
Accessibility Validation with RAVEN
Barry Feigenbaum, Ph. D.

IBM
11501 Burnet Road
Austin, TX 78758

001-512-838-4763

feigenba@us.ibm.com

Michael Squillace, Ph. D.
IBM

11501 Burnet Road
Austin, TX 78759

001- 512-823-7423

masquill@us.ibm.com

ABSTRACT
Testing is, for most, a necessary evil in the software life cycle.
One very important form of testing is the evaluation of software
products according to mandated criteria or guidelines such as
those that specify level of accessibility. Such evaluations can be
quite tedious, especially if they must be done manually and
applied consistently to each and every component of an
application. The use of assistive technologies like screen readers
to demonstrate the compliance of a software product to a set of
regulations is time-consuming, error-prone, and expensive.
Validation tools that can perform such evaluations are becoming
more popular as integrated development environments become
more sophisticated but, in the area of accessibility validation, they
are sorely lacking if not nonexistent. This paper introduces the
IBM Rule-based Accessibility Validation Environment, an
Eclipse-based tool for inspecting and validating Java rich-client
GUIs for accessibility using non-invasive, semi- to fully-
automatic, rule-based validation and inspection.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging – Code
inspections and walk-throughs, Debugging aids, Diagnostics,
Distributed debugging, Dumps, Error handling and recovery,
Monitors, Symbolic execution, Testing tools (e.g., data
generators, coverage testing), Tracing.

General Terms: Measurement, Verification.

Keywords
Accessibility, Java, Rich-Client, GUI, Reflection, AOP.

1. INTRODUCTION
Testing is, for most, a necessary evil in the software life cycle but
it is critical if a software product is to be successful. One very
important form of testing is the evaluation of software products
according to mandated criteria or guidelines. Such evaluations
can be quite tedious, especially if they must be done manually and
applied consistently to each and every component of an
application. One need only think of testing an application for
compliance with internationalization standards to realize the
tedious and monotonous nature of such evaluations.

Accessibility testing falls into this category as well. The use of
assistive technologies like screen readers to demonstrate the
compliance of a software product to a set of regulations is time-
consuming, error-prone, and expensive. Validation tools that can
perform such evaluations are becoming more popular as
integrated development environments become more sophisticated
but, in the area of accessibility validation, they are sorely lacking
if not nonexistent.

This paper introduces the IBM Rule-based Accessibility
Validation Environment, an Eclipse-based [1] tool for inspecting
and validating Java rich-client GUIs for accessibility. However, it
also introduces an approach to building non-invasive, semi- to
fully-automatic, rule-based validation and inspection tools for
software products.

2. VALIDATING GUI ACCESSIBILITY
Put simply, the accessibility of a software application is the
degree to which its features and functionality can be accessed by
users of that application without regard to the abilities or
disabilities of these users. The graphical user interface (GUI) is
the most common way in which users interact with software
applications and is, at the same time, the most troublesome
component of an application when evaluating it for accessibility.
Insuring the accessibility of GUI-based applications often
involves extra effort on the part of software engineers because
they must take advantage of special APIs of a runtime platform
for which the application was designed. Such APIs provide ways
to export information about basic properties and state changes of
GUI components to assistive technologies, notification about
events fired within these GUI components, and device-
independent access to the GUIs of an application. For example,
the Java Swing GUI toolkit [2] provides the Accessibility API [3]
in order to expose basic properties of Swing components, events
fired by these components, and state changes within the GUI to
assistive technologies such as screen readers. The software
developer must be familiar with and add code to take advantage
of the Accessibility API, however, if a Java Swing application is
to be deemed accessible. As in the case of internationalization, it
is most cost-effective, then, to design accessibility into the
application from the outset rather than to catch inaccessible
portions of the application during testing or after production and
then amending, rebuilding, and redistributing the application.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WOSQ’06, May 21, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

27

It is often difficult to evaluate the accessibility of an application.
Typically, sets of guidelines or checklists are specified by an
institution, organization, or government that mandates that
applications used by members, employees, or consumers be
accessible. Examples of such checklists include the IBM Java
Accessibility Checklist [4] for Java Swing applications and the
W3C’s Web Content Accessibility Guidelines [5] for evaluating
the accessibility of web content. Adopting these guidelines in
developing a particular application does not guarantee the
accessibility of that application, but it does insure that the
application exhibits a high degree of accessibility – it is likely
more accessible than not.

Traditionally, there have been three ways in which to determine
the accessibility of GUI-based applications where accessibility is
specified in terms of the sorts of checklists just noted. First, an
assistive technology (AT) such as a screen reader (e.g. Freedom
Scientific’s Jaws for Windows [6]) can be executed while the
application to be validated is running. Developers and testers can
verify the accessibility of a GUI based upon the information about
the GUI reported by the screen reader (e.g. the descriptions for
GUI controls it presents, the keyboard shortcuts it recognizes) as
they navigate among the GUI components. This can be a tedious
task since it requires the developer and/or tester to navigate to
each and every component of the GUI and verify that all relevant
information about that component is being rendered by the screen
reader. Notice, too, that this method of evaluation can only find
accessibility violations during the test cycle and, hence, will
always dictate code modifications and regression testing.

A second way in which to validate such applications is to use
inspection tools such as Sun Microsystems’ Java Ferret [7].
These tools are configured to run in the Java Virtual Machine
(JVM) as if they were ATs and typically report the values of
predetermined sets of properties of GUI components. The
number of properties that are reported by such tools is usually
only a subset of those that are referenced or required by ATs and
other properties of the GUI that might hinder accessibility (e.g.
the relation of components to one another or the structure of the
GUI hierarchy) cannot be considered by such tools. Also, once
again, the use of such tools is a distinct and additional task in the
test cycle.

Finally, there are validation tools that depend upon the original
source code to affirm the accessibility of GUI-based applications.
Parasoft’s Web King [8] analyzes the text of an HTML document
to determine deficiencies in accessibility of web pages based on
the syntax and structure of the document. These tools, however,
cannot adequately evaluate GUI-based applications precisely
because they are not evaluating the GUI at runtime, which is
precisely when persons using ATs interact with the GUI. What is
desired, then, is a noninvasive (i.e. source-code independent),
dynamic, semi- to fully-automatic accessibility validation tool
that permits a wide variety of validation rules to be specified and
that applies these rules to runtime objects.

3. VALIDATION WITH RAVEN
3.1 Concept
The IBM Rule-based Accessibility Validation Environment
(RAVEN) [9] overcomes many of the deficiencies just
enumerated. Distributed as a set of Eclipse plug-ins, RAVEN
offers several new perspectives and views that can be utilized
along side typical Java- or plug-in development-related
perspectives in the Eclipse workbench. A Java (or JVM-based)
application can be launched by RAVEN and validation reports are
generated while the application is being used. These reports
describe the nature of the violation with respect to the validation
rules being used and, in some modes, indicate the point at which
the troublesome GUI component is instantiated, thus suggesting
where violations might be remedied. In this way, accessibility
validation is dynamic and somewhat automatic, requiring very
little human intervention to produce validation reports.

Figure 1 depicts a portion of a view in the RAVEN External
Perspective, the perspective used to launch and validate Java rich-
client GUI-based applications. The GUI being validated is the
SwingSet2 example [10] packaged with Sun’s distribution of the
Java Development Kit (JDK). SwingSet2 is a large Swing
application exhibiting the basic features and components included
in the Swing GUI toolkit. The figure shows the name of the class
to be executed, SwingSet2, the classpath for the application, and
indicates the method to be used for the launch, SwingSet2.-
main(String[]). (Other modes and views in RAVEN permit
validation to be initiated from constructors and other non-static
methods of a Java class.)

Figure 1: Depicts configuration of the Java GUI View in the
RAVEN External Perspective for launching/validating
SwingSet2
Figure 2 shows the validation report generated upon the
SwingSet2 application being launched and initially rendered. The
two errors indicate direct violations of the IBM Java Accessibility
Checklist, whereas the warnings indicate places in which
accessibility and usability could be enhanced. It is important to
note that the SwingSet2 GUI is running when this report is
generated. As we use the GUI, other reports would be generated
concerning the components of other panels that are opened.

Applications that themselves launch a JVM can also be launched
and validated from the RAVEN External Perspective. For
example, an Eclipse installation with the RAVEN plug-ins

28

installed could be validated by RAVEN itself. As it turns out, the
tool is fairly accessible, according to the IBM software
accessibility checklist. Surprisingly, this is unlike most other
accessibility evaluation tools, which are often not very accessible.

Much of the function of RAVEN is made possible via two
technologies: the Java Reflection API [11] and aspect-oriented
programming (AOP)[12]. Another important ingredient of
RAVEN is the architecturally-neutral validation engine, which
permits the tool to support the validation of not only Java Swing
and Eclipse SWT[13] GUIs, but permits the user to extend the
reach of the engine and validate, say, GUIs written using the
GNOME architecture[14] or the Eclipse Graphical Editing
Framework[15]. We shall describe these technologies in turn and,
also, gain a better understanding of how accessibility validation
with RAVEN works.

Figure 2 Validation report of the SwingSet2 app

3.2 Reflection and Validation Rules
The Java Reflection API provides a way for applications to
dynamically examine Java classes and to determine their data
members and methods at runtime. RAVEN uses Java Reflection
to process validation rules. These validation rules are given using
a simple XML-based [16] markup language specified by RAVEN
and used in an XML document known as a validation document.
This language does not require any Data Type Definition (DTD)
[17] or XML schema [18], thus making the validation engine a
rather light-weight software component.

The validation engine associates a rule (or set of rules) with a
particular Java type. It then walks the GUI hierarchy, applying
the appropriate rule or set of rules to each component.
Implementations of the TreeWalker interface control how a
GUI hierarchy (or any hierarchical structure) is traversed,
supplying ways to access the parent and children of any given
element in the hierarchy.

Because RAVEN is specifically concerned with accessibility, two
different TreeWalker implementations are used for each GUI
framework supported by RAVEN. For example, the following
excerpt is from the implementation of the TreeWalker interface
for walking a standard hierarchy of Swing GUI components:

Object[] getChildren(Object element) {

 Object[] children = new Object[0];

 Object bridgedChild =

 getBridgedChild(element);

 if(bridgedChild != null) {

 children =

 new Object[] {bridgedChild};

 }

 else if(element instanceof Container) {

 children =

 ((Container) element).getComponents();

 }

 return children;

}

Object getParent(Object element) {

 Object parent = null;

 Object bridgedParent =

 getBridgedParent(element);

 if(bridgedParent != null) {

 parent = bridgedParent;

 }

 else if(element instanceof Component) {

 parent =

 ((Component) element).getParent();

 }

 return parent;

}

An additional implementation of this interface is also available to
walk the hierarchy of Swing components as instances of the
javax.accessibility.Accessible interface provided
by the Accessibility API:

Object[] getChildren(Object element) {

 Object[] children = new Object[0];

 Object bridgedChild =

 getBridgedChild(element);

 if(bridgedChild != null) {

 children =

 new Object[] {bridgedChild};

 }

 else if(element instanceof Accessible) {

 AccessibleContext accElement =

 ((Accessible)

 element).getAccessibleContext();

 children =

 new Object[accElement.

 getAccessibleChildrenCount()];

29

 for (int c = 0;

 c < children.length;

 ++c) {

 children[c] =

 accElement.getAccessibleChild(c);

 }

 }

 return children;

}

Object getParent(Object element) {

 Object parent = null;

 Object bridgedParent =

 getBridgedParent(element);

 if(bridgedParent != null) {

 parent = bridgedParent;

 }

 else if(element instanceof Accessible) {

 parent =

 ((Accessible) element).

 getAccessibleContext().

 getAccessibleParent();

 }

 return parent;

}

Notice that both implementations provide for a so-called
bridgeMap. This map contains keys that are references to
parent components within the hierarchy and values that are
references to child components. This map is used by RAVEN
because GUIs spanning multiple GUI frameworks are supported
by the engine. For instance, we might have a Swing GUI
embedded in an Eclipse SWT GUI in which case the bridge map
would contain a key referencing the parent SWT control and a
corresponding value referencing the Swing component.

Currently, validation rules are type-based in that they require that
a rule be applied to an object of a particular Java type. (Future
work may include a way to specify so-called “event-based” rules
so that validation of arguments to method invocations, properties
of sources of runtime events, and other more dynamic aspects of
the GUI can be performed.) This type is specified in the
validation document as a child of the <rib:components> tag.
The child elements of the tag specifying the type are then used to
codify the rule to be applied to the object of that type. Reflection
is used to test whether an object is an instance of the requisite
type and to invoke access methods or check field values of that
object in order to apply the validation rule.

Consider the following example from the Java Swing validation
document packaged with RAVEN:

<Table>

 <accessibleTable>

 <accessibleCaption

 rib:severity="WARNING"

 rib:message="Missing caption"

 rib:enable="true"

 />

 <accessibleSummary

 rib:severity="WARNING"

 rib:message="Missing summary"

 rib:enable="true"

 />

 </accessibleTable>

</Table>

This rule states that any object which is an instance of javax.-
swing.JTable must have an accessible caption and an
accessible summary. These properties are fetched (and set) via
the JTable object’s javax.accessibility.Access-
ibleTable object, which, in the Java Accessibility API, is used
to export the necessary information about tables in the GUI to
assistive technologies. Thus, for any JTable object table in
the GUI, the RAVEN validation engine will invoke
table.getAccessibleTable().getAccessible-
Caption() and table.getAccessibleTable().get-
AccessibleSummary(). If either of these values are null,
the generated validation report will contain a violation at the level
of ‘WARNING’ and with the message given in the validation
document. In this way, the reflection engine determines the
validity of a validation document, not the XML parser.

Another powerful feature of RAVEN is its ability to process rules
that contain code from scripting languages like Jython[19]. Here
is an example from the same validation document that invokes a
pre-defined method in Jython to evaluate the mnemonic for all
buttons of a Swing GUI:

<AbstractButton>
 <mnemonic
 rib:severity="WARNING"
 rib:message="Invalid mnemonic"
 rib:enable="true"
 >
 isValidVirtualKey(propertyValue)
 </mnemonic>
 :
</AbstractButton>

and here is the code for the method:

def isValidVirtualKey (keyCode):
 return keyCode in VK_CODES

30

The identifier VK_CODES is a list of Java virtual key codes as
defined in the java.awt.event.KeyEvent class. This rule
states that any defined mnemonic must be one of these codes.
Currently, RAVEN supports embedding either Jython script or
Java code.

3.3 Aspect-Oriented Programming
In object-oriented programming (OOP) [20], a class (or set of
classes) embodies a set of related concerns of an application. For
instance, the Customer, Account, and Transaction classes
in a banking application would attempt to capture deposits,
withdrawals, and transfers by customers at a bank. These
concerns are similar in function and purpose so that they are
grouped together in a set of classes.

Other concerns such as logging, debugging, performance, and, in
our case, validation are cross-cutting concerns. Such concerns
cannot be limited to a class or set of classes and, in fact, permeate
or are woven throughout the entire application. These concerns
are the realm of aspect-oriented programming (AOP) rather than
object-oriented programming.

There are two components of an aspect:

1. The set of execution points in the application in which
we are interested. An execution point might include a
method invocation, a field access, or the throwing of an
exception.

2. The behavior or advice that is to be performed before,
during, or after the execution point in the application.

We use pointcut expressions to describe the set of execution
points in an application that we want to aspect and bindings to
associate advice with the set of execution points. Advice is
anything that can be written in Java code.

Bindings are expressed differently in different AOP
implementations. Consider the following excerpt from
resources/swing-val-aop.xml packaged with RAVEN:

<bind pointcut="call(public void
$instanceof{java.awt.Component}->show())">

 <advice name="validate"
aspect="com.ibm.wac.rib.core.validate.aspect
.ValidationAspect"/>

</bind>

The pointcut expression,

call(public void
$instanceof{java.awt.Component}->show())

indicates that we wish to intercept any call to the show()
method by any instance of java.awt.Component. Upon this
interception, we want to validate the GUI once the component in

question is shown. (Similar pointcut expressions exist in swt-
val-aop.xml to validate Eclipse SWT GUIs upon a call to
org.eclipse.swt.widgets.Shell.open().

Because AOP engines provide for either load time or runtime
weaving (i.e. the process by which the byte code of Java classes is
modified to reflect the bindings), RAVEN is able to facilitate
source code-independent or non-invasive validation. This is
important since it means that RAVEN can assist both software
developers during the development process and testers or even
end-users who may not have access to source code. Put another
way, RAVEN can perform validation on GUI-based applications
under development or those that have long since been completed.
Non-invasive validation is important, too, because it makes
accessibility an integral part of the development and testing
process. Using the application and validating it for accessibility
occur simultaneously – accessibility testing is no longer an
additional step or afterthought in the testing cycle.

Finally, when RAVEN’s capacity for non-invasive validation is
combined with the power of the Java Reflection API, one
additional bonus is received. Although RAVEN is an engine for
validating GUI-based applications for accessibility, the validation
engine itself is generic. Any rules that can be expressed in the
simple markup language specified by RAVEN can be applied to
any component of an application. For instance, one could use a
binding file and the appropriate validation document to test GUIs
for internationalization compliance by checking, say, that the
strings passed to the setText method of all Button objects are
legitimate values in a known ResourceBundle.

3.4 GUI Architectures
As already noted, there are a number of APIs for building and
rendering GUIs in Java. Each of these frameworks dictate, among
other things, the ways in which components are added to and
removed from other components, the ways in which different
parent and child components and the properties of these
components can be accessed, the way the GUI is rendered, and a
basic hierarchical structure of classes via which the GUI is to be
built and traversed.

The conception of an architecture in RAVEN is an abstraction of
these GUI frameworks. By precisely defining an architecture (by
implementing the Architecture interface), the RAVEN user
can specify many aspects of a desired framework such as how and
when components (or properties of components) are to be
accessed, the methods for traversing these components, the kind
of controls that can serve as top-level or root components, and
how these components will be rendered. Moreover, the
Architecture implementation can be specified externally, thus
allowing new and/or different architectures to be supported
without changes to RAVEN.

RAVEN is packaged with support for the Java AWT, Java Swing,
and Eclipse SWT GUI frameworks. For example, here is an
excerpt of the implementation of the Architecture interface
for the Swing GUI toolkit:

31

String[] getInitPackages() {

 return PACKAGE_LIST;

}

boolean isLinkable(Object comp) {

 return comp instanceof Component;

}

boolean performsLinkOnCreation() {

 return false;

}

boolean isTopDown() {

 return false;

}

void setComponentID(Object comp, String id)
{

 if (comp instanceof Component) {

 ((Component) comp).setName(id);

 }

}

String getComponentID(Object comp) {

 return comp instanceof Component

 ? ((Component) comp).getName() : null;

}

boolean isUIThread() {

 return SwingUtilities.

 isEventDispatchThread();

}

This excerpt will seem familiar to anyone who is a Swing
programmer. Notice that some methods, such as get-
ComponentID, setComponentID, and isTopDown, are
applicable to any hierarchy (not merely GUI hierarchies) and,
hence, live in the Architecture interface. Other methods,
such as isUIThread, specifically target hierarchies of GUI
components and, therefore, reside in the GUIArchitecture
sub-interface. Such a division allows RAVEN to remain a
generic validation engine, supporting the validation of any
hierarchical structure with any set of rules that can be stipulated
in the validation document.

4. CONCLUSION
One of the chief principles upon which RAVEN was developed
was that accessibility should be an integral part of the devel-
opment cycle as well as the test cycle. Put another way,
accessibility of a GUI-based application should be built into the
system from the outset, much as localization or other facets of
usability. RAVEN provides a non-invasive, dynamic inspection

and validation of Java rich-client GUIs either during the
development process or testing.

RAVEN supports a pluggable architecture model via which other
GUI frameworks can be supported by the validation engine.
Future work will include supporting other types of GUIs,
including those produced by Lotus applications, the Eclipse
Visual Editor, the Eclipse Graphical Editing Framework, and
web-based rich-client GUIs. Validating web content, especially
dynamic web content produced by JavaScript or AJAX-based [21]
web applications, could be done by examining the actual
Document Object Model (DOM) [22] constructed by the browser
rather than the static HTML source, as is currently done by other
tools such as Parasoft’s Web King.

5. REFERENCES
[1] See http://www.eclipse.org.
[2] See http://java.sun.com/j2se/1.4.2/docs/guide/swing/-

index.html.
[3] See http://java.sun.com/products/jfc/jaccess-1.3/doc/core-

api.html.
[4] See http://www.ibm.com/able/guidelines/java/-

accessjava.html.
[5] See http://www.w3.org/WAI/intro/wcag.php.
[6] See http://www.freedomscientific.com/fs_products/-

JAWS_HQ.asp.
[7] See http://java.sun.com/developer/technicalArticles/GUI/-

accessibility2/index.html.
[8] See http://www.parasoft.com/jsp/products/home.jsp?-

product=WebKing.
[9] See http://www.alphaworks.ibm.com/tech/raven.
[10] See http://java.sun.com/products/plugin/1.4/demos/-

plugin/jfc/SwingSet2/SwingSet2.html.
[11] Forman, I., Forman, N., Reflection in Action, Manning 2004.
[12] See http://www.jboss.org/products/aop.
[13] See http://www.eclipse.org/swt/.
[14] See http://www.gnome.org/.
[15] See http://www.eclipse.org/gef/.
[16] See http://www.w3.org/XML/.
[17] See http://xmlfiles.com/dtd/.
[18] See http://www.w3.org/XML/Schema.
[19] See http://www.jython.org.
[20] See http://www.jboss.org/products/aop.
[21] Crane, D., Pascarello, E., Ajax in Action, Manning 2005.
[22] See http://www.w3.org/DOM/.

32

