
Induced Subgraph Isomorphism on proper interval and bipartite

permutation graphs∗

Pinar Heggernes† Pim van ’t Hof† Daniel Meister‡ Yngve Villanger†

Abstract

Given two graphs G and H as input, the Induced Subgraph Isomorphism (ISI) prob-
lem is to decide whether G has an induced subgraph that is isomorphic to H. This problem
is NP-complete already when G and H are restricted to disjoint unions of paths, and con-
sequently also NP-complete on proper interval graphs and on bipartite permutation graphs.
We show that ISI can be solved in polynomial time on proper interval graphs and on bi-
partite permutation graphs, provided that H is connected. As a consequence, we obtain
that ISI is fixed-parameter tractable on these two graph classes, when parametrised by the
number of connected components of H. Our results contrast and complement the following
known results: W [1]-hardness of ISI on interval graphs when parametrised by the number of
vertices of H, NP-completeness of ISI on connected interval graphs and on connected per-
mutation graphs, and NP-completeness of Subgraph Isomorphism on connected proper
interval graphs and connected bipartite permutation graphs.

1 Introduction

We study the following classical decision problem for undirected graphs, which has applications
in a variety of practical areas [8, 9].

Induced Subgraph Isomorphism (ISI)
Input: Two graphs G and H.
Question: Does G have an induced subgraph isomorphic to H?

Equivalently, the question is whether we can delete vertices and their incident edges from G
to obtain a graph isomorphic to H. ISI is a generalisation of several well-known problems
like Clique, Independent Set, Longest Induced Path, and Graph Isomorphism. As a
consequence of known hardness results on some of these problems, ISI is NP-complete [9] as well
as W [1]-hard when parametrised by the number of vertices in H [7].

Due to its importance, ISI has been studied on a large number of graph classes in pursuit
of polynomial-time solvability; a summary of such results is given in Figure 1. Unfortunately,

∗This work is supported by the Research Council of Norway. A preliminary version of the result on proper
interval graphs was presented at ISAAC 2010 [11].
†Department of Informatics, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway. Emails:

{pinar.heggernes, pim.vanthof, yngve.villanger}@ii.uib.no
‡Theoretical Computer Science, University of Trier, Germany. Email: daniel.meister@uni-trier.de

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357278523?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the problem turns out to be notoriously difficult, and only very few non-trivial polynomial-time
cases are known: ISI can be solved in polynomial time when G is a forest and H is a tree [17],
when G and H are 2-connected outerplanar graphs [19], and when G is a trivially perfect graph
and H is a threshold graph [1]. On the negative side, ISI remains NP-complete when G is a
tree and H is a forest [9], when G is a cubic planar graph and H is a path [9], and when G
and H are both connected cographs [5] or even connected trivially perfect graphs [1]. In fact,
ISI is NP-complete already when G and H are disjoint unions of paths [9, 5]. This last NP-
completeness result directly applies to all hereditary graph classes that contain arbitrarily long
induced paths. In particular, ISI is NP-complete when G and H are proper interval graphs or
when G and H are bipartite permutation graphs.

In this paper, we show that ISI can be solved in polynomial time when the input graphs
are proper interval graphs and when they are bipartite permutation graphs, provided that the
second input graph H is connected. In contrast, note that the same is not true for interval
graphs or for permutation graphs. In particular, even if both input graphs are connected, ISI
remains NP-complete on interval graphs [16] and on permutation graphs [5]. Another contrast
is given by the fact that the related problem Subgraph Isomorphism, where one asks for a
subgraph rather than an induced subgraph, is NP-complete when the two input graphs are both
connected proper interval graphs or both connected bipartite permutation graphs [14].

To obtain our polynomial-time algorithms, we first solve the following problem. Given two
graphs G and H, a vertex ordering σG and a colouring fG for G, and a vertex ordering σH
and a colouring fH for H, decide whether there is an isomorphism between H and an induced
subgraph of G that preserves the given vertex orderings and maps the vertices of H to vertices
of G of the same colour. In this context, preserving the orderings means that the order of two
vertices of H according to σH is the same as the order of their images in G according to σG.
We show that if σG and fG satisfy some specific conditions, then we can decide in polynomial
time whether such an isomorphism exists. Our main results are then obtained by showing that
proper interval graphs and bipartite permutation graphs have vertex orderings that satisfy these
conditions.

Our results extend to showing that ISI is fixed-parameter tractable on proper interval graphs
and on bipartite permutation graphs, when the parameter is the number of connected compo-
nents of the second input graph H. This complements the results of [16], where it is shown that
ISI is W [1]-hard on interval graphs when the parameter is the number of vertices of H, but it
is fixed-parameter tractable on interval graphs when the parameter is the difference between
the numbers of vertices of the two input graphs. To complete the list of known parametrised
results on ISI, let us mention that when the parameter is the number of vertices of H, ISI is
fixed-parameter tractable when both input graphs are planar [8] or their maximum vertex degree
is bounded by a constant [3].

Our paper is organised as follows. Basic graph-theoretic definitions and notation are given
in Section 2. We solve the above-mentioned problem on graphs with colourings and vertex
orderings in Section 3. The main results on proper interval graphs and bipartite permutation
graphs are given in Sections 4 and 5, respectively. We end with the fixed-parameter algorithms
and concluding remarks in Section 6.

2



interval permutation

cocomparability

bipartite 
permutation cographproper interval

of paths
disjoint union

perfect
trivially

comparability

Figure 1: An overview of the graph classes mentioned in this paper and the complexity status
of ISI on them. Here, “C → D” is to be understood as “C is a subclass of D”. By the results of
this paper, ISI is solvable in polynomial time on the graph classes with light grey frames, when
H is connected. On the graph classes with dark grey frames, it is known from previous work
that ISI is NP-complete even when both G and H are connected.

2 Definitions and notation

We consider simple finite undirected graphs. A graph G is an ordered pair (V,E), and V = V (G)
is the vertex set of G and E = E(G) is the edge set of G. Edges of G are denoted as uv, where u
and v are vertices of G. If uv is an edge of G then u and v are adjacent and u is a neighbour of
v and v is a neighbour of u in G. Otherwise, if uv is not an edge of G, u and v are non-adjacent
in G. The (open) neighbourhood of a vertex u in G is the set of the neighbours of u in G, and it
is denoted as NG(u). The closed neighbourhood of u is NG[u] =def NG(u)∪{u}. For X ⊆ V (G),
the subgraph of G induced by X, denoted as G[X], is the graph on vertex set X, and for every
vertex pair u, v from X, uv is an edge of G[X] if and only if uv is an edge of G. A graph G′ is
an induced subgraph of G if there exists a set X ⊆ V (G) such that G′ = G[X]. For a vertex u
of G, we write G−u to denote the induced subgraph G[V (G) \ {u}] of G, that is, G−u is the
graph obtained from G by deleting vertex u. A set X of vertices of G is an independent set of
G if the vertices in X are pairwise non-adjacent in G.

Let G be a graph. Let k be an integer with k ≥ 0 and let u, v be a vertex pair of G. A
u, v-path of G of length k is a sequence (x0, . . . , xk) of pairwise different vertices of G such that
x0 = u and xk = v and xixi+1 ∈ E(G) for every 0 ≤ i < k. Graph G is connected if G has a
u, v-path for every vertex pair u, v of G; otherwise, if there is a vertex pair u, v of G such that G

3



has no u, v-path, G is called disconnected. A connected component of G is a maximal connected
subgraph of G.

Let G and H be two graphs. We say that H is isomorphic to G if there is a bijective
mapping ϕ from V (H) to V (G) such that for every vertex pair u, v of H, uv ∈ E(H) if and only
if ϕ(u)ϕ(v) ∈ E(G). In this case, mapping ϕ is called an isomorphism from H to G. In Section 3,
we will decide the existence of isomorphisms that satisfy additional conditions, namely that are
required to respect vertex orderings and vertex colours. Let k be an integer with k ≥ 1. A k-
colouring for G is a mapping f that assigns a colour from the set {1, 2, . . . , k} to each vertex of
G. A colouring for G is a k-colouring for G for some k. A colouring f for G is proper if for every
edge uv of G, f(u) 6= f(v). A vertex ordering for G is a linear arrangement σ = 〈u1, . . . , un〉 of
the vertices of G. The reverse of σ is the vertex ordering 〈un, . . . , u1〉. For a vertex pair x, y of
G, we write x 4σ y if x = ui and y = uj for some indices i, j and i ≤ j. If x 6= y and thus i < j,
we write x ≺σ y. If x ≺σ y, then we say that x appears to the left of y in the ordering σ, and y
appears to the right of x in σ.

A graph class is hereditary if it is closed under taking induced subgraphs. All graph classes
mentioned in this paper are hereditary [2, 10]. Furthermore, all graph classes in this paper admit
well-known characterisations through vertex orderings, and we will often define graph classes
using these characterisations. A graph G is a comparability graph if it has a vertex ordering σ
such that for every vertex triple u, v, w of G with u ≺σ v ≺σ w, uv ∈ E(G) and vw ∈ E(G)
implies uw ∈ E(G) [10]. Such vertex orderings are called comparability orderings. A graph is
a cocomparability graph if its complement is a comparability graph. Equivalently, a graph G
is a cocomparability graph if and only if it has a vertex ordering σ such that for every vertex
triple u, v, w of G with u ≺σ v ≺σ w, uw ∈ E(G) implies uv ∈ E(G) or vw ∈ E(G) [13]. Such
vertex orderings are called cocomparability orderings. A graph is bipartite if it has a proper 2-
colouring, i.e., if its vertex set can be partitioned into two independent sets. Bipartite graphs are
comparability graphs. Proper interval graphs and bipartite permutation graphs are both sub-
classes of cocomparability graphs [2, 10]; see also Figure 1. The definitions or characterisations,
through vertex orderings, and necessary properties of proper interval graphs and of bipartite
permutation graphs will be given at the beginnings of Sections 4 and 5. Comprehensive surveys
on properties of the considered graph classes can be found in monographs such as [2] and [10].

Finally, for a brief background on parametrised complexity, a parametrised problem has a
part of its input, typically an integer, identified as the parameter. A parametrised problem is
fixed-parameter tractable if there is an algorithm for solving it in time f(k) · nO(1), where n is
the total input size, k is the parameter, and f is a function that depends only on k and that
does not involve n. There is a hierarchy of intractable parametrised problem classes [7]. For the
results mentioned in this paper, it is sufficient to notice that a parametrised problem is unlikely
to be fixed-parameter tractable if it is W [1]-hard.

3 ISI on graphs with colourings and vertex orderings

Let G and H be arbitrary graphs and let σ be a vertex ordering for G. Assume that G has an
induced subgraph G′ such that H is isomorphic to G′. Then, there are a vertex ordering τ for
H and a total injective mapping ϕ : V (H) → V (G) such that the following two conditions are
satisfied for every ordered vertex pair u, v of H:

4



1) uv ∈ E(H) if and only if ϕ(u)ϕ(v) ∈ E(G)

2) u ≺τ v if and only if ϕ(u) ≺σ ϕ(v).

The first condition is the isomorphism condition for H and G′. For the second condition, observe
that τ can be obtained from σ by restriction to the vertices of G′ and applying ϕ−1. In this
section, we will consider this type of an isomorphism problem.

The main result of this section is an efficient algorithm that decides the existence of an
isomorphism that respects given colourings and vertex orderings. Let G and H be two graphs,
and let σ and τ be vertex orderings for respectively G and H. Let ϕ : V (H) → V (G) be a
total mapping. If for every ordered vertex pair u, v of H, u ≺τ v implies ϕ(u) ≺σ ϕ(v) then we
say that ϕ is (σ, τ)-monotone. Observe that a (σ, τ)-monotone mapping is injective. Assume
that H is isomorphic to G, and let ϕ : V (H)→ V (G) be an isomorphism from H to G. If ϕ is
(σ, τ)-monotone, we say that ϕ is a (σ, τ)-isomorphism and that H is (σ, τ)-isomorphic to G. We
say that H is (σ, τ)-isomorphic to an induced subgraph of G if there is an induced subgraph G′

of G such that H is (σ′, τ)-isomorphic to G′, where σ′ is the restriction of σ to the vertices of
G′. Our algorithmic result of this section aims at deciding for given graphs G and H and vertex
orderings σ and τ whether H is (σ, τ)-isomorphic to an induced subgraph of G.

In addition to the vertex ordering monotonicity of the desired isomorphism, we also ask for
isomorphisms that map between equal classes of vertices. We formalise this class notion by
colours. Let G and H be two graphs and let fG and fH be colourings for respectively G and
H. Let ϕ : V (H) → V (G) be an arbitrary total mapping. We call ϕ colour-preserving for
(G, fG) and (H, fH), if fH(x) = fG(ϕ(x)) for every vertex x of H. Our algorithm will decide
the existence of colour-preserving isomorphisms.

Before we formally present our algorithm, we give an informal description. The algorithm
receives as input two graphs G and H, as well as two colourings fG and fH and two vertex
orderings σ and τ for respectively G and H. The algorithm decides whether H is colour-
preserving (σ, τ)-isomorphic to an induced subgraph of G, which means that there is a (σ, τ)-
isomorphism from H to an induced subgraph of G that is also colour-preserving. For the initial
step, the algorithm maps the vertices of H to the rightmost possible vertices of G, only respecting
the colourings and vertex orderings. We can say that the algorithm begins with the rightmost
colour-preserving (σ, τ)-monotone mapping. Now, in rounds, the algorithm checks whether the
current colour-preserving (σ, τ)-monotone mapping is also an isomorphism. If yes, the algorithm
has found a colour-preserving (σ, τ)-monotone isomorphism from H to an induced subgraph of G.
Otherwise, there is a “conflicting” vertex pair u, v of H that violates the isomorphism condition,
which means that u and v are adjacent in H while their images are non-adjacent in G, or
vice-versa. Based on these two possible cases, the algorithm computes a new colour-preserving
(σ, τ)-monotone mapping by pushing u or v further left, and enters a new round.

The crucial auxiliary operation is the push operation for a vertex. Intuitively, the push
operation applied to a vertex u finds the closest vertex to the left of u of a specified colour, if a
vertex of that colour exists. We base the push operation on the “predecessor” function. Let G
be a graph, let f be a colouring for G and let σ = 〈x1, . . . , xn〉 be a vertex ordering for G. Let
a be a vertex position index with 1 ≤ a ≤ n and let c be a colour. Then,

pred(σ,f)(a, c) =def max
({

a′ : 1 ≤ a′ < a and f(xa′) = c
}
∪
{

0
})

.

5



Figure 2: Depicted is a vertex ordering for a graph. The vertices of the graph are coloured with
the colours “triangle” and “circle”. We iteratively apply the predecessor function pred, starting
at the rightmost vertex of colour “triangle”, and it lists all vertices with colour “triangle”, in
the order of appearance in the vertex ordering, from right to left.

In words, when given as input a vertex position a and a colour c, the predecessor function pred(σ,f)

considers all vertices to the left of xa in vertex ordering σ that have colour c and it outputs
the largest such position, unless no vertex to the left of xa in σ has colour c, in which case it
outputs 0. Note that xa itself does not need to have colour c. As an example for the iterated
application of pred to a graph with a 2-colouring, Figure 2 indicates the predecessor of each
triangle-coloured vertex.

We are now ready to present the algorithm. It is called OrderedInducedSubgraph, and
we often use OIS for short. It receives as input a 6-tuple (G, fG, σ; H, fH , τ) of the following
components:

• G is a graph, fG is a colouring for G, and σ is a vertex ordering for G

• H is a graph, fH is a colouring for H, and τ is a vertex ordering of H.

The algorithm decides whether H is colour-preserving (σ, τ)-isomorphic to an induced subgraph
of G.

Algorithm OrderedInducedSubgraph (OIS)

Input A graph G with colouring fG and vertex ordering σ = 〈x1, . . . , xn〉;
a graph H with colouring fH and vertex ordering τ = 〈y1, . . . , yr〉.

begin
if fG(xi) 6= fH(yr) for every 1 ≤ i ≤ n then reject end if;
let ar be the largest vertex position index such that fG(xar) = fH(yr);

for i = r − 1 downto 1 do let ai = pred(σ,fG)(ai+1, fH(yi)) end for;

if a1 = 0 then reject end if;

while H is not (σ, τ)-isomorphic to G[{xa1 , . . . , xar}] do
let i, j be a vertex position index pair with 1 ≤ i < j ≤ r

such that yiyj 6∈ E(H) if and only if xaixaj ∈ E(G);
if yiyj 6∈ E(H) then

push(i)
else

push(j)
end if

end while;

return (a1, . . . , ar) and accept
end.

6



Subroutine push(b)
begin

set ab = pred(σ,fG)(ab, fH(yb));

while ab ≤ ab−1 and b ≥ 2 do
set b = b− 1;
set ab = pred(σ,fG)(ab+1, fH(yb))

end while;

if a1 = 0 then reject end if
end.

We analyse the correctness of the algorithm in two steps: we show first that the algorithm
always accepts correctly, and then that it always rejects correctly. The algorithm consists of a
main procedure and a subroutine called push. The main procedure iteratively computes a se-
quence 〈a0, . . . , ah〉 of vertex position index tuples, and each such tuple is of the form (a1, . . . , ar).
Note here that input graph H has r vertices. The for loop of the main procedure computes
the initialising tuple a0, and the while loop computes the rest of the tuples a1, . . . , ah. Note
that only tuple ah is output, and this is done only if the algorithm accepts. An execution of
the while loop body of the main procedure is called a round. For an integer e ≥ 0, the index
tuple ae = (ae1, . . . , a

e
r) is the result of round e, and the values of ae1, . . . , a

e
r are the values of

respectively a1, . . . , ar of the algorithm at the end of round e, in particular, after the appli-
cation of Subroutine push. The execution of the for loop is equivalent to round 0. For two
r-tuples b = (b1, . . . , br) and c = (c1, . . . , cr), we write b ≤ c if bi ≤ ci for every 1 ≤ i ≤ r, and
we write b < c if b ≤ c and bi < ci for some 1 ≤ i ≤ r.

Lemma 3.1. Let G be a graph with colouring fG and vertex ordering σ = 〈x1, . . . , xn〉, and let
H be a graph with colouring fH and vertex ordering τ = 〈y1, . . . , yr〉. When Algorithm OIS is
run on input (G, fG, σ; H, fH , τ), the following holds:

1) for every 0 ≤ e ≤ h, where ae = (ae1, . . . , a
e
r): if ae1 ≥ 1 then ae1 < · · · < aer

2) for every 0 ≤ e ≤ h, where ae = (ae1, . . . , a
e
r): if ae1 ≥ 1 then fH(yi) = fG(xaei ) for every

1 ≤ i ≤ r

3) for every 1 ≤ e ≤ h: ae ≤ ae−1

4) if OIS accepts on input (G, fG, σ; H, fH , τ) and outputs (a1, . . . , ar) then H is colour-
preserving (σ, τ)-isomorphic to G[{xa1 , . . . , xar}].

Proof. Let 〈a0, . . . , ah〉 be the computed vertex position index tuple sequence.

We prove statements 1 and 2 simultaneously, by induction on e. Let e = 0, and assume that
a01 ≥ 1. Then, fH(yr) = fG(xa0r) due to the choice of a0r , and a0i < a0i+1 and fG(xa0i

) = fH(yi) for

every 1 ≤ i < r, according to the definition of the predecessor function pred. Thus, a0 satisfies
the two conditions.

Now, let e ≥ 1, assume that ae1 ≥ 1, and assume that ae−1 satisfies the two conditions.
The new index tuple ae is computed during an execution of the while loop body, thus, it
is the result of an execution of Subroutine push. Since ae−11 < · · · < ae−1r by assumption,

7



the iterated application of the predecessor function in Subroutine push yields ae1 < · · · < aer.
It is crucial to recall our assumption about ae1 ≥ 1 here. The same assumption also implies
fG(xaei ) = fG(xae−1

i
) = fH(yi) for every 1 ≤ i ≤ r, which is due to the definition of pred and our

assumption about ae−1. Thus, ae indeed satisfies the two conditions.

Statement 3 is a direct consequence of the definition of Subroutine push and the properties
of the predecessor function pred.

We prove statement 4. Assume that OIS accepts on input (G, fG, σ; H, fH , τ). Observe
that OIS accepts only in the main procedure, and the initialising step must have been executed
successfully, in particular, a01 ≥ 1. It follows that round h is the last fully executed round of the
algorithm, and the condition of the while loop of the main procedure is false at the beginning
of round h+1. This means that ah1 ≥ 1, since ah1 = 0 and h ≥ 1 means that the algorithm would
reject during the execution of Subroutine push in round h.

So, the condition of the while loop is not satisfied, which means that H is (σ, τ)-isomorphic
to G[{xah1 , . . . , xahr }]. According to the results of statements 1 and 2, it directly follows that H

is colour-preserving (σ, τ)-isomorphic to G[{xah1 , . . . , xahr }], which proves statement 4.

The main result of Lemma 3.1 is statement 4, that the algorithm always accepts correctly.
For the second step toward a correctness proof for the algorithm, we want to show that the
algorithm also always rejects correctly. Before we proceed with this step, we make some general
observations. Let G and H be two graphs, and let σ and τ be vertex orderings for respectively G
and H. Observe that it can be decided in polynomial time whether H is (σ, τ)-isomorphic to G,
since only one mapping from V (H) to V (G) is possible. On the other hand, when generalising the
problem to induced subgraphs, deciding whether H is (σ, τ)-isomorphic to an induced subgraph
of G is NP-complete on general graphs. A straightforward reduction can be constructed from
Clique. And to fully satisfy the setting of our special isomorphism problem, we can additionally
equip G and H with a 1-colouring. As a consequence, we cannot expect our algorithm to work
correctly on all possible inputs. We restrict our inputs and require them to satisfy two special
conditions. These two conditions are defined next.

Definition 3.2. Let G be a graph, let f be a colouring for G, and let σ be a vertex ordering for
G.

1) (G, f, σ) satisfies the left umbrella condition if for every vertex triple u, v, w of G with
u ≺σ v ≺σ w and f(v) = f(w), uw ∈ E(G) implies uv ∈ E(G).

2) (G, f, σ) satisfies the right umbrella condition if for every vertex triple u, v, w of G with
u ≺σ v ≺σ w and f(u) = f(v), uw ∈ E(G) implies vw ∈ E(G).

Observe that the two umbrella conditions are symmetric, which means that (G, f, σ) satisfies
the left umbrella condition if and only if (G, f, σR) satisfies the right umbrella condition, where
σR is the reverse of σ. An illustrating description of the two umbrella conditions is given in
Figure 3.

Lemma 3.3. Let G be a graph with colouring fG and vertex ordering σ = 〈x1, . . . , xn〉 such that
(G, fG, σ) satisfies the left and right umbrella conditions, and let H be a graph with colouring fH
and vertex ordering τ = 〈y1, . . . , yr〉. If Algorithm OIS rejects input (G, fG, σ; H, fH , τ) then
H is not colour-preserving (σ, τ)-isomorphic to any induced subgraph of G.

8



u v w u v w

right umbrella condition

⇒
u v w u v w

left umbrella condition

⇒

Figure 3: An illustration of the left and right umbrella conditions of Definition 3.2. The ver-
tices u, v, w satisfy u ≺σ v ≺σ w, and we have vertices of two colours, namely black and white.

Proof. Recall the definitions preceding Lemma 3.1 and the technical results from Lemma 3.1;
we will make heavy use of these throughout the proof. Let 〈a0, . . . , ah〉 be the computed index
tuple sequence. We prove the contraposition of the statement of the lemma. Let σ = 〈x1, . . . , xn〉
and τ = 〈y1, . . . , yr〉.

We assume that H is colour-preserving (σ, τ)-isomorphic to an induced subgraph of G. Then,
there are indices d1, . . . , dr with 1 ≤ d1 < · · · < dr ≤ n such that H is colour-preserving (σ, τ)-
isomorphic to G[{xd1 , . . . , xdr}]. Recall that this particularly means fH(yi) = fG(xdi) for every
1 ≤ i ≤ r. We let d =def (d1, . . . , dr). It will be important later that

di ≤ pred(σ,fG)(di+1, fH(yi))

holds for every 1 ≤ i < r. We show that OIS accepts with output tuple ah and that d ≤ ah

holds. To prove the result, we show by induction on e that d ≤ ae holds.

Induction base
Recall the choice of d and the definition of a0, and observe that the following holds:

fG(xdr) = fG(xa0r) and dr ≤ a0r .

We consider the other entries of d and a0. Let 1 ≤ i < r. Recall from the initialising step of
OIS:

a0i = pred(σ,fG)(a
0
i+1, fH(yi)) .

It follows that a0i < a0i+1 and fG(xj) 6= fH(yi), for every a0i < j < a0i+1. Since di < di+1 ≤ a0i+1

and fG(xdi) = fH(yi), it follows that di ≤ a0i . We conclude d ≤ a0, which proves the induction
base.

Induction step
We consider an arbitrary round e, for 0 ≤ e < h. We assume d ≤ ae, and we show d ≤ ae+1.
Suppose for a contradiction that d 6≤ ae+1. Then, there exists an index t with 1 ≤ t ≤ r such
that ae+1

t < dt. Due to the assumption d ≤ ae, this means ae+1
t < dt ≤ aet .

We make some preparations. Recall that ae+1 is obtained from ae by an application of
Subroutine push. Let p, q be the conflicting index pair chosen at the beginning of round e+ 1,
and we can assume p < q. According to the choice of p and q, it holds: ypyq 6∈ E(H) if and only
if xaepxaeq ∈ E(G). Recall that push is invoked with p or q. Let b be the number push is invoked

with. The following is a simple observation from the definition of push: ae+1
i = aei for every

b < i ≤ r. As an as simple as important consequence: t ≤ b. Furthermore, according to push:

ae+1
i = pred(σ,fG)(a

e+1
i+1 , fH(yi))

9



for every t ≤ i < b.
We consider the values of dt, . . . , db and ae+1

t , . . . , ae+1
b . Let i be an index with t ≤ i < b,

and assume di+1 ≤ ae+1
i+1 . The monotonicity of the predecessor function pred(σ,fG) shows:

pred(σ,fG)(di+1, fH(yi)) ≤ pred(σ,fG)(a
e+1
i+1 , fH(yi)) ,

which implies

di ≤ pred(σ,fG)(di+1, fH(yi)) ≤ pred(σ,fG)(a
e+1
i+1 , fH(yi)) = ae+1

i ,

so that di+1 ≤ ae+1
i+1 implies di ≤ ae+1

i . From this we conclude that if db ≤ ae+1
b then dt ≤ ae+1

t .

Since ae+1
t < dt according to our assumptions, we can conclude ae+1

b < db, and thus, ae+1
b <

db ≤ aeb. Furthermore, since

fG(xae+1
b

) = fG(xdb) = fG(xaeb) = fH(yb) and ae+1
b = pred(σ,fG)(a

e
b, fH(yb)) ,

we conclude db = aeb. Informally, this means that xaeb is a correct choice for yb.
We employ db = aeb to construct the desired contradiction. We distinguish between the two

cases about the value of b: either b = p or b = q.

Case 1. push is invoked with parameter value b = p.

Proof of the case. We have the following situation:

ypyq 6∈ E(H); xdpxdq 6∈ E(G); xaepxaeq ∈ E(G); dp = aep; p = b < q .

Recall from the above that b = p and db = aeb implies dp = aep. Since aep = dp < dq ≤ aeq and
xdpxdq 6∈ E(G) and xdpxaeq ∈ E(G), it clearly follows dq 6= aeq, so that aep = dp < dq < aeq must
hold.

We construct the desired contradiction. Observe that fG(xdq) = fG(xaeq). Since xaepxaeq ∈
E(G) and since (G, fG, σ) satisfies the left umbrella condition, it follows that xdpxdq ∈ E(G)
must hold, contradicting the observed situation.

Case 2. push is invoked with parameter value b = q.

Proof of the case. We have the following situation:

ypyq ∈ E(H); xdpxdq ∈ E(G); xaepxaeq 6∈ E(G); dq = aeq; p < q = b .

Recall from the above that b = q and db = aeb implies dq = aeq. Since dp ≤ aep < aeq = dq and
xdpxdq ∈ E(G) and xaepxdq 6∈ E(G), it clearly follows dp 6= aep, so that dp < aep < aeq = dq must
hold.

Since xaepxaeq 6∈ E(G) and fG(xdp) = fG(xaep) and since (G, fG, σ) satisfies the right umbrella
condition, it follows that xdpxdq 6∈ E(G), which gives the desired contradiction.

We summarise the shown results. We have seen that d ≤ ah ≤ · · · ≤ a0 holds. And since
ae+1 6= ae according to the definition of Subroutine push, it even holds that d ≤ ah < · · · < a0.
We conclude that OIS does not reject. Since OIS clearly terminates on each input, we conclude
that OIS accepts.

10



Corollary 3.4. Let G be a graph with colouring fG and vertex ordering σ = 〈x1, . . . , xn〉 such
that (G, fG, σ) satisfies the left and right umbrella conditions, and let H be a graph with colour-
ing fH and vertex ordering τ = 〈y1, . . . , yr〉. Algorithm OIS on input (G, fG, σ; H, fH , τ) decides
in polynomial time whether H is colour-preserving (σ, τ)-isomorphic to an induced subgraph of
G.

Proof. The correctness of the algorithm is the joined result of statement 4 of Lemma 3.1 and
of Lemma 3.3.

For the running time, recall the end of the proof of Lemma 3.3. It is clear that each round
of the algorithm has polynomial running time, so it remains to bound the number of rounds,
which is parameter h. We may assume that the algorithm output a tuple ah. As argued in the
last paragraph of the proof of Lemma 3.3, it holds that ah < · · · < a0, which implies

r∑
j=1

ahj <
r∑
j=1

ah−1j < · · · <
r∑
j=1

a0j . (1)

Since the algorithm did not reject, it holds that 1 ≤ aji ≤ n for every 1 ≤ i ≤ r and 0 ≤ j < h,
where n and r are the numbers of vertices of respectively G and H. In particular, this means
r ≤ ∑r

j=1 a
h
j and

∑r
j=1 a

0
j ≤ rn. This, together with (1), implies r ≤ rn − h, so that we can

conclude h ≤ r(n− 1) ≤ n2 about the number of executed rounds.

Before we end this section, we review the obtained results. We showed that OIS correctly
decides the existence of colour-preserving monotone induced subgraph isomorphisms, provided
the input satisfies two conditions. These two conditions are the left and right umbrella condi-
tions. At first glance, this appears to be a strong restriction on the possible inputs. At second
glance, such restrictions are inavoidable, as we already discussed in this section. We will apply
OIS to solve the induced subgraph isomorphism problem on proper interval graphs and bipartite
permutation graphs. And for these graph classes, we can choose inputs that in fact satisfy the
two conditions naturally.

We consider OIS more closely. If OIS accepts then it also outputs a vertex position index
tuple, namely ah, which defines a colour-preserving monotone induced subgraph isomorphism,
according to statement 4 of Lemma 3.1. Let d be an index tuple that defines an arbitrary
colour-preserving monotone induced subgraph isomorphism. The proof of Lemma 3.3 shows
that d ≤ ah holds. We can therefore say that the output index tuple defines the “maximum”
or “rightmost” colour-preserving monotone induced subgraph isomorphism. This is a useful
observation, useful when asking for isomorphisms of very special properties.

Another interesting observation about OIS concerns the chosen conflicting index pair i, j.
The algorithm chooses an arbitrary such index pair among all possible conflicting index pairs,
and the result of the algorithm, acceptance or rejection as well as the output index tuple, is
not influenced by the actual choice. This is noteworthy for theoretical as well as implemention
aspects.

Finally, consider the related subgraph isomorphism problem: given two graphs G and H,
decide whether H is isomorphic to a (not necessarily induced) subgraph G′ of G. We can modify
OIS to decide this problem: conflicting index pairs are those i, j for which yiyj ∈ E(H) and
xaixaj 6∈ E(G). It is an easy exercise to modify the proofs of this section to show the following

11



result: there is a polynomial-time algorithm that decides on input (G, fG, σ; H, fH , τ) whether
H is colour-preserving (σ, τ)-isomorphic to a subgraph of G, assuming that (G, fG, σ) satisfies
the right umbrella condition. If G is an interval graph, fG is a 1-colouring for G and σ is
an interval ordering for G, this is the case. Neglecting the (σ, τ)-monotonicity, the resulting
Subgraph Isomorphism problem is NP-complete already on connected proper interval graphs
[14].

4 ISI on proper interval graphs

Proper interval graphs are cocomparability graphs of special properties, and they have a char-
acterisation through vertex orderings. Let G be a graph. A vertex ordering σ for G is called
a proper interval ordering if for every vertex triple u, v, w of G with u ≺σ v ≺σ w, uw ∈ E(G)
implies uv ∈ E(G) and vw ∈ E(G). A graph is a proper interval graph if it has a proper interval
ordering [15]. We only consider proper interval graphs through this vertex ordering characte-
risation. Observe for every vertex ordering σ for G: σ is a proper interval ordering for G if
and only if the reverse of σ is a proper interval ordering for G. Also observe that every proper
interval ordering is a cocomparability ordering. It can be decided in linear time whether a given
graph is a proper interval graph, and if so, a proper interval ordering can be generated in linear
time [15].

First, we prove that proper interval orderings are unique up to reversal and up to sets of
vertices with the same neighbourhoods. To be more precise, let G be a connected proper interval
graph and let σ and τ be proper interval orderings for G. Assume that σ = 〈x1, . . . , xn〉 and
τ = 〈y1, . . . , yn〉. We say that σ and τ are strongly neighbourhood-equivalent if NG[xi] = NG[yi]
for every 1 ≤ i ≤ n. We will show that σ is strongly neighbourhood-equivalent to τ or to the
reverse of τ . In order to prove this statement as Proposition 4.2 below, it suffices to prove the
next lemma, whose technical statements will be referred to separately later in the paper. The
first statement of Lemma 4.1 shows that if the leftmost vertices of σ and τ have the same closed
neighbourhood then σ and τ are strongly neighbourhood-equivalent. The second statement of
the lemma shows that the closed neighbourhoods of the first vertices of σ and τ are equal or
the closed neighbourhoods of the first vertex of σ and the last vertex of τ are equal. Although
Lemma 4.1 has been used implicitly in several previous works [4, 6, 12, 15], it has not been
stated as a result on its own and proved separately before.

Lemma 4.1. Let G be a connected proper interval graph. Let σ = 〈x1, . . . , xn〉 and τ =
〈y1, . . . , yn〉 be proper interval orderings for G.

1) If NG[x1] = NG[y1] then σ and τ are strongly neighbourhood-equivalent.

2) If x1 ≺τ xn then NG[x1] = NG[y1], and
if xn ≺τ x1 then NG[x1] = NG[yn].

Proof. Since the two statements trivially hold for the case n = 1, we assume n ≥ 2. The
following properties of proper interval orderings will be important for the proof. Consider σ.
SinceG is connected, xixi+1 ∈ E(G) for every 1 ≤ i < n. It directly follows that (x1, . . . , xn) is an
x1, xn-path of G. Particularly note that x2 ∈ NG[x1]. Furthermore, for every vertex triple u, v, w

12



of G with u = x1 and u ≺σ v 4σ w and w ∈ NG(u), it holds that NG[u] ⊆ NG[v] ⊆ NG[w].
Since τ is also a proper interval ordering for G, the same properties analogously hold for τ .

Proof of 1)
We assume NG[x1] = NG[y1]. If x2 = y2 then NG[x2] = NG[y2], if x2 = y1 then y1 ≺τ y2 4τ x1,
and thus, NG[x1] ⊆ NG[x2] = NG[y1] ⊆ NG[y2] ⊆ NG[x1], if y2 = x1 then, analogously, NG[y2] =
NG[x2], and if x1 6= y2 and x2 6= y2 and x2 6= y1 then x1 ≺σ x2 ≺σ y2 and y1 ≺τ y2 ≺τ x2 and
NG[x2] ⊆ NG[y2] and NG[y2] ⊆ NG[x2]. Thus, NG[x2] = NG[y2] in all cases.

Let j be such that yj = x1; note that NG[y1] = NG[x1] = NG[yj ]. If j = 1 then x1 = y1, and
〈x2, . . . , xn〉 and 〈y2, . . . , yn〉 are proper interval orderings for G−x1. If j ≥ 2 then 〈x2, . . . , xn〉
and 〈y2, . . . , yj−1, y1, yj+1, . . . , yn〉 are proper interval orderings for G−x1. In both cases, we
conclude the claim by induction. Note that G−x1 is indeed a connected proper interval graph.

Proof of 2)
If x1 = y1 then the claim trivially holds, if x1xn ∈ E(G) then G is a complete graph, and
the claim holds. So, as the remaining case, assume that x1 6= y1 and x1xn 6∈ E(G). Assume
x1 ≺τ xn. Let p be such that xp = y1. Recall that (xp, . . . , xn) is an xp, xn-path of G. For a
contradiction, suppose that x1y1 6∈ E(G). Then, (xp, . . . , xn) does not contain any vertex from
NG[x1], since NG[x1] ⊆ {x1, . . . , xp−1}. We consider τ . Let P = (u0, . . . , ur) be an arbitrary
y1, xn-path of G. Since y1 ≺τ x1 ≺τ xn and u0 = y1 and ur = xn, there is an index i with
0 ≤ i < r such that ui 4τ x1 ≺τ ui+1. Thus, x1 is a vertex on P or P contains a neighbour of x1,
which follows from the definition of proper interval orderings, so that P contains a vertex from
NG[x1]. By the choice of P as an arbitrary y1, xn-path of G, it follows that every such path of
G contains a vertex from NG[x1], contradicting the initial assumption. Thus, x1y1 ∈ E(G). The
results from the beginning of the proof then show that NG[x1] ⊆ NG[y1] and NG[y1] ⊆ NG[x1],
i.e., NG[x1] = NG[y1].

The remaining proof for the situation of xn ≺τ x1 follows from applying the first situation
to σ and the reverse of τ .

Lemma 4.1 readily implies the following.

Proposition 4.2. Let G be a connected proper interval graph with proper interval orderings σ
and τ . Then, σ is strongly neighbourhood-equivalent to τ or to the reverse of τ .

We now prove another implication of Lemma 4.1, that will play a crucial role in the proof
of the main result of this section.

Lemma 4.3. Let G and H be proper interval graphs where H is connected. Let σ and τ be
proper interval orderings for respectively G and H, and let τR be the reverse of τ . Then, H
is isomorphic to an induced subgraph of G if and only if there is ω ∈ {τ, τR} such that H is
(σ, ω)-isomorphic to an induced subgraph of G.

Proof. If H is a graph on a single vertex, the claim trivially holds. We therefore assume that
H has at least two vertices. Clearly, if H is (σ, τ)- or (σ, τR)-isomorphic to an induced subgraph
of G then H is isomorphic to an induced subgraph of G.

For the converse, assume that G has an induced subgraph G′ such that H is isomorphic
to G′; let ϕ be an isomorphism from H to G′. Observe that G′ is connected. Let σ′ be the

13



restriction of σ to the vertices of G′. Observe that σ′ is a proper interval ordering for G′. Assume
that σ′ = 〈x′1, . . . , x′r〉 and τ = 〈y1, . . . , yr〉. Recall that τR = 〈yr, . . . , y1〉 and x′1 ≺σ · · · ≺σ x′r.
Let ϕ′ : V (H) → V (G′) be the mapping where yi is mapped to x′i and let ϕ′′ : V (H) → V (G′)
be the mapping where yi is mapped to x′r+1−i. We show that one of the two mappings is an
isomorphism from H to G′, which proves the claimed result.

First, assume that ϕ(y1) ≺σ′ ϕ(yr). We show that ϕ′ is an isomorphism from H to G′, by
showing for every vertex y of H that NG′ [ϕ

′(y)] = NG′ [ϕ(y)]. Let σ∗ =def 〈ϕ(y1), . . . , ϕ(yr)〉.
Observe that σ∗ is a proper interval ordering for G′, and ϕ(y1) ≺σ∗ ϕ(yr). Recall that σ′ is also a
proper interval ordering for G′, and that ϕ(y1) ≺σ′ ϕ(yr). Hence, we can apply Lemma 4.1 to find
that σ∗ and σ′ are strongly neighbourhood-equivalent. Since x′i = ϕ′(yi) for every i ∈ {1, . . . , r},
we obtain the desired result. If ϕ(yr) ≺σ′ ϕ(y1) then an analogous proof shows that ϕ′′ is an
isomorphism from H to G′, where Lemma 4.1 is applied to 〈ϕ(yr), . . . , ϕ(y1)〉 and σ′.

We are now ready to give the main result of this section.

Theorem 4.4. Given a proper interval graph G and a connected graph H, it can be decided in
polynomial time whether G has an induced subgraph that is isomorphic to H.

Proof. We describe such an algorithm. First, assume that G and H are connected proper
interval graphs. Let σ and τ be proper interval orderings for respectively G and H. Let fG and
fH be 1-colourings for respectively G and H. Let τR be the reverse of τ . We run Algorithm OIS
on (G, fG, σ; H, fH , τ) and on (G, fG, σ; H, fH , τ

R) and accept if and only if OIS accepts on
(at least) one of the two inputs. If H is not a proper interval graph, reject, and if G is not
connected, apply the above procedure to every connected component of G.

Let us prove the correctness of the algorithm. As proper interval graphs are hereditary, we
can correctly reject if H is not a proper interval graph. By Lemma 4.3, H is isomorphic to an
induced subgraph of G if and only if H is (σ, τ)- or (σ, τR)-isomorphic to an induced subgraph
of G. Proper interval orderings together with any colouring satisfy the left and right umbrella
conditions, in particular, for the 1-colourings used in the algorithm. It follows from Corollary 3.4
that our algorithm will accept if and only if H is isomorphic to an induced subgraph of G.

For the running time, recall that it can be checked in linear time whether H is a proper
interval graph, and a proper interval ordering for H can be computed in linear time [15]. Algo-
rithm OIS has a polynomial running time and is applied two times for each connected component
of G. Thus, the total running time of our algorithm is polynomial.

5 ISI on bipartite permutation graphs

Bipartite permutation graphs are those graphs that are both bipartite graphs and permutation
graphs. Like proper interval graphs, permutation graphs are cocomparability graphs and they
admit a characterisation through vertex orderings. Fixing two horizontal lines (A and B in
Figure 4), a permutation diagram is a set of line segments that connect points on the two
horizontal lines and that share no endpoints. A graph G is called a permutation graph if it
has a permutation diagram such that each vertex of G is associated with a line segment of
the permutation diagram, and two vertices of G are adjacent if and only if the associated line
segments intersect.

14



a
bh g e

d

f
c

a
bh g e

d

f
c

a
b hge

d

f
c

A

B

a
b hge

d

f
c

ab ce fh gd

Figure 4: To the left, a permutation diagram, that represents a graph on eight vertices. To
the right, from top to bottom, the three permutation diagrams that can be obtained from the
left diagram by applying a horizontal flip, a horizontal and a vertical flip, and a vertical flip,
respectively.

A vertex ordering that is both a cocomparability ordering and a comparability ordering is
called a permutation ordering; recall the definitions of these vertex orderings from Section 2.
Every permutation diagram defines a vertex ordering for the corresponding graph, where the
ordering is obtained by reading the vertices of the line segments in their endpoint order on the
lower horizontal line (B). It is not difficult to verify that such a vertex ordering is in fact a
permutation ordering, and each permutation ordering defines a permutation diagram. Hence, a
graph is a permutation graph if and only if it has a permutation ordering. Permutation orderings
for permutation graphs can be computed in linear time [18].

Permutation diagrams are “flip invariant”, meaning that flipping a permutation diagram
horizontally or vertically results in a permutation diagram for the same graph. The horizontal
and vertical flip operations are illustrated in Figure 4, together with all possible permutation
diagrams that can be obtained from a given diagram by applying these operations. Given the
permutation diagram on the left-hand side of Figure 4, the top diagram on the right-hand side is
obtained by applying the horizontal flip operation, the bottom diagram on the right-hand side is
obtained by applying the vertical flip operation, and the middle diagram on the right-hand side is
obtained by applying the horizontal and the vertical flip operations. We call the three diagrams
on the right-hand side of Figure 4 the flip variants of the diagram on the left. Every permutation
diagram together with its three flip variants defines four permutation orderings for a permutation
graph; for example, the permutation diagrams in Figure 4 define the following four permutation
orderings: 〈b, a, d, e, c, h, g, f〉, 〈f, g, h, c, e, d, a, b〉, 〈h, e, g, d, b, c, f, a〉 and 〈a, f, c, b, d, g, e, h〉.

Let G be a connected permutation graph with permutation diagram D, and let σ be the
permutation ordering for G defined by D. By perm(σ), we denote the set of the permutation
orderings for G that are defined by D and its flipping variants. Note that perm(σ) contains
σ and it contains at most four permutation orderings for G. For the example of Figure 4, we

15



obtain:

perm(〈b, a, d, e, c, h, g, f〉) = perm(〈f, g, h, c, e, d, a, b〉)
= perm(〈h, e, g, d, b, c, f, a〉) = perm(〈a, f, c, b, d, g, e, h〉)
=

{
〈b, a, d, e, c, h, g, f〉, 〈f, g, h, c, e, d, a, b〉, 〈h, e, g, d, b, c, f, a〉, 〈a, f, c, b, d, g, e, h〉

}
.

A graph is a bipartite permutation graph if it is both a permutation graph and a bipartite
graph. Since bipartite graphs have no cycles of odd length and cocomparability graphs have no
induced cycles of length more than 4 [10], it follows that a cocomparability graph is bipartite
if and only if it has no triangles, i.e., if and only if it has no cycles of length 3. This can be
translated into a vertex ordering characterisation of bipartite permutation graphs.

Lemma 5.1. Let G be a graph and let σ be a vertex ordering for G. Then, G is a bipartite
permutation graph with permutation ordering σ if and only if σ is a cocomparability ordering for
G satisfying for every vertex triple u, v, w of G with u ≺σ v ≺σ w: uv 6∈ E(G) or vw 6∈ E(G).

Proof. Assume that G is a bipartite permutation graph and σ is a permutation ordering for G.
Since σ is a cocomparability ordering for G, it remains to verify the second condition. Let u, v, w
be a vertex triple of G with u ≺σ v ≺σ w. If uv, vw ∈ E(G) then uw ∈ E(G) by the definition of
comparability orderings, and thus, G has a triangle, a contradiction to being bipartite. Hence,
uv 6∈ E(G) or vw 6∈ E(G).

For the converse, let σ be a cocomparability ordering for G satisfying the vertex triple con-
dition. It directly follows that σ is a comparability ordering for G, and thus, G is a permutation
graph with permutation ordering σ. Suppose for a contradiction that G is not bipartite. Then,
G contains a triangle, i.e., G has a vertex triple u, v, w with u ≺σ v ≺σ w and uv, vw, uw ∈ E(G).
This violates the vertex triple condition, a contradiction.

In this section, we mainly view bipartite permutation graphs through their permutation
orderings. These permutation orderings are fully characterised by the result of Lemma 5.1. We
will show that permutation orderings for bipartite permutation graphs are unique up to the
aforementioned flip operations and up to sets of vertices with the same neighbourhoods. Let
G be a connected bipartite permutation graph and let σ = 〈x1, . . . , xn〉 and τ = 〈y1, . . . , yn〉
be two permutation orderings for G. We say that σ and τ are neighbourhood-equivalent if
NG(xi) = NG(yi) for every 1 ≤ i ≤ n. Observe that, in contrast to the definition of strongly
neighbourhood-equivalent in Section 4, we are now comparing open neighbourhoods.

In Proposition 5.4 below, we will show that τ , and thus every permutation ordering for
G, is neighbourhood-equivalent to some permutation ordering in perm(σ). In order to prove
this, we need to prove a technical lemma that strongly resembles Lemma 4.1 for proper interval
orderings. The first statement of Lemma 5.3 below shows that if the leftmost vertices of σ and
τ have the same open neighbourhood then the two orderings are neighbourhood-equivalent. In
the second and third statement of Lemma 5.3, we identify three vertices in G such that the open
neighbourhood of the leftmost vertex of τ is equal to the open neighbourhood of one of these
three vertices. Before we formally state and prove Lemma 5.3, let us point out that this lemma
is used implicitly in the correctness proof of a recognition algorithm for bipartite permutation

16



graphs due to Spinrad, Brandstädt and Stewart [20]. Our proof however uses an alternative
approach, solely based on permutation orderings and the characterisation of Lemma 5.1.

In the proof of Lemma 5.3 below, we will frequently use the following notion.

Definition 5.2. Let G be a graph and let σ be a vertex ordering for G. A triple (u, v, w) of
vertices of G is σ-conflicting if u ≺σ v ≺σ w and if at least one of the following conditions holds:

(i) uw ∈ E(G) and neither uv ∈ E(G) nor vw ∈ E(G);

(ii) uv ∈ E(G) and vw ∈ E(G).

Lemma 5.3. Let G be a connected bipartite permutation graph on at least two vertices, and let
σ = 〈x1, . . . , xn〉 and τ = 〈y1, . . . , yn〉 be permutation orderings for G. Let z be the neighbour of
x1 such that there is no neighbour u of x1 with x1 ≺σ u ≺σ z, and let z′ be the neighbour of xn
such that there is no neighbour v of xn with z′ ≺σ v ≺σ xn.

1) If NG(x1) = NG(y1) then σ and τ are neighbourhood-equivalent.

2) If x1 ≺τ xn and x1xn ∈ E(G) then NG(y1) = NG(x1) or NG(y1) = NG(z′).

3) If x1 ≺τ xn and x1xn 6∈ E(G) then NG(y1) = NG(x1) or NG(y1) = NG(z).

Proof. We can say that z is the closest neighbour of x1 in σ and z′ is the closest neighbour
of xn in σ. From the definition of a cocomparability ordering and Lemma 5.1, it follows that
G contains neither a σ-conflicting triple nor a τ -conflicting triple. In particular, this means
that for any vertex v of G, either all the neighbors of v appear to the left of v in the ordering σ
(respectively τ), or they all appear to the right of v. We will often make use of these observations
in the proof below. We will also use the following claim.

Claim A. Let u and v be two vertices of G. If u, v ∈ NG(xn) and u ≺σ v 4σ xn, then NG(v) ⊆
NG(u). If u, v ∈ NG(x1) and x1 4σ u ≺σ v, then NG(u) ⊆ NG(v).

To prove Claim A, first suppose that u, v ∈ NG(xn) and u ≺σ v 4σ xn. Note that uv /∈ E(G),
as otherwise (u, v, xn) would be σ-conflicting. Let w ∈ NG(v) \ {xn}. Recall that the neighbors
of v either all appear to the left or all appear to the right of v in σ. Since xn is a neighbor of
v and v ≺σ xn, we have v ≺σ w ≺σ xn. Since (v, w, xn) is not σ-conflicting, wxn /∈ E(G). But
then u ∈ NG(w), as otherwise (u,w, xn) would be σ-conflicting. Hence NG(v) ⊆ NG(u). The
second statement of Claim A can be proved using symmetrical arguments.

Proof of 1)
We prove the first statement by induction on n. It is clear that the statement holds if n = 2,
so we assume n ≥ 3. We assume NG(x1) = NG(y1) and start by showing that this implies
NG(x2) = NG(y2). Since the latter equality is trivially true if x2 = y2, we assume x2 6= y2. We
distinguish between two cases.

As the first case, we assume that x1x2 ∈ E(G) or y1y2 ∈ E(G). Without loss of generality,
assume x1x2 ∈ E(G). Note that NG(x2) = {x1}, since if x2 had any neighbor t 6= x1, then the
triple (x1, x2, t) would be σ-conflicting. The assumption NG(x1) = NG(y1) implies that x1 = y1.
Moreover, since y2 6= x2, we obtain y1 ≺τ y2 ≺τ x2. The fact that y1x2 ∈ E(G) and y2x2 /∈ E(G)
implies that y1y2 ∈ E(G), as otherwise the triple (y1, y2, x2) would be τ -conflicting. This in turn

17



implies that y2 has no neighbor t 6= y1, as otherwise the triple (y1, y2, t) would be τ -conflicting.
Hence NG(y2) = {y1}, which yields the desired equality NG(y2) = {y1} = {x1} = NG(x2).

As the second case, we assume x1x2 6∈ E(G) and y1y2 6∈ E(G). Since z is a neighbour of
x1 and therefore of y1, it holds that x2 6= z and y2 6= z, and consequently x1 ≺σ x2 ≺σ z
and y1 ≺τ y2 ≺τ z. Since σ and τ are cocomparability orderings, z is adjacent to x2 and y2.
We locate y2 in σ and x2 in τ . Note that y2 ≺σ z, as otherwise the triple (x1, z, y2) would be
σ-conflicting. Similarly, we must have x2 ≺σ z as otherwise (y1, z, x2) would be σ-conflicting.
Thus, x1 ≺σ x2 ≺σ y2 ≺σ z and y1 ≺τ y2 ≺τ x2 ≺τ z. This implies x2y2 6∈ E(G), as otherwise
the triples (x2, y2, z) and (y2, x2, z) would be σ-conflicting and τ -conflicting, respectively. In
order to show that NG(x2) ⊆ NG(y2), let u be a neighbour of x2 in G. Since z is a neighbor of
x2 and x2 ≺σ z, all neighors of x2 appear to the right of x2 in σ. In particular, x2 ≺σ u. We
claim that z ≺σ u. For a contradiction, suppose x1 ≺σ x2 ≺σ u ≺σ z. Note that x1u /∈ E(G)
by the definition of z, and uz /∈ E(G) as otherwise (x2, u, z) would be a σ-conflicting triple.
But the existence of the edge x1z implies that (x1, y2, z) is a σ-conflicting triple, yielding the
desired contradiction. Hence x2 ≺σ y2 ≺σ z ≺σ u. Since x2u ∈ E(G), x2y2 /∈ E(G) and
(x2, y2, u) is not σ-conflicting, u is a neighbour of y2, which implies that NG(x2) ⊆ NG(y2).
Analogously, every neighbor of y2 must be adjacent to x2, implying that NG(y2) ⊆ NG(x2), and
hence NG(x2) = NG(y2).

To complete the proof, let us first consider the case where x1x2 ∈ E(G). Recall that
NG(x2) = {x1} in this case. Let G′ = G−x2, and observe that G′ is connected. Let σ′ and τ ′

be the two vertex orderings for G′ obtained from σ and τ , respectively, by removing vertex x2.
It is clear that σ′ and τ ′ are permutation orderings for G′. Since NG(x2) = NG(y2) and hence
NG′(x2) = NG′(y2), the orderings σ′ and τ ′ are neighborhood-equivalent by induction, which
implies that σ and τ are neighborhood-equivalent as well. The case where y1y2 ∈ E(G) can be
proved analogously. Finally, consider the case where x1x2 6∈ E(G) and y1y2 /∈ E(G). Recall
that NG(x1) ⊆ NG(x2) in this case. Consequently, G−x1 is connected. Hence we can use G−x1
instead of G−x2 to conclude that σ and τ are neighborhood-equivalent also in this case.

Proof of 2)
We assume x1 ≺τ xn and x1xn ∈ E(G) and NG(y1) 6= NG(x1), and we are going to show
NG(y1) = NG(z′). Observe that y1x1 /∈ E(G), as otherwise the triple (y1, x1, xn) would be
τ -conflicting. This, together with the fact that (x1, y1, xn) is not σ-conflicting, implies that
y1 ∈ NG(xn). Hence NG(z′) ⊆ NG(y1) as an immediate result of Claim A and the definition
of z′.

It remains to prove that NG(y1) ⊆ NG(z′). This is trivially true if y1 = z′, so we assume
y1 6= z′. Since x1 and y1 are both neighbors of xn and x1 ≺σ y1 ≺σ xn, it follows from Claim A
that NG(y1) ⊆ NG(x1). This, together with the initial assumption NG(x1) 6= NG(y1), implies
that NG(y1) ⊂ NG(x1). Let a ∈ NG(x1) \NG(y1). Observe that x1xn ∈ E(G) and ax1 ∈ E(G)
implies axn 6∈ E(G), as otherwise (x1, a, xn) would be a σ-conflicting triple. Also note that
a ≺σ y1, as otherwise (y1, a, xn) would be a σ-conflicting triple. Since y1 ≺σ z′ by the definition
of z′, we have a ≺σ z′. The fact that x1a ∈ E(G) and (x1, a, z

′) is not σ-conflicting implies that
az′ /∈ E(G). Similarly, x1z

′ /∈ E(G), as otherwise (x1, z
′, xn) would be σ-conflicting.

We now determine the order of the vertices y1, x1, xn, a, z
′ in τ , using the adjacencies and

non-adjacencies established above and the fact that τ is a cocomparability ordering. Recall

18



that y1a 6∈ E(G), axn 6∈ E(G), and y1xn ∈ E(G). This implies that y1 ≺τ x1 ≺τ xn ≺τ a.
Similarly, xnz

′ ∈ E(G) and xna 6∈ E(G) and az′ 6∈ E(G) implies z′ ≺τ a. Finally, x1a ∈ E(G)
and x1z

′ 6∈ E(G) and z′a 6∈ E(G) and z′ ≺τ a implies z′ ≺τ x1. Summarizing, we have
y1 ≺τ z′ ≺τ x1 ≺τ xn ≺τ a.

To show that NG(y1) ⊆ NG(z′), let b be a neighbor of y1. Since x1 and y1 are neighbors of
xn and x1 ≺σ y1 ≺σ xn, we have that NG(y1) ⊆ NG(x1) as a result of Claim A. In particular, we
have bx1 ∈ E(G). We observe that x1 ≺τ b, as otherwise (y1, b, x1) would be τ -conflicting, and
that y1z

′ /∈ E(G), as otherwise (y1, z
′, xn) would be τ -conflicting. Hence we have y1 ≺τ z′ ≺τ b.

Since y1b ∈ E(G) and (y1, z
′, b) is not τ -conflicting, implies that z′b ∈ E(G). We conclude that

NG(y1) ⊆ NG(z′).

Proof of 3)
We assume x1 ≺τ xn and x1xn 6∈ E(G) and x1 6= y1. We distinguish between the two cases
x1y1 ∈ E(G) and x1y1 6∈ E(G). We are going to show NG(y1) = NG(z) in the former case and
NG(y1) = NG(x1) in the latter case.

For the first case, let x1y1 ∈ E(G). Since NG(y1) = NG(z) trivially holds if y1 = z, we
assume that y1 6= z. It follows from the definition of z and Claim A that NG(z) ⊆ NG(y1). It
remains to show that NG(y1) ⊆ NG(z). Suppose for a contradiction that there exists a vertex
a ∈ NG(y1) \ NG(z). The properties of σ imply the following order: x1 ≺σ z ≺σ a ≺σ y1. We
use this to prove the following claim.

Claim B. There is a y1, xn-path P of G such that z ≺σ v for every vertex v of P .

Let Q = (u0, . . . , uk) be a y1, xn-path of G; note that such a path exists since G is connected.
Let i ∈ {0, 1, . . . , k− 1} be the largest index such that ui 4σ y1. Note that ui 6= y1, as otherwise
(x1, y1, ui+1) would be a σ-conflicting triple, so ui ≺σ y1. Similarly, since (ui, y1, ui+1) is not σ-
conflicting, it holds that y1ui+1 /∈ E(G). The edge uiui+1 and the fact that σ is a cocomparability
ordering implies that y1 is adjacent to ui. Hence, if z ≺σ ui, then we can take P to be the path
(y1, ui, ui+1, . . . , uk). Suppose ui ≺σ z, which implies that ui ≺σ a ≺σ y1 ≺σ ui+1. We consider
the triple (ui, a, ui+1). Since this triple is not σ-conflicting, we must have uia ∈ E(G) or
aui+1 ∈ E(G). The former is not possible, as then (ui, a, y1) would be a σ-conflicting triple.
Hence aui+1 ∈ E(G), so we can take P to be the path (y1, a, ui+1, . . . , uk).

Let P be a y1, xn-path of G whose vertices all appear to the right of z in the ordering σ;
the existence of P is guaranteed by Claim B. Since x1 is a neighbor of z and x1 ≺σ z, all
the neighbors of z appear to the left of z in σ. As a result, the path P contains no vertex of
NG[z]. Now consider the ordering τ . By assumption, we have y1 ≺τ x1 ≺τ xn. We also have
y1 ≺τ z ≺τ x1, as x1 ≺τ z would imply that (y1, x1, z) is τ -conflicting. By the properties of
the cocomparability ordering τ , every path from y1 to xn must contain a vertex from NG[z].
However, the path P does not contain any vertex from NG[z], yielding the desired contradiction.
We conclude that NG(y1) ⊆ NG(z), and hence NG(y1) = NG(z). This completes the proof of
the first case.

For the second case, let x1y1 6∈ E(G). We will show that NG(y1) = NG(x1) in this case. We
first show that all the neighbors of x1 appear to the right of x1 in τ . Suppose for a contradiction
that some neighbor p of x1 appears to the left of x1 in τ . Recall that this implies that all
neighbors of x1 appear to the left of x1 in τ . Then we must have q ≺τ x1 for every q ∈ NG(y1),

19



as otherwise (y1, x1, q) would be τ -conflicting. In other words, all neighbors of y1 appear to the
left of x1 in τ . Let P = (u0, . . . , uk) be an x1, xn-path of G, and let i ∈ {0, 1, . . . , k − 1} be the
largest index such that ui 4τ x1 ≺τ ui+1. Note that ui ≺τ x1, as otherwise (p, ui, ui+1) would
be τ -conflicting. Moreover, x1ui+1 /∈ E(G) due to the fact that (p, x1, ui+1) is not τ -conflicting.
This implies that uix1 ∈ E(G), as otherwise (ui, x1, ui+1) would be τ -conflicting. Let Q be the
path (x1, ui, ui+1, . . . , uk). Since x1 ≺σ y1 ≺σ xn and σ is a cocomparability ordering for G,
every x1, xn-path of G, and path Q in particular, contains a vertex from NG[y1]. Recall that all
the neighbors of y1 appear to the left of x1 in τ , implying that {x1, ui+1, . . . , uk} ∩NG(y1) = ∅.
Hence, it must hold that y1ui ∈ E(G). But then the triple (y1, ui, ui+1) is τ -conflicting, yielding
the desired contradiction. We conclude all the neighbors of x1 appear to the right of x1 in τ .

Now let a and b be the “rightmost” neighbours of respectively x1 and y1 in τ , i.e., a and b are
the vertices of G with a ∈ NG(x1) and b ∈ NG(y1) and such that u 4τ a for every u ∈ NG(x1)
and v 4τ b for every v ∈ NG(y1). We claim that a = b. First, suppose for a contradiction that
a ≺τ b. By the definition of a, this means that x1b /∈ E(G). However, since y1x1 /∈ E(G) by
assumption, the triple (y1, x1, b) is τ -conflicting. This contradiction shows that b 4τ a. Now
suppose, again for a contradiction, that b ≺τ a. Then y1a /∈ E(G) by the definition of b. If
x1 ≺τ xn ≺τ a, then xna ∈ E(G) as otherwise (x1, xn, a) would be τ -conflicting, but then
(x1, a, xn) is a σ-conflicting triple. Hence, we must have x1 ≺τ a ≺τ xn.

Let Q = (w0, . . . , wl) be an x1, xn-path of G. Let i ∈ {0, 1, . . . , l−1} be the largest index such
that wi 4τ a ≺τ wi+1. Note that wi 6= a, as otherwise (x1, wi, wi+1) would be a τ -conflicting
triple. Analogous to previous considerations, we find that wi ≺τ a ≺τ wi+1 and wia ∈ E(G).
Hence R = (x1, a, wi, wi+1, . . . , wl) is an x1, xn-path of G. Recall that every x1, xn-path, and
path R in particular, contains a vertex from NG[y1]. Note that y1x1 /∈ E(G) by assumption.
Also note that the rightmost neighbor b of y1 satisfies b ≺τ a, and that a ≺τ wj for every
j ∈ {i + 1, . . . , l} by the definition of index i. Hence we must have y1wi ∈ E(G). But then
(y1, a, wi) is a τ -conflicting triple. This contradiction implies that a = b.

In order to show that NG(x1) ⊆ NG(y1), let w be a neighbour of x1. If w = a, then
w ∈ NG(y1). Suppose w 6= a. Then y1 ≺τ x1 ≺τ w ≺τ a. Since (x1, w, a) is not τ -conflicting
and x1w, x1a ∈ E(G), we must have wa /∈ E(G). Then the fact that (y1, w, a) is not τ -conflicting
implies that y1w ∈ E(G). Analogously, by exchanging the roles of σ and τ and x1 and y1, we
can show that NG(y1) ⊆ NG(x1). We conclude that NG(x1) = NG(y1).

We use Lemma 5.3 to prove the following result.

Proposition 5.4. Let G be a connected bipartite permutation graph with permutation order-
ings σ and τ . Then, there is ω ∈ perm(σ) such that ω and τ are neighbourhood-equivalent.

Proof. We can henceforth assume that G has at least two vertices. In particular, each vertex of
G has a neighbour. Assume σ = 〈x1, . . . , xn〉 and τ = 〈y1, . . . , yn〉. We apply the statements of
Lemma 5.3 and the flipping of permutation diagrams from the beginning of the section to prove
the result. Let D be a permutation diagram for G that defines the permutation ordering σ.

If NG(x1) = NG(y1) then σ and τ are neighbourhood-equivalent due to the first statement
of Lemma 5.3, and the result follows by recalling σ ∈ perm(σ).

Suppose NG(x1) 6= NG(y1). Assume that x1 and xn are adjacent in G, i.e., x1xn ∈ E(G),
and also assume x1 ≺τ xn, which means that x1 and xn appear in the same order in σ and τ .

20



We can apply the second statement of Lemma 5.3, and NG(y1) = NG(z′) for z′ the rightmost
neighbour of xn in σ. Let D′ be the permutation diagram for G that is obtained from D by
applying the vertical flip operation (see the bottom permutation diagram on the right-hand side
of Figure 4), and let σ′ be the permutation ordering defined by D′. Note that z′ ≺σ xn and
xn ≺σ′ z′. Let a be the rightmost vertex in σ′, and we are going to show that a = z′. Suppose for
a contradiction that a 6= z′. Observe the following: a ≺σ xn, since xn is the rightmost vertex in
σ, and xn ≺σ′ z′ ≺σ′ a, since a is the rightmost vertex in σ′. It follows about a and xn that a is
a neighbour of xn, and thus, a ≺σ z′ ≺σ xn according to the choice of z′ as being the rightmost
neighbour of xn. It follows that a and z′ must also be adjacent, contradicting the vertex triple
condition of Lemma 5.1. So, z′ is the rightmost vertex in σ′.

Now, let D′′ be the permutation diagram obtained from D′ by applying a horizontal flip,
and let σ′′ be the permutation ordering for G defined by D′′. Then, z′ is the leftmost vertex
of σ′′, and since NG(y1) = NG(z′), the first statement of Lemma 5.3 shows that τ and σ′′ are
neighbourhood-equivalent. Since σ′′ ∈ perm(σ), the claim follows.

If x1xn ∈ E(G) and xn ≺τ x1, we apply the above arguments to the reverse of τ , and if
x1xn 6∈ E(G), similar arguments also show the claimed result.

The following lemma is the analogue of Lemma 4.3 for bipartite permutation graphs.

Lemma 5.5. Let G and H be bipartite permutation graphs where H is connected. Let σ and
τ be permutation orderings for respectively G and H. Then, H is isomorphic to an induced
subgraph of G if and only if there is ω ∈ perm(τ) such that H is (σ, ω)-isomorphic to an induced
subgraph of G.

Proof. If H is (σ, ω)-isomorphic to an induced subgraph of G for some vertex ordering ω for H
then H is isomorphic to an induced subgraph of G.

For the converse, we assume that H has at least two vertices and that H is isomorphic to
an induced subgraph G′ of G, via isomorphism ϕ. Observe that ϕ−1, the inverse of ϕ, is an
isomorphism from G′ to H. Let σ′ = 〈x′1, . . . , x′r〉 be the restriction of σ to the vertices of G′,
which in particular means x′1 ≺σ · · · ≺σ x′r. Observe that σ′ is a permutation ordering for
G′. Let τ ′ =def 〈ϕ−1(x′1), . . . , ϕ−1(x′r)〉. Since G′ is isomorphic to H via isomorphism ϕ−1, it
holds that H is (σ, τ ′)-isomorphic to G′ and that τ ′ is a permutation ordering for H. Due to
Proposition 5.4, there is ω ∈ perm(τ) such that τ ′ and ω are neighbourhood-equivalent. We
conclude that H is (σ, ω)-isomorphic to G′ for some ω ∈ perm(τ).

We are ready to prove the main result of this section.

Theorem 5.6. Given a bipartite permutation graph G and a connected graph H, it can be
decided in polynomial time whether G has an induced subgraph that is isomorphic to H.

Proof. We describe such an algorithm, which is similar to the algorithm of Theorem 4.4.
Assume that G and H are connected bipartite permutation graphs on at least two vertices.
Let σ and τ be permutation orderings for respectively G and H. Let fG and fH be proper 2-
colourings for respectively G and H; note that fG and fH exist due to the fact that G and H are
bipartite graphs. It is well-known that every connected bipartite graph on at least two vertices
has exactly two different proper 2-colourings, and that each of them can be obtained from the
other by swapping the two colours. Let f ′H be the proper 2-colouring for H obtained from fH by

21



swapping the two colours, i.e., by setting, for every vertex x of H, f ′H(x) = 1 if fH(x) = 2 and
f ′H(x) = 2 if fH(x) = 1. Recall that perm(τ) contains at most four permutation orderings for H.
For every ω ∈ perm(τ) and h ∈ {fH , f ′H}, we run Algorithm OIS on input (G, fG, σ; H,h, ω)
and accept if and only if OIS accepts on (at least) one of the at most eight inputs. If H is not
a bipartite permutation graph, reject, and if G is not connected, apply the above procedure to
every connected component of G.

Let us argue for the correctness of the algorithm. As bipartite permutation graphs are
hereditary, we can correctly reject if H is not a bipartite permutation graph. By Lemma 5.5,
H is isomorphic to an induced subgraph of G if and only if there is ω ∈ perm(τ) such that
H is (σ, ω)-isomorphic to an induced subgraph of G. Recall that fH and f ′H are the only two
proper 2-colourings for H, and that fH(x) 6= f ′H(x) for every vertex x of H. Consequently, if H
is isomorphic to an induced subgraph G′ of G then H is colour-preserving isomorphic to G′ for
exactly one of the two colouring pairs (fG, fH) and (fG, f

′
H). From the properties of permutation

orderings and the fact that fG is a proper colouring for G, it follows that (G, fG, σ) satisfies the
left and right umbrella conditions. Thus, our algorithm accepts if and only if H is isomorphic
to some induced subgraph of G.

For the running time, recall that recognising bipartite permutation graphs and computing a
corresponding permutation ordering can be done in linear time [20]. The permutation orderings
from perm(τ) can be computed in linear time, by reading off the permutation diagram. A proper
2-colouring for a graph can be computed in linear time. So, the at most eight inputs for OIS
can be generated in overall linear time, which gives a total polynomial running time.

6 Fixed-parameter tractability and conclusion

We have seen that ISI is solvable in polynomial time if both G and H are proper interval graphs
or if both G and H are bipartite permutation graphs, provided that H is connected. What
happens when H is disconnected? We start with a simple observation.

Lemma 6.1. Let H be a disconnected cocomparability graph with cocomparability ordering σ.
Let C and D be two different connected components of H. Then, one of the following two cases
applies:

1) x ≺σ y for every vertex pair x, y with x ∈ V (C) and y ∈ V (D)

2) y ≺σ x for every vertex pair x, y with x ∈ V (C) and y ∈ V (D).

Proof. Let a, x be a vertex pair of C and let b be a vertex of D, and assume that a ≺σ x.
If a ≺σ b ≺σ x then b is adjacent to a vertex on every a, x-path of H as a consequence of
the properties of cocomparability orderings. Such a path exists, since a and x belong to the
same connected component of H. Since b does not belong to C, we conclude b ≺σ a ≺σ x or
a ≺σ x ≺σ b, which proves the lemma.

We use the above lemma to prove the following result, which implies that ISI on proper
interval graphs and bipartite permutation graphs is fixed-parameter tractable when parametrised
by the number of connected components of H.

22



Theorem 6.2. Given two graphs G and H such that G is a proper interval graph or a bipartite
permutation graph on n vertices and H is a graph with k connected components, it can be decided
in k! · nO(1) time whether H is isomorphic to an induced subgraph of G.

Proof. We can assume that G and H are from the same graph class. For now, assume that
both G and H are bipartite permutation graphs; we will briefly discuss the case when G and
H are proper interval graphs at the end of the proof. Before we present the algorithm that
decides whether or not H is isomorphic to an induced subgraph of G, we first make some useful
structural observations.

Assume that H is isomorphic to an induced subgraph of G via isomorphism ϕ. Let σ =
〈x1, . . . , xn〉 be a permutation ordering for G, and let fG be a proper 2-colouring for G. Let
H1, . . . ,Hk be the connected components of H. Each connected component of H is mapped
by ϕ to an induced subgraph of some connected component of G, where different connected
components of H may be mapped to the same connected component of G. To be more precise,
there is a bijective mapping ψ : {1, . . . , k} → {1, . . . , k} such that for every vertex pair x, y of
H and every index pair i, j with 1 ≤ i, j ≤ k, if x ∈ V (Hi) and y ∈ V (Hj) and i 6= j then
ϕ(x) ≺σ ϕ(y) if and only if ψ(i) < ψ(j). In other words, vertex ordering σ can be partitioned
into k blocks σ1, . . . , σk such that σ is obtained from appending the k blocks, i.e., σ = σ1◦· · ·◦σk,
and the vertices from each connected component Hi are mapped to vertices in the block σψ(i).

Now, consider the connected component Hi of H with ψ(i) = k. Note that for any vertex x
of H that does not belong to Hi, it holds that ϕ(x) ≺σ ϕ(y) for every vertex y of Hi. In other
words, the images of the vertices of Hi appear to the right of the image of any other vertex of
H. Let G′ be the subgraph of G induced by the vertices of σk. Observe that G′ contains the
image of every vertex of Hi, but does not contain the image of any other vertex of H. Let τi
be a permutation ordering for Hi, and let fi and f ′i be two different proper 2-colourings of Hi.
Using the exact same arguments as in the proof of Theorem 5.6, it holds that Hi is isomorphic
to an induced subgraph of G if and only if there is a (σ, ω)-monotone isomorphism ϕi from H
to an induced subgraph of G such that ϕi is colour-preserving for (G, fG) and (Hi, f) for some
f ∈ {fi, f ′i}, i.e., if and only if Algorithm OIS outputs an index tuple ah = (a1, . . . , ak) and
accepts on input (G, fG, σ; Hi, f, ω) for some ω ∈ perm(τi) and f ∈ {fi, f ′i}. Moreover, since
Algorithm OIS always outputs the “rightmost” colour-preserving monotone isomorphism from
Hi to G, as we explained at the end of Section 3, the vertices xa1 , . . . , xak all belong to G′. In
other words, the graph obtained from H by deleting the connected component Hi is isomorphic
to an induced subgraph of the graph obtained from G by deleting the vertices xa1 , xa1+1, . . . , xn.

The above structural observations suggest the following algorithm for deciding whether or
not H is isomorphic to an induced subgraph of G. We start by computing a permutation
ordering σ = 〈x1, . . . , xn〉 and a proper 2-colouring fG for G. We then iterate over all k! per-
mutations ψ : {1, . . . , k} → {1, . . . , k}, corresponding to the k! different arrangements of the
connected components of H, and do as follows for each permutation ψ. We consider the con-
nected component Hi of H with i = ψ(k). We run Algorithm OIS on input (G, fG, σ; Hi, f, ω)
for all ω ∈ perm(τi) and f ∈ {fi, f ′i}, where τi is an arbitrary permutation ordering for Hi

and fi and f ′i are two different 2-colourings for Hi. Recall that there are at most eight such
inputs, since perm(τi) contains at most four vertex orderings. If Algorithm OIS accepts on one
of these inputs and outputs index tuple (a1, . . . , ak), we delete the vertices xa1 , xa1+1, . . . , xn

23



from G. We then iterate this process over the remaining connected components Hi of H, de-
creasing the value of i from k − 1 down to 1. We accept if and only if Algorithm OIS accepts
on input (G, fG, σ; H1, f, ω) for some ω ∈ perm(τ1) and f ∈ {f1, f ′1}.

The correctness of the algorithm immediately follows from the structural observations made
at the beginning of the proof. Let us analyse the running time. The algorithm considers k!
different arrangements of the connected components of H. For each of these, we run OIS
at most eight times for each of the k connected components of H. Recall that OIS runs in
polynomial time by Corollary 3.4. This gives an overall running time of k! · 8k · nO(1), which is
equivalent to k! · nO(1) because of k ≤ n and n ≥ 2.

The proof for the case where G and H are proper interval graphs is similar. In this case, the
algorithm again considers all k! permutations ψ : {1, . . . , k} → {1, . . . , k}, but for each of these,
it only has to run OIS twice instead of at most eight times for each connected component of H.
This yields an overall running time of k! · 2k · nO(1) in this case.

Our tractability results rely on an efficient algorithm for solving a restricted version of the
Induced Subgraph Isomorphism problem. A natural question to ask is whether our approach
is applicable to other classes of input graphs. Are there other classes of cocomparability graphs
that have “almost-unique” vertex orderings to yield results similar to Lemmas 4.3 and 5.5? As a
simple example, it is not difficult to see that complete r-partite graphs in fact admit such a result,
when r is bounded. We showed that vertex orderings for our considered graphs are “isomorphic”
when they coincide in the first vertex (first statements of Lemmas 4.1 and 5.3). Can we obtain
such results for classes of cocomparability orderings when two vertex orderings coincide on more
than one position? Does bounding the number of such positions yield fixed-parameter tractable
cases of the problem?

We solved our variant of the Induced Subgraph Isomorphism problem by using proper
colourings of the input graphs. Our approach worked due to the fact that proper 1-colourings
are unique by definition, and proper 2-colourings of connected bipartite graphs are unique up
to swapping the two colours. However, this uniqueness property does not easily extend to k-
colourings for larger values of k. In practical applications, a colour-preserving isomorphism for
coloured graphs may even be the actual desired problem. Such applications are graph-rewriting
systems, where graph patterns are replaced by other patterns. Often, the input graphs have
labelled, coloured, vertices. It is therefore an interesting problem to study which additional
restrictions on the Induced Subgraph Isomorphism problem make the problem tractable on
input graphs like interval graphs, cographs, permutation graphs.

We end with the following open questions. What is the computational complexity of ISI if
G is an interval graph and H is a connected proper interval graph1, or if G is a permutation
graph and H is a connected bipartite permutation graph?

Acknowledgement

We are grateful to an anonymous referee whose helpful comments and suggestions improved the
presentation of the results of the paper.

1This case was previously claimed to be solvable in polynomial time [11]. Unfortunately, an error in the proof
was discovered.

24



References

[1] R. Belmonte, P. Heggernes, P. van ’t Hof. Edge contractions in subclasses of chordal graphs.
Discrete Applied Mathematics, 160:999-1010, 2012.

[2] A. Brandstädt, V.B. Le, and J. Spinrad, Graph Classes: A Survey, SIAM, Philadelphia,
1999.

[3] L. Cai, S. M. Chan, S. O. Chan. Random separation: a new method for solving fixed-
cardinality optimization problems. Proceedings of IWPEC 2006, Springer LNCS, 4169:239–
250, 2006.

[4] D. G. Corneil, H. Kim, S. Natarajan, S. Olariu, A. P. Sprague. Simple linear time recognition
of unit interval graphs. Information Processing Letters, 55:99–104, 1995.

[5] P. Damaschke. Induced subgraph isomorphism for cographs is NP-complete. Proceedings of
WG 1991, Springer LNCS, 484:72–78, 1991.

[6] X. Deng, P. Hell, J. Huang, Linear-time representation algorithms for proper circular-arc
graphs and proper interval graphs. SIAM Journal on Computing, 25:390–403, 1996.

[7] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

[8] D. Eppstein. Subgraph isomorphism in planar graphs and related problems. Journal of
Graph Algorithms and Applications, 3(3):1–27, 1999.

[9] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness. W. H. Freeman & Co., 1979.

[10] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Math-
ematics Vol. 57, Elsevier, 2004.

[11] P. Heggernes, D. Meister, Y. Villanger. Induced Subgraph Isomorphism on interval and
proper interval graphs. Proceedings of ISAAC 2010, Springer LNCS, 6507:399–409, 2010.

[12] L. Ibarra, The clique-separator graph for chordal graphs. Discrete Applied Mathematics,
157:1737–1749, 2009.

[13] D. Kratsch and L. Stewart. Domination on cocomparability graphs. SIAM Journal on
Discrete Mathematics, 6:400–417, 1993.

[14] S. Kijima, Y. Otachi, T. Saitoh, T. Uno. Subgraph isomorphism in graph classes. Discrete
Mathematics, 312:3164–3173, 2012.

[15] P. J. Looges and S. Olariu. Optimal greedy algorithms for indifference graphs. Computers
& Mathematics with Applications, 25:15–25, 1993.

[16] D. Marx and I. Schlotter. Cleaning Interval Graphs. Algorithmica, 65:275–316, 2013.

25



[17] D. W. Matula. Subtree isomorphism in o(n5/2). Annals of Discrete Mathematics, 2:91–106,
1978.

[18] R. M. McConnell and J. P. Spinrad. Modular decomposition and transitive orientation.
Discrete Mathematics, 201:189–241, 1999.

[19] M. M. Sys lo. The subgraph isomorphism problem for outerplanar graphs. Theoretical Com-
puter Science, 17:91–97, 1982.

[20] J. Spinrad, A. Brandstädt, L. Stewart. Bipartite permutation graphs. Discrete Applied
Mathematics, 18:279–292, 1987.

26


