 

shaft-rotor is given by- 
2( ) 0(1 ( ))r x r NN x  

The „ ‟ sign indicates the decrement and then increment 

in the cross-sectional area of the shafts.  A unit impulse is 
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applied on the disk at the free end to produce excitations in 

the shaft-rotor system. 

 For convergent part the diameter of the shaft is 

continuously decreasing while after the neck portion, i.e., 

for the divergent part the diameter is continuously 

increasing till the complete length of the shaft-

rotor.Values of different parameters of the convergent-

divergent shaft-rotor system are given in Table 1. 

 

Table 1 Various parameters of convergent-divergent 

shaft-rotor system as shown in Fig. 3. 

 
Parameters Values 

Length of the shaft-rotor, 1 2,l l  (m) 
0.1, 0.1 

Mass of the disk, m (Kg) 0.75 

Diameter of the disk, D (m) 0.09 

Young‟s Modulus of Elasticity, E (GPa) 209 

Density of the material,  ( 3/Kg m ) 7800 

Rotational Speed, N (rpm) 10000 

Profile Value, NN (Constant) 15 

 

The values for the „neck-radius‟ for different values of NN 

is given in Table 2. 

 

Table 2 Neck radius for various profile values (NN) for 

convergent-shaft length of 0.1 m 

 
Profile Value NN Neck radius (m) of the shaft-rotor 

shown in Fig 4 

15 0.0043 

25 0.0037 

40 0.0030 

 

The transfer function obtained for the system shown in 

Fig. 3, for the values given in Table 1, is given as, 

 

3 2 5 9

1.333 s + 7090

s  + 5317 s  + 7.673 10  s + 1.044 10 

 

 

3.2.1 Varying Profiles 

 
Fig. 4 Bode plot for varying profiles 

3.2.2 Different lengths 

 
Fig. 5 Bode plot for varying length with profile value 

N=15 

 

3.2.3 Changing rotor speed 

 
Fig. 6 Bode plot for varying rotor speeds 

 

3.2.4 Summary 

 

Bode plots for various profile values, shaft lengths and 

rotor speed has been plotted in Figs. 4, 5 and 6 

respectively. The results obtained from the Bode plots are 

tabulated in Table 3. 

 

Table 3 Results obtained from Bode plots for convergent-

divergent shaft-rotor system 

 

1l
 (m) 

2l  
(m) 

Speed 

(rpm) 

Value 

of NN 

Critical 

Frequency 

(rad/sec) 

Amplitude 

(dB) 

0.10 0.10 10000 15 447 -91.3 

0.10 0.10 10000 25 370 -91.0 

0.10 0.10 10000 40 273 -89.9 

0.15 0.15 10000 15 161 -76.4 

0.20 0.20 10000 15 47 -62.4 

0.10 0.10 1000 15 449 -71.3 

0.10 0.10 2500 15 449 -79.3 

0.10 0.10 4000 15 448 -83.4 
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Conclusion 

 

The establishment of the vibrational characteristics of 

profiled shaft elements present challenging problems. The 

vibration analysis via bode plot has been done for the 

convergent-divergent rotor system. Here, disk-rotor 

system is shown for the illustration purposes. For a 

particular speed but value of NN is varied, as shown in 

Fig. 4,  the resonant frequency decreases with the increase 

in the value of NN while amplitude increases for values of 

NN from 15 to 40.  For different lengths, we obtain a bode 

plot as shown in Fig. 5, and it depicts that with slight 

increase in length of convergent and divergent part, the 

resonance frequency decreases drastically while the 

amplitude increases. For changing rotor speeds, we notice 

that the critical frequency remains the same while the 

amplitude of vibration decreases due to increasing effect 

of gyroscopic couple with increasing speed. Hence, such 

type of complicated systems can be analysed with 

simplicity using the approach discussed here in. 
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