
Bitemporal Complex Event Processing of
Web Event Advertisements?

Tim Furche1, Giovanni Grasso1, Michael Huemer2,
Christian Schallhart1, and Michael Schrefl2

1 Department of Computer Science, Oxford University,
Wolfson Building, Parks Road, Oxford OX1 3QD

firstname.lastname@cs.ox.ac.uk
2 Department of Business Informatics – Data & Knowledge Engineering,

Johannes Kepler University, Altenberger Str. 69, Linz, Austria
lastname@dke.uni-linz.ac.at

Abstract. The web is the largest bulletin board of the world. Events of all types,
from flight arrivals to business meetings, are announced on this board. Track-
ing and reacting to such event announcements, however, is a tedious manual task,
only slightly alleviated by email or similar notifications. Announcements are pub-
lished with human readers in mind, and updates or delayed announcements are
frequent. These characteristics have hampered attempts at automatic tracking.
PEACE provides the first integrated framework for event processing on top of
web event ads. Given a schema of events to be tracked, the framework populates
this schema through compact wrappers for event announcement sources. These
wrappers produce events including updates and retractions. PEACE then queries
these events to detect complex events, often combining announcements from
multiple sources. To deal with updates and delayed announcements, PEACE’s
schemas are bitemporal so as to distinguish between occurrence and detection
time. This allows complex event specifications to track updates and to react to
differences in occurrence and detection time. Our evaluation shows that extract-
ing the event from an announcement dominates the processing of PEACE and that
the complex event processor deals with several event announcement sources even
with moderate resources. We further show, that simple restrictions on the com-
plex event specifications suffice to guarantee that PEACE only requires a constant
buffer to process arbitrarily many event announcements.

1 Introduction

Most events are announced first and often only on the web these days. This trend is even
more pronounced for time critical events, as the web is a ubiquitous and prompt infor-
mation source. While the immediate availability of up-to-date information is a blessing

? The research leading to these results has received funding from the European Research Council
under the European Community’s Seventh Framework Programme (FP7/2007–2013) / ERC
grant agreement DIADEM, no. 246858. Michael Huemer has been supported by a Marietta
Blau Scholarship granted by the Austrian Federal Ministry of Science and Research (BMWF)
for a research stay at Oxford University’s Department of Computer Science.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357278515?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

in enabling much more complex, rapid interactions, it also imposes a challenge: The im-
mediacy of web-published events allows for frequently and quickly distributed updates,
leading to fragmentary and preliminary but inaccurate advertisements which are fixed
later. Therefore, modern coordination tasks often boil down to continuously checking
all relevant event advertisement sources for changes, ready to react on violations of
our constraints. For example, awaiting a person on a flight with a stopover, we need to
check that both flights are in time. If the second flight is delayed, the person will arrive
late the same day; in contrast, if the first flight is late, the person might not even arrive
on the same day, depending on the timeliness of the second flight and other available
connections. But these distinctions do not suffice, as incomplete, incorrect, and late an-
nouncements complicate the situation even more. For example, not only may scheduled
flights arrive late, but also the event announcements for such events may be advertised
late themselves. This requires us to consider the bitemporality of events: Each event
has an occurrence time, when it supposedly takes place, and a detection time, when its
advertisement is detected on the web.

Checking all these cases is a boring, stressful, and repetitive task, ideally suited
for automation – at least at first glance. Except for specific domains, however, such
systems are rare as the available technologies do not allow for a rapid development of
event announcement detection integrated with complex event processing: The employed
complex event processor must be able to deal with event announcements that are un-
reliable, volatile, and out of time, as published on the web, i.e., the event processing
must be fully bitemporal. While complex events have been studied extensively, see [8]
for a survey, existing systems deal only with some aspects of the bitemporality. For ex-
ample, [2] considers events with two time dimensions, but does not consider mutable
events or delayed events; [17] only allows to deal with mutable events in terms of new
and unconsolidated update events. Most systems [7, 9, 10, 18, 21] assume a single time
dimension, i.e., events are detected instantaneously when they occur. To extract event
announcements from the web, however, an easy to use, scalable extraction system is
needed that is able to produce a continuous stream of extracted event announcements.

The PEACE (Processing Event Ads into Complex Events) framework introduced
in this paper addresses these challenges by an integrated framework for extracting
event announcements and detecting complex events over such announcements through
a bitemporal complex event processor. PEACE is driven by event models that specify
the attributes of events in a domain and are used both in the specification of wrap-
pers (for extracting event announcements) and in the specification of complex event
queries. For the former, we use an extension of OXPATH [11], a highly efficient web
automation language, slightly adapted to the needs of event announcement extraction.
OXPATH is particularly well suited for this task as it is able to extract data from even
heavily scripted modern web sites such as Ebay. For the latter, we introduce a novel
bitemporal complex event processing language BICEPL (Bitemporal Complex Event
Processing Language) that can be evaluated directly on top of the event announcements
extracted by OXPATH. As required, BICEPL distinguishes between detection and oc-
currence time of events. This bitemporal event handling allows for enacting different
actions, depending on the events’ properties and timing information, e.g., considering
delays between event detection and occurrence time. For a long-running complex event

NOW

ONTIMEONTIME

(FUTURE EVENT)ANNOUNCEMENT

LATE

]

[

REVOCATION
(REVOKE FUTURE EVENT)

REVOKE

O C C G]

[

[

CHANGE

RETROACTIVECHANGE

(FUTURE CHANGE)

REVOKE

]

]

[

[

]
[

[

LATE

ONTIME

[
[

Event Occurrence e in New State (e in Di)

Event Occurrence e’ in Old State (e’ in Di‐1 , e.key = e’.key)

Fig. 1: Complex Event Publishing Cases

processing system it is essential that the memory use does not increase over time but
remains constant (after a certain warm-up). This is guaranteed in BICEPL through the
use of sliding windows, and, uniquely, in OXPATH through a novel buffer manager
that guarantees constant memory regardless of the number of extracted events or web
pages visited. This is key to an efficient implementation of BICEPL, since web event
processing is dominated by loading and rendering web pages, as shown in Section 6.

PEACE is designed to support developers in adding new event announcement sources
or new complex event queries. Both parts are driven by the event model and are min-
imal extensions of established query languages: OXPATH extends XPATH for web ex-
traction. Most wrappers in OXPATH are a series of XPATH expressions, interspersed
with action (such as clicking a button) and extraction instructions, that specify the at-
tribute of the event model to populate with the selected web data. The XPATH portions
can be created by a myriad of mature developer tools in Browsers such as Firebug, and
then only (simple) actions and extraction instructions must be added to complete the
wrapper. OXPATH also provides a visual interface that further simplifies this task [15].

BICEPL extends SQL-select statements to define complex events described with
SQL-select statements that are extended, first with temporal comparisons between events,
and second, with a definition of the occurrence time of the complex event in relation to
the timing information of the involved events. The resulting events are continuously up-
dated in their attributes, such as location or ticket price, and in their timing information.
This leads to 10 different cases when complex events should be published, updated, or
retracted, see Figure 1 and Section 5. Notice, Allan [3] defined possible relations be-
tween immutable, unitemporal intervals; in contrast Figure 1 displays possible cases in
a life cycle of a single mutable, bitemporal event.

Contributions and Organization. PEACE is the first integrated framework for complex
event processing on event announcements in the web, designed around the following
four contributions:

(1) Integration (Section 3). PEACE integrates extraction and complex event pro-
cessing through a joint event model. The event model not only provides the interface
between the PEACE parts, it also drives the development of OXPATH wrappers just as
much as BICEPL complex event queries.

(2) Bitemporality (Section 5). PEACE inherently relies on two time dimensions: It
distinguishes between events’ occurrence and detection time and allows different ac-
tions, depending on the relation between those times and the current time. Despite this
powerful event model, PEACE’s complex event language BICEPL is a small exten-
sion atop SQL-select statements to provide a powerful yet easily understood way for
describing event schemata.

(3) Integrated event extraction (Section 4). The event schemata declared in BICEPL
are populated by wrappers written in OXPATH. OXPATH is also built atop a commonly
known declarative language, namely XPATH.

(4) Lightweight, memory efficient implementation (Section 6). The prototype imple-
mentation of PEACE is highly efficient and lightweight, requiring only constant mem-
ory regardless of the number of events or sources to extract from.

1.1 Running Example

We illustrate PEACE through a simple scenario taken from the daily live of a business
man, who travels regularly by plane to business meetings (we discuss the details of
the code shown in Sections 4 and 5). Flights are often delayed and hence, he must
update his business partners frequently about delays. This is not only costly in time
and effort but sometimes impossible, e.g., when he is on a flight without access to
communication services. However, this task could be delegated to PEACE, such that
it informs his colleagues whenever he would get late to a meeting. To simplify the
example for presentation the business man only takes direct flights. To detect potential
delays, the web sites of airlines and airports are observed continuously.

In this example we identify the following event classes: FlightArrival signifies the
landing of a plane with the attributes flightDay, flightNo, fromLoc, and toLoc, the latter
describing the departure and destination locations. Instances of FlightArrival are ex-
tracted from the web by wrappers covering airline and airport sites. OneDayToArrival is
a complex event that occurs one day before a flight arrival associated with a business
meeting, with attributes flightDay, flightno, meetingId, and toLoc. It announces rele-
vant flight arrivals one day before the actual expected arrival takes place and is kept up-
to-date on changes of the estimated arrival time. All classes have an additional implicit
attribute occ for the occurrence time of the event and det for the detection time. Finally,
the BusinessMeeting is provided through some database for this example, though they
could also be extracted from a web calendar or some other meeting planning system.

To detect subscribed events on the web, PEACE integrates OXPATH wrappers that
are executed on (possibly several) target pages. A wrapper for a certain event class
produces data compliant with the schema of the event it observes. For this example,
the wrapper in Figure 2 detects FlightArrival events from flightarrivals.com. This

1 doc("http://www.flightarrivals.com")

2 //a#panel0/{click /}//form#qbaForm/descendant::field()[1]/{$airport }

3 /following::field()[3]//option{select }/following::field()[1]/{click /}

4 /(/descendant::a[string(.)=’Next >’][1]/{click /})*
5 //table#flifo//tr[position()>1]/self():<FlightArrival>

6 [./td[1]:<fromLoc=string(.)>] [./td[2]:<flightNo=string(.)>]

7 [./td[3]/div:<flightDay=string(.)>] [.:<toLoc=$airport>]

8 [./td[3]/text()[1]:<occTime=toUnixTime(.)>]

Fig. 2: OXPATH Wrapper

1 CREATE MUTABLE SUBSCRIBED EVENT CLASS FlightArrival(flightDay TEXT, flightNo

TEXT, fromLoc TEXT, toLoc TEXT)

2 ID (flightDay, flightNo)

3 LIFESPAN (2d);

4

5 CREATE COMPLEX EVENT CLASS OneDayToArrival(flightDay TEXT, flightNo TEXT,

toLoc TEXT, meetingId TEXT)

6 ID (flightDay, flightNo, meetingId)

7 AS SELECT fa.flightDay, fa.flightNo, fa.toLoc, bm.meetingId

8 FROM FlightArrival fa, BusinessMeeting bm

9 WHERE fa.flightNo = bm.flightNo AND fa.flightDay = bm.flightDay

10 OCCURRING AT fa - 1d

11 PUBLISH OneDayToArrival_OnTime

12 CASE LATE(0s,1m) OneDayToArrival_OnTime

13 CASE LATE(1m,1h) OneDayToArrival_Late

14 CASE RETROACTIVECHANGE OneDayToArrival_RAChanged

15 CASE REVOKE OneDayToArrival_Revoked;

Fig. 3: Event Definition for Flight Arrivals

wrapper fetches the target page (Line 1), then selects and submits the form for flights
arriving at the parameterised arrival airport at any of the possible time windows in the
day (Lines 2–3). The wrapper deals with paginated results by repeatedly clicking on
“next” (Line 4). On each result page, FlightArrival objects are extracted along with
their attributes (Lines 5–7) for every flight arrival entry listed, resulting in an event
tuple as shown below:

FlightArrival
flightDay flightNo fromLoc toLoc occ

May 21 BA 112 New York JFK London LHR 1369116000

Figure 3 shows the BICEPL specification for importing the subscribed event class
FlightArrival and defining the complex event class OneDayToArrival. The first statement
(Lines 1-3) declares the subscribed event class FlightArrival with its explicit attributes
flightDay, flightNo, fromLoc and toLoc, with flightDay and flightNo as key (Line 2).
FlightArrival is defined mutable (Line 1), since estimated flight arrival times change
over time, and with a lifespan of 2d, meaning 2 days (Line 3).

The second statement (Lines 5-15) defines the complex event type OneDayToArrival

based on the constituent event classes FlightArrival and BusinessMeeting. It features
as attributes flightDay, flightNo, toLoc, and meetingId, with flightDay, flightNo, and
meetingId as key (Line 6). A OneDayToArrival event occurs one day before the flight
arrives, as defined with the OCCURRING AT clause (Line 10). When the complex event is
detected on time, or with up to one minute delay (0s,1m), the complex event publishes
OneDayToArrival_OnTime (Lines 11-12). If the event is detected within a delay of more
than one minute (1m) up to one hour(1h), OneDayToArrival_Late is published (Line 13).

If an already published event must be revised, e.g.. the flight arrives later than as-
sumed beforehand, OneDayToArrival_RAChanged is published (Line 14). If an already
published event is revoked, e.g., if the flight is canceled less than a day before it is
planned to arrive, OneDayToArrival_Revoked is published (Line 15). All these following
the schema of the associated complex event OneDayToArrival.

2 Related Work

To the best of our knowledge, PEACE is the first system that addresses the complex
event processing for event announcements from the Web. This differs from mining
events from Twitter or other sources [5, 13] but is related to typical complex event pro-
cessing where many event sources are integrated to detect complex events and react to
these. Therefore, we focus on the difference of PEACE and its complex event processor
and language BICEPL with existing complex event processing systems.

Event processing approaches can be classified into three different approaches: Ac-
tive Database Management Systems (ADMS) [1, 12, 20], Data Stream Management
Systems (DSMS) [4, 6, 16] and Complex Event Processing Systems (CEP) [2, 7, 9, 10,
18, 21]. Unfortunately, all ADMS and DSMS approaches do not fit PEACE for not sup-
porting bitemporality, as these systems make the perfect technology assumption [23],
i.e., they assume an event is known instantaneously after it occurred. Even most CEPs
make this assumption: The occurrence time of an event is given to it when entering
the system. This restrictive time model disables reasoning over events in an imperfect
world, as for this task the occurrence time and detection time are essential. To the best of
our knowledge AMIT [2] is the only CEP system thinking about two time dimensions.
Yet, these time dimensions are not supported to be used for temporal comparisons in
complex event processing. Situations, as they call complex events, are defined by their
highly expressive, imperative complex event language which is conceptually similar to
the ones used in active database systems, e.g., in [20].

Mapping our complex event declarations to existing complex event processing ap-
proaches is only partly possible: The on time case, defining the reaction if there are
no delays, changes, or errors in the event planning and announcement, is the standard
scenario assumed by all approaches. This is the only case that is directly supported.
The late case, is not supported at all by existing approaches due to a missing second
time dimension. Notice, the occurrence time is event inherent (implicit) and may not be
compared with user defined (explicit) attributes. Mapping the retroactive change case
as well as the revoke case to existing languages is possible, though a tenuous task and
requires the subscription to multiple event types.

Beside event processing, also Event Calculus (EC) [14, 19, 22] in knowledge rep-
resentation deal with events, representing knowledge about events for reasoning pur-
poses. Originally EC is unitemporal, though, there exist extensions [19, 22] to imple-
ment bitemporal deductive database systems. EC rules are expressive enough to model
complex events, but would require a number of low-level rules to represent a single
complex event declaration of BICEPL: EC provides a general event model while BI-
CEPL is a succinct yet expressive language tailored for event management.

3 PEACE Approach and Event Model

PEACE is designed for quickly instantiating a complex event detection system on top of
event announcements from new sources. The setup of PEACE application requires the
provision of the following: (1) Subscribed event classes, specifying the schema of their
events. (2) OXPATH wrappers for those subscribed event classes which feed from web
sources, matching the schema of their subscribed event classes. (3) Wrappers for other
sources, if any, matching again the schema of their subscribed event classes; examples
include database triggers, e.g., to retrieve background information on a business meet-
ing. (4) Complex event classes to aggregate the subscribed events into complex events
for capturing the conditions and information required by the application and for driving
the publication of events to be delivered to the client of PEACE.

In our running example, for (1), we show the subscribed event class FlightArrival

in Lines 1-3 of Figure 3, omitting the BusinessMeeting which is similar. For (2), we show
the OXPATH wrapper in Figure 2 while, for (3), BusinessMeeting is filled via a database
trigger. At last, Lines 5-15 of Figure 3, show the definition of a complex event. In total,
the entire example takes 19 lines of BICEPL and 13 lines of OXPATH plus a database
tigger to implement.

Event Model. We identify such a BICEPL program with the event classes E it declares.
Every event e processed by E belongs to one such class e.class = E ∈ E. Depending
on the concrete class E, the event features certain attributes e.attr for the attributes
attr ∈ E.schema, as specified in the schema E.schema of E. Each event schema con-
tains a set of key attributes E.key ⊆ E.schema and we denote with e.key the values of
the key attributes in event e ∈ E. Further, the occurrence time and detection time of
each event e is accessible via the implicit attribute e.occ and e.det, respectively. These
attributes are implicit, since we want to control the way they are computed and accessed,
providing occurring-at and checking-at clauses. Note that the key of an event identifies
the event but not the announcement, i.e., there may coexist several announcements e
and e′ referring to the same event e.key = e′.key detected at different times, i.e., with
e.det 6= e′.det.

Event classes in E are partitioned into subscribed and complex events S and C. In
addition to the schema, subscribed event classes S ∈ S also have a lifespan S.lifespan,
determining how long an event is retained before being purged, and an associated
wrapper S.wrap or trigger expression. In contrast, complex event classes C ∈ C have
a set of publication statements C.pub and a query function C.query. The publication
statements in C.pub are subdivided into C.pub[O], C.pub[L], C.pub[C], C.pub[R] for

Fig. 4: Form and Result Page on www.flightarrivals.com.

on-time, late, change, and revoke publication events. If the query C.query depends on
observed subscribed event classes or other complex event classes (derived from those
observed events), then we call these classes constituent event classes of C. The con-
stituent classes do not only include direct dependencies but also indirect dependencies
via other constituent complex classes. If E ∈ E is a constituent event class of C ∈ C,
we write E ⊂ C; hence ⊂ is transitive by definition. Additionally, we require ⊂ to
be irreflexive and asymmetric, i.e., we allow no cyclic dependencies in complex event
queries. Likewise, we write e ⊂ c for concrete event instances e and c, if e is a con-
stituent event of c. For the set of C-events obtained by evaluating C.query, we write
C.query(O,D, t), where O is the set of so far observed subscribed events, D is the set of
derived constituent complex classes, and t is the wall clock time.

4 Extracting Event Announcements

For detecting events announcements on the web, PEACE integrates OXPATH, a recent
state-of-the-art tool for highly efficient data extraction [11]. OXPATH’s main strengths
lie in its ability to deal with modern scripted websites necessitating complex interaction
(e.g., Ajax forms, auto-completion fields), and the capability to scale well in time and
memory, handling even millions of pages and extracted results at ease. Indeed, OX-
PATH’s output handling requires no buffer as the extracted data is streamed out once
matched on the page, see [11]. This behaviour fits perfectly with the needs of PEACE.
A full description of OXPATH is out of this paper’s scope, and can be found in [11].
In short, OXPATH is an extension of XPATH with four features: (1) actions, such as
mouse events, form filling, for simulating user interactions with web pages; (2) iter-
ation via Kleene stars, e.g., to deal with sites that present their results across several
pages or use any pagination techniques; (3) more expressive node selection through the
style axis, querying the actual visual attributes as rendered by the browser, to select
e.g. all elements coloured green; and, (4) specification of data to be extracted in terms
of (nested) records and attributes, via extraction markers. To illustrate OXPATH’s capa-
bilities, we discuss how to derive a wrapper from a PEACE event schema E in OXPATH
along the running example from Figure 2.

There are two steps in the derivation for a specific event class E ∈E: First we define
the navigation on the event source to the event announcements. Second, we specify how
to map each of the event model’s attributes to fragments of the event announcements.
In our example, Lines 1–4 perform the navigation and Lines 5–8 the attribute mapping.
Figure 4 shows the form on the left hand that the navigation part first fills by selecting
the “By airport” tab and then filling the airport into the arrival airport field. It then
iterates over all options of the second select in the time period and submits the form once

for each of those options. On the result page, it iterates through the next links connecting
the paginated results using a Kleene star expression. This entire expression can be easily
obtained using standard web developer tools present in most browsers or in Firebug,
though we here use some of OXPath’s extensions to obtain a more readable expression.
We also provide a visual tool that allows the recording of interaction sequences and
automatically generates the corresponding navigation sequence so that the user only
has to change the parameterized values or adjust the iteration parts.

For the attribute mapping, one can again use standard web developer tools to obtain
XPath expressions for identifying which peace of a page maps to which attribute of E.
This is shown in Lines 5–8. Each result page reached contains a table with flight arrival
entries in its rows. We skip the first row as it only contains the column headers (Line 5),
and for all the remaining we use OXPATH’s extraction markers to shape the extracted
data in compliance with the schema of the corresponding event class FlightArrival

defined in Figure 3: One event :<FlightArrival> is created for each table row, along
with attributes such as <fromLoc=string(.)> for the departure airport in the first col-
umn ./td[1]; similarly for flight number, flight day, and occurrence time in adjacent
columns. Notice, that all key attributes (E.key) must be present explicitly on the web
site to allow for tracking changes to the event (here flight day and number).

The resulting wrapper is used in PEACE to poll the website repeatedly and produce
the input events for the complex event processor. The polling frequency and behaviour
can be adjusted by the user, though PEACE provides a simple, but effective change
detection based on a sample of the result pages by default. If within E.lifespan the same
event is detected multiple times (in different pollings), it is only reported if its attributes
have changed.

5 Event Processing with BICEPL

We designed BICEPL to handle event advertisements as they occur on the web. In a per-
fect world, each event, as identified by its key attributes, would be announced once and
would have a single event occurrence time. Web announcements are certainly subject to
frequent updates, hence BICEPL features events which are updated independently of
the event’s actual occurrence time, e.g., allowing for retro-actively changes or revoca-
tions. Moving into such an imperfect world, we still assume that events occur only once,
but the attributes and occurrence times for past and future events may change. If there
are different announcements e and e′ for the same event e.key= e′.key, we assume that
those announcements have different detection times e.det 6= e′.det. But given det and
key, only a single event announcement e may exist with e.det= det and e.key = key.

In BICEPL, all events belong to a event class, defining a schema for its events’ ex-
plicit attributes. Subscribed events are produced by OXPATH wrappers or other sources,
hence BICEPL only define their lifespan. Complex events are derived from constituent
events which are either subscribed or other complex. The definition of a complex event
class comes in two parts, (1) as an event selector based on an SQL select statement
which aggregates constituent events into complex events. The event selector describes
the attributes of the corresponding complex events in a perfect world, i.e., it disregards
event updates. (2) For each complex event, we define publication statements in reac-

tion to certain update types. We consider situations when events (a) are announced on
time, (b) have been detected late, after having already occurred, (c) are retro-actively
changed, or (d) are retro-actively revoked.

Syntax of BICEPL BICEPL’s syntax in Figure 5 defines a program 〈program〉 as se-
quence of event class declarations, each describing either a simple or complex event
class. We declare a subscribed event class S ∈ S via 〈sclass〉 as either mutable or im-
mutable, with an event schema S.schema, a key S.key, and a lifespan S.lifespan, given as
〈time_literal〉 which consists of a positive integer with s, m, h, or d for seconds, minutes,
hours, or days. A complex event class C ∈ C is declared via 〈cclass〉, consisting of a
schema C.schema, an SQL select statement C.query, and event publication statements
C.pub. The SQL select statement may refer to subscribed event classes in S and to
other complex event classes in C, as long as no circular dependency arises. The schema
〈schema〉 describes with 〈attributes〉 the typed attributes E.schema and with 〈key〉 the
attributes forming the key E.key of event class E. The select statements are extended
with occurring-at and checking-at clauses. An occurring-at clause describes a complex
event’s occurrence time, while a checking-at clause describes when the event is checked
for, parameterized with start and end times of those checks and the interval between two
consecutive checks. Both clauses are based on time expressions 〈time〉 which refer to
occurrence times of constituent events. The occurrence time of a constituent event is
accessed via 〈table_ref 〉, e.g., in a statement SELECT FROM FlightArrival fa..., we use
fa to refer to the occurrence time of the selected flight arrival event. In occurring-at
clauses only, time expressions may also contain ‘NOW’ to refer to the current system
time. This implies that the boundaries of checking-at clause are determined by occur-
rence times of constituent events. Based on these basic expressions, time expressions
involve recursively min/max and increment/decrement computations. The where-clause
of a select statement may also involve comparisons of 〈time〉 expressions (not shown
in the grammar). Next to the select statement, complex events also describe publication
events C.pub in 〈publication〉. We distinguish publication events for on-time, late, retro-
actively changed, and revoked event announcements, referred to as C.pub[O], C.pub[L],
C.pub[C], and C.pub[R], and declared with 〈ontime〉, 〈late〉, 〈change〉, and 〈revoke〉. In
all four cases, BICEPL requires the name of the publication event to generate. Late
events are optionally parameterized with an interval restricting the considered delay.

Semantics of BICEPL We define the semantics of BICEPL in two variants – first
as idealized semantics without ever purging observed events, and second as sliding
window semantics by considering the lifespan of the subscribed events and purging
them when they turn stale. As a technical prerequisite, we start with rewriting complex
event queries into standard SQL.

Query rewriting: Given an expanded SQL select statement, we turn C.query into
standard SQL by performing three rewriting steps: (1) We expand all table references
so as to access the implicit occurrence time attribute, e.g., in our running example we
rewrite OCCURRING AT fa - 1d into OCCURRING AT fa.occ - 84600, as 1 day equals 84600
seconds. (2) We rewrite occurring-at clauses into a definition of the implicit occurrence
time attribute occ, e.g., OCCURRING AT fa.occ - 84600 yields SELECT fa.occ - 84600 as

〈program〉 ::= { 〈sclass〉 | 〈cclass〉 }
〈sclass〉 ::= ‘CREATE’ (‘MUTABLE’ | ‘IMMUTABLE’) ‘SUBSCRIBED EVENT CLASS’

〈schema〉 ‘LIFESPAN’ 〈time_literal〉 ‘;’
〈cclass〉 ::= ‘CREATE’ ‘COMPLEX EVENT CLASS’

〈schema〉 ‘AS’ 〈selection〉 [‘PUBLISH’ 〈publication〉] ‘;’
〈schema〉 ::= 〈name〉 ‘(’ 〈attributes〉 ‘)’ ‘ID’ ‘(’ 〈key〉 ‘)’
〈attributes〉 ::= 〈name〉 〈type〉 { ‘,’ 〈name〉 〈type〉 }
〈key〉 ::= 〈name〉 { ‘,’ 〈name〉 }
〈selection〉 ::= ‘SELECT’ 〈select_clauses〉 ‘OCCURRING AT’ 〈time〉

[‘CHECKING AT (’ 〈time〉 ‘,’ 〈time〉 ‘,’ 〈time_literal〉 ‘)’]
〈time〉 ::= 〈table_ref〉 | ‘NOW’ | 〈time〉 [(‘+’ | ‘-’) 〈time_literal〉]

| (‘MAX’ | ‘MIN’) ‘(’ 〈time〉 { ‘,’ 〈time〉 } ‘)’
〈publication〉 ::= 〈ontime〉 { 〈late〉 } { 〈change〉 } { 〈revoke〉 }
〈ontime〉 ::= 〈name〉
〈late〉 ::= ‘CASE LATE’ [‘(’ 〈min_delay〉 ‘,’ 〈max_delay〉 ‘)’] 〈name〉
〈change〉 ::= ‘CASE RETROACTIVECHANGE’ 〈name〉
〈revoke〉 ::= ‘CASE REVOKE’ 〈name〉

(with 〈select_clauses〉 and 〈table_ref 〉 taken from a SQL grammar)

Fig. 5: BICEPL Syntax.

occ ..., defining the occurrence time as first attribute in the newly created event. (3) We
turn checking-at clauses into additional where-clauses.

Idealized Semantics: A BICEPL program, identified by its event classes E= S∪C,
observes a sequence of pairs Oi, ti, where Oi is the set of subscribed events detected
up to time stamp ti. We set t0 to the system start-up time, and require ti > ti−1 for all
i > 0. We start with O0 = /0, and for i > 0, we set Oi = {e ∈Oi−1 | @e′ ∈ ∆i and e.key=
e′.key} ∪ ∆i where ∆i contains the subscribed events observed between ti−1 and ti.
Depending on the differences between Oi and Oi−1, program E publishes a set of
publication events, as specified in C.pub for C ∈ C. Hence we define the semantics
JEK(Oi, ti,Oi−1, ti−1) of program E over two pairs Oi, ti and Oi−1, ti−1 to be compared.
The distinction between mutable and immutable events has no semantic effect but en-
ables an optimized treatment of immutable events.

The semantics

JEK(Oi, ti,Oi−1, ti−1) = compare(derive(Oi, ti),derive(Oi−1, ti−1))

is computed in two steps: (A) We derive the complex events Di = derive(Oi, ti) and
Di−1 = derive(Oi−1, ti−1) with derive(O, t) = Dl for complex classes C = {C1 . . .Cl}.
Herein, we set D0 = /0 and D j = D j−1 ∪ C j.query(O,D j−1, t). We assume C j ⊂Ck for
all j < k, as⊂ is irreflexive and asymmetric. (B) We determine the resulting publication
events by comparing Di and Di−1 and adding to compare(Di,Di−1) the publication
events arising in the following cases (see Figure 1):

(1) Announcement – there exists e ∈ Di but no e′ ∈ Di−1 with e.key = e′.key.
(a) For e.occ= ti we add p ∈ e.class.pub[O] (on-time).
(b) For e.occ< ti we add p ∈ e.class.pub[L] if p.min< ti− e.occ≤ p.max (late).
(c) For e.occ> ti we add nothing (future event).
(2) Revocation – there exists e ∈ Di−1 but no e′ ∈ Di with e.key = e′.key.

(a) For e.occ< ti we publish p ∈ e.class.pub[R] (revoke).
(b) For e.occ≥ ti we add nothing (future revoke).
(3) Change – there exists e ∈ Di−1 and a e′ ∈ Di with e.key = e′.key but e 6= e′.
(a) For e.occ≤ ti and e′.occ≤ ti we add p ∈ e.class.pub[C] (retroactive change)
(b) For e.occ> ti and e′.occ> ti we add nothing (future change).
(c) For e.occ> ti and e′.occ≤ ti we add p ∈ e′.class.pub[R] (revoke).
(d) For e.occ< ti and e′.occ> ti we add p ∈ e.class.pub[L]

with p.min< ti− e.occ≤ p.max holds (late).
(e) For e.occ= ti and e′.occ> ti we add p ∈ e.class.pub[O] (on-time).
Sliding Window Semantics: Ideally, we would never drop observed, un-revoked sub-

scribed events, but due to limited resources, we have to drop events eventually. To avoid
altering the semantics, we need not only consider the lifespan of each subscribed event
e but also the lifespan of all subscribed events e′ such that e and e′ are involved into
some complex event c. We set c.expiration= max{e.occ+ e.class.lifespan | e⊂ c} and
e.expiration = max{c.expiration | e ⊂ c}. Then we purge events with purge(O, t) =
{e ∈ O | e.expiration ≥ t}, keeping only unexpired events. Finally, we need apply the
same time stamp ti−1 in purging Oi and Oi−1 (instead of ti and ti−1), leading to

JEKpurge (Oi, ti,Oi−1, ti−1) = JEK(purge(Oi, ti−1), ti,purge(Oi−1, ti−1), ti−1) .

This windowing and idealized semantics behave identically if E uses only (A1) mono-
tone queries, i.e., C.query(O,D, t) ⊆ C.query(O′,D′, t) for all O ⊆ O′, D ⊆ D′, and
C ∈ C, and is (A2) key subsuming, i.e., E.key ⊆ C.key for all E ⊂ C; and if the sub-
scribed events O0,O1, . . . fed to E have (B1) timely updates, never updating an event
beyond its lifespan (for e′ ∈ Oi−1 and e ∈ Oi with e′.key = e.key, we have e′.occ+
e.class.lifespan ≥ e.det), and (B2) cohesive updates, i.e., the constituent events of a
complex event must share an overlapping lifespan as matching constituent events.

Theorem 1. If a program E satisfies (A1-2) and if the events O0,O1, . . . satisfy (B1-2),
then JEKpurge (Oi, ti,Oi−1, ti−1) = JEK(Oi, ti,Oi−1, ti−1) holds.

6 Implementation and Evaluation

PEACE should not only support server systems but also applications on small mobile
devices. Therefore, our current implementation has been designed to be lightweight and
portable, implemented in Java and SQLite in-memory database, and tested on Android
and Ubuntu. We evaluate PEACE in three scenarios: The first two scenarios both extract
and process flight arrivals from the web site of Heathrow Airport but differ in scale. The
third scenario involves a stress test on PEACE’s complex event processor to demonstrate
its scalability.

In Scenario 1 we extract all flights from Frankfurt Airport to London Heathrow
Airport, which were 36 flights on the day we performed the test. Requiring to load
multiple pages, this test took 17 seconds on average. In Fig. 6a we show the time spent in
different of PEACE modules; the initialization of the event detector (EDT), performing
the OXPATH query, forwarding the events to the buffer (Event Buffer Maintenance), and
processing the BICEPL programs. OXPATH dominates the complex event processor

with about 96,7% of the time needed to perform one processing step. As OXPATH
spends 98% of its time in browser overhead [11], PEACE is dominated by browser
overhead as well.

12000 Experiment 1
Experiment 2
Experiment 3

ms
#Events[100]

8000

10000
Experiment 3

Event Occurrences

4000

6000

OXPath: 96 7% OXPath: 97 8%

0

2000

5 10 15 20 25 30 35 40 45 50 55 60 65

OXPath: 96,7%
Event Buffer Maintenance: 2,8%
BiCEPS: 0,4%
EDT Initialization: 0,1%

OXPath: 97,8%
Event Buffer Maintenance: 1,1%
BiCEPS: 1%
EDT Initialization: 0,1% s[1000]

b) Scenario 2 c) Scenario 3a) Scenario 1

Fig. 6: Profiling PEACE components.

In Scenario 2 we increase the number of extracted and processed events to esti-
mate the behaviour of the system when scaling up. We extracted all 1680 flight arrivals
at London Heathrow Airport. As shown in Fig. 6b OXPATH dominates PEACE with
97,8% even stronger, as initialization overhead becomes less important.

In Scenario 3 we performed a stress test on BICEPL’s complex event processor to
show the scaling behaviour of the complex event processor. To significantly increase
the number of events, we would have to deploy a multitude of OXPATH wrappers.
Therefore, we perform three experiments: Experiment 1 involves 5 subscribed event
classes and 3 complex classes, each producing 10.000 events per hour. In Experiment
2, we add 2 more complex classes, and in Experiment 3 we use 2 complex classes and
another complex class atop the former two. Fig. 6c shows the performance curve in
milliseconds per processing step, and the number of subscribed events present in the
repository (in hundreds, the same in all three experiments). All complex events include
on-time, late, retroactive change, and revoke event publication statements. As Fig. 6c
shows, the runtime of the complex event processor increases with the number of events
in the repository. Keeping the number of event occurrences in the repository constant,
also the time needed for processing steps remains constant. Due to lifespan specifica-
tions of subscribed events and the subsequent purging of old events the processing time
can be capped together with the number of events in the repository. In the three experi-
ments the database size was bounded by 165 MB, 221 MB, and 158 MB, respectively.

7 Conclusion

We have presented PEACE as an integrated framework to extract and process event
announcements on the web. PEACE relies on a bitemporal event model which sup-
ports BICEPL, a compact language for complex event processing, and an efficiently

implementable semantics, requiring limited buffering only. We are currently expanding
BICEPL with action executors to react on occurring complex events. Furthermore, we
will evaluate PEACE on mobile devices, e.g., tablet-computers or smartphones.

References

1. Adaikkalavan, R., Chakravarthy, S.: SnoopIB: Interval-based event specification and detec-
tion for active databases. Data Knowl. Eng. 59 (2006)

2. Adi, A., Etzion, O.: Amit - the situation manager. VLDB J. 13 (2004)
3. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26 (1983)
4. Bai, Y., Thakkar, H., Wang, H., Luo, C., Zaniolo, C.: A data stream language and system

designed for power and extensibility. In: CIKM. (2006)
5. Boettcher, A., Lee, D.: EventRadar: A real-time local event detection scheme using twitter

stream. In: GreenCom. (2012)
6. Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: A scalable continuous query system

for internet databases. In: SIGMOD Conference. (2000)
7. Cugola, G., Margara, A.: TESLA: a formally defined event specification language. In:

DEBS. (2010)
8. Cugola, G., Margara, A.: Processing flows of information: From data stream to complex

event processing. ACM Comput. Surv. 44 (2012)
9. Demers, A.J., Gehrke, J., Panda, B., Riedewald, M., Sharma, V., White, W.M.: Cayuga: A

general purpose event monitoring system. In: CIDR. (2007)
10. Eckert, M., Bry, F.: Rule-based composite event queries: the language XChangeEQ and its

semantics. Knowl. Inf. Syst. 25 (2010)
11. Furche, T., Gottlob, G., Grasso, G., Schallhart, C., Sellers, A.: OXPath: A Language for

Scalable Data Extraction, Automation, and Crawling on the Deep Web. VLDB Journal
(2013)

12. Gehani, N.H., Jagadish, H.V.: Ode as an active database: Constraints and triggers. In: VLDB.
(1991)

13. Ilina, E., Hauff, C., Celik, I., Abel, F., Houben, G.J.: Social event detection on twitter. In:
ICWE. (2012)

14. Kowalski, R.A., Sergot, M.J.: A logic-based calculus of events. New Generation Comput. 4
(1986)

15. Kranzdorf, J., Sellers, A., Grasso, G., Schallhart, C., Furche, T. In: Proc. of WWW
16. Liu, L., Pu, C., Tang, W.: Continual queries for internet scale event-driven information

delivery. IEEE Trans. Knowl. Data Eng. 11 (1999)
17. Luckham, D.: Event Processing for Business. John Wiley & Sons, Inc., Hoboken, New

Jersey (2012)
18. Luckham, D.C.: Rapide: A language and toolset for causal event modeling of distributed

system architectures. In: WWCA. (1998)
19. Mareco, C.A., Bertossi, L.E.: Specification and implementation of temporal databases in a

bitemporal event calculus. In: ER (Workshops). (1999)
20. McCarthy, D.R., Dayal, U.: The architecture of an active data base management system. In:

SIGMOD Conference. (1989)
21. Schultz-Møller, N.P., Migliavacca, M., Pietzuch, P.R.: Distributed complex event processing

with query rewriting. In: DEBS. (2009)
22. Sripada, S.M.: A logical framework for temporal deductive databases. In: VLDB. (1988)
23. Wieringa, R.: Design methods for reactive systems - Yourdon, Statemate, and the UML.

Morgan Kaufmann (2003)

A Proof of Theorem 1

Proof. We need to show that

JEKpurge (Oi, ti,Oi−1, ti−1) = JEK(Oi, ti,Oi−1, ti−1)

holds, if conditions (A1-2) and (B1-2) are met. Following the notation in Section 5,
we have JEK(Oi, ti,Oi−1, ti−1) = compare(Di,Di−1). Analogously, for the purged case,
with OP

i = purge(Oi, ti−1) and OP
i−1 = purge(Oi−1, ti−1), and with DP

i = derive(OP
i , ti)

and DP
i−1 = derive(OP

i , ti−1), we obtain JEKpurge (Oi, ti,Oi−1, ti−1)= compare(DP
i ,D

P
i−1).

Thus, we rewrite the theorem statement as

compare(DP
i ,D

P
i−1) = compare(Di,Di−1) .

Since (A1) allows only monotone queries C.query(O,D, t) for complex event types
C ∈ C, derive(Oi, ti) is monotone with derive(O, t) ⊆ derive(O′, t) for all O ⊆ O′. In
particular, because of OP

i ⊆Oi, we have DP
i = derive(OP

i , ti)⊆ derive(Oi, ti) = Di for all
i≥ 0. Further, to show c∈DP

i , it suffices to show f ∈OP
i for all constituent events f ⊂ c,

as additional events cannot invalidate c. Since (A2) requires e.class.key ⊆ c.class.key
for all constituent events e ⊂ c, each complex event c identifies its constituent events
e⊂ c, i.e., no other constituent set can support the same complex event.

To show the theorem, we distinguish changing, newly announced, revoked, and un-
changing events. In the first three cases, we show that the relevant complex events are
not purged. In case of unchanging events, we show that PEACE purges the complex
event eventually without emitting publication events.

Changing events. A complex event c changes into c′, if c ∈ Di−1 and c′ ∈ Di with
c 6= c′ but c.key = c′.key. For equivalence in case of changing events, we need to show
c ∈ DP

i−1 and c′ ∈ DP
i . Since c 6= c′, some constituent event e ⊂ c must have changed

into e′. We obtain for all constituent events f ⊂ c

f .expiration ≥ c.expiration
≥ e.occ+ e.class.lifespan
≥ e′.det= ti .

The first two inequalities hold by definition (see the discussion before Theorem 1), and
the third one holds by (B1). Thus, no constituent event f ⊂ c is purged at time ti−1 < ti;
all are kept either unchanged or updated, leading to c ∈ DP

i−1 and c′ ∈ DP
i , as claimed.

Announcing events. A complex event c′ ∈ Di is announced, if there exists no c ∈
Di−1 with c.key= c′.key. Thus, at least one constituent event e′⊂ c′ has been announced
or updated at ti, now forming with other events a constituent set for c′. Because of (B2),
all constituent events must share an overlapping lifespan, and hence none of them can
be purged before ti, when the constituent is formed for the first time. Thus for all f ′⊂ c′,
we find f ′ ∈ OP

i and hence c′ ∈ DP
i .

Revoking events. A complex event c ∈ Di−1 is revoked, if there exists no c′ ∈ Di
with c.key = c′.key. Since c is revoked, there must be a constituent event e ⊂ c which
has been revoked or updated at ti such that c has no constituent set anymore. Because of
(B1), f .expiration ≥ ti (as in case of changing events) for all constituent events f ⊂ c,
and hence none of them can be purged before ti, leading to c ∈ DP

i−1, as required.

Unchanging events. If an event c remains unchanged with c ∈Di−1 and c ∈Di, we
show that either (i) c ∈ DP

i−1 and c ∈ DP
i holds, or (ii) c′ 6∈ DP

i−1 and c′ 6∈ DP
i for any

c′ with c′.key = c.key: For case (i), assume c ∈ DP
i−1. Then f .expiration ≥ ti−1 for all

constituent events f ⊂ c. Since we compute OP
i with OP

i = purge(Oi, ti−1), we obtain
f ∈ OP

i , implying c ∈ DP
i . Now for (ii), assume c 6∈ DP

i−1. Then, at least one constituent
event f ⊂ c has been purged already at ti−1 with f 6∈ OP

i−1. This constituent event f
remains purged at ti, hence f 6∈ OP

i and thus c 6∈ DP
i . ut

