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Abstract. A direct search method for nonlinear optimization problems with nonlinear inequality constraints is
presented. A filter based approach is used, which allows infeasible starting points. The constraints are assumed
to be continuously differentiable, and approximations to the constraint gradients are used. For simplicity it is
assumed that the active constraint normals are linearly independent at all points of interest on the boundary of
the feasible region. An infinite sequence of iterates is generated, some of which are surrounded by sets of points
called bent frames. An infinite subsequence of these iterates is identified, and its convergence properties are
studied by applying Clarke’s non-smooth calculus to the bent frames. It is shown that each cluster point of this
subsequence is a Karush-Kuhn-Tucker point of the optimization problem under mild conditions which include
strict differentiability of the objective function at each cluster point. This permits the objective function to be
non-smooth, infinite, or undefined away from these cluster points. When the objective function is only locally
Lipschitz at these cluster points it is shown that certain directions still have interesting properties at these cluster
points.

Keywords: derivative free optimization, positive basis methods, non-smooth convergence analysis, frame based
methods, filter

1. Introduction

Many approaches have been proposed which address the problem of minimizing a nonlinear
objective function subject to nonlinear constraints. The great majority of these approaches
make use of the gradients of the objective and constraint functions. Herein we are interested
in methods which do not use or approximate the objective function’s gradient, and which
only require approximations to the constraint functions’ gradients. A number of approaches
suggest themselves such as simulated annealing, and genetic and evolutionary algorithms
(see e.g., Jenkins, 2002; Kim and Myung, 1996; Peng et al., 1998). Other possibilities also
exist. For example, one could perform successive minimizations of a quadratic penalty
function using a derivative free unconstrained optimization algorithm. More sophisticated
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approaches which are provably convergent have been examined by several authors (Audet
and Dennis, 2003; Lewis and Torczon, 2002; Lucidi et al., 2002; Yu and Li, 1981).

Lewis and Torczon (2002) make use of existing theory by using an augmented Lagrangian
approach which does not require objective or constraint gradients. Each augmented La-
grangian is minimized using the derivative free generalized pattern search method for bound
constrained optimization described in Lewis and Torczon (1999). Use of the Hestenes–
Powell formula (Hestenes, 1969; Powell) (see also Fletcher (1987), p. 291) allows the
Lagrange multipliers and penalty parameters to be updated without using or estimating
derivatives. Lewis and Torczon show that the method is convergent.

Yu and Li (1981) and Lucidi et al. (2002) propose methods which require constraint
gradients, but not the gradient of the objective function. Both consider only inequality
constraints, and generate sequences of iterates that are feasible. At each iterate search
directions are formed, where the non-negative linear combinations of these search directions
span an appropriate cone of feasible directions. Steps along these search directions may
give rise to infeasible points. When this occurs feasibility is regained through correction
steps (Yu and Li, 1981) or use of search arcs (Lucidi et al., 2002) tangential to the search
directions at the current iterate. A step along each search direction in turn is tried until a
point of sufficient descent is located. Each method uses a different measure of sufficient
descent: Lucidi et al. (2002) requires a decrease proportional to the square of a step length
parameter, whereas (Yu and Li, 1981) require a fixed decrease. In Lucidi et al. (2002) each
feasible search arc has its own step length parameter, and each unsuccessful step reduces
that arc’s step length parameter. In contrast, (Yu and Li, 1981) uses the same step length
parameter for all search steps, and reduces it only after all search steps are unsuccessful.
Both Lucidi et al. (2002) and Yu and Li (1981) demonstrate convergence, with (Yu and Li,
1981) making the simplifying assumption of linearly independent active constraint normals.

Audet and Dennis (2003) describe an extension of generalized pattern search
(Torczon, 1987) which uses filters (Fletcher and Leyffer, 2002; Fletcher et al., 2002) to
adjudicate between the two aims of minimizing the objective function and minimizing a
measure of infeasibility. The use of filters allows (Audet and Dennis, 2003) to consider
infeasible points. Loosely speaking, a filter is a finite set of points, none of which is better
than any other in both objective function value and constraint violation. An iteration of an
algorithm could, for example, select a filter point and generate a new point using a local
model of the problem around that filter point. This new point would be rejected by the filter
if some existing filter point is better than it. Otherwise it would be accepted, and added
to the filter. In contrast a more traditional approach would accept the new point only if it
was better than the selected filter point. The filter approach gives an algorithm much more
freedom to advance one of the two aims (reducing f and reducing the constraint violation)
at the expense of the other. The choice of model would be required to ensure that eventually
better points were generated.

This method (Audet and Dennis, 2003) retains the way that generalized pattern search
chooses search directions: a finite set D of search directions is selected before the first
iteration, and a subset of these directions is used at each iteration. The set D is required to
possess the property that the number of distinct linear combinations of members of D with
non-negative integer coefficients is finite in any bounded region of Rn . Audet and Dennis
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(2003) analyse this method using the non-smooth calculus of Clarke (1990), and show that a
subsequence of iterates converges to one or more Karush-Kuhn-Tucker points of a problem
related to the original problem. This situation is not ideal, and is caused by the fact that
at each iteration, the method draws the search directions from a finite set of directions D
which is fixed for all iterations. Hence the method can only generate a finite number of
different cones of directions by taking non-negative linear combinations of subsets of the
search directions. If the cone of feasible directions at a solution of the original problem
is not one of the cones (Audet and Dennis, 2003) can generate using D, then (Audet and
Dennis, 2003) must use an approximation, and so no longer solves the original problem.

The approach taken herein is to use filters, but we wish to avoid being restricted to a
finite set of search directions. This means the property that non-negative integer sums of the
search directions can only reach a finite number of points in any bounded region is lost. It is
replaced with a sufficient descent condition (Price and Coope, 2003) in order to retain the
desired convergence properties. Hence the concept of an envelope (Fletcher and Leyffer,
2002) around a filter is employed, which serves as a measure of sufficient descent for
filter based methods. In order to ensure convergence the algorithm is structured in terms of
frames (Coope and Price, 2000; Price and Coope, 2003a, 2003b), and incorporates elements
of the feasible correction step ideas from Lucidi et al. (2002) and Yu and Li (1981) to deal
with constraint curvature. Hence, like (Lucidi et al., 2002; Yu and Li, 1981), we consider
only inequality constraints. For simplicity we follow (Yu and Li, 1981) and assume that the
active constraints’ normals are linearly independent at all points of interest on the boundary
of the feasible region.

The optimization problem may be concisely expressed as

min
x∈Rn

f (x) subject to ci (x) ≤ 0 ∀ i = 1, . . . , q. (1)

The feasible region � is the set of points in Rn for which c(x) ≤ 0, where c(x) is the vector
of constraint functions [c1(x), . . . , cq (x)]T . All constraint functions ci are assumed to be
continuously differentiable, but their gradients are not assumed to be available. Here f
takes values in R ∪ {+∞}. The analysis assumes f is locally Lipschitz at some points, and
later also assumes strict differentiability at these points. Estimates of the objective function
gradient are not formed. The algorithm generates a sequence of iterates {x (k)}∞k=1, some of
which may be infeasible. Each iteration may require estimates of the constraint gradients at
one prospective iterate x (k)

c . A subsequence of iterates is identified, and the cluster points of
this subsequence are shown to be Karush-Kuhn-Tucker (KKT) points of (1) under various
conditions. The cases when the objective function is strictly differentiable (Clarke, 1990)
at these cluster points, or merely locally Lipschitz are analysed. In the former case it is
shown that no feasible direction exists with a negative directional derivative for f when f
is strictly differentiable at a cluster point, and that this cluster point is a KKT point under
standard conditions. In the latter case we show that the objective function has interesting
properties in some directions. These cases are interesting because they permit the objective
function to be non-smooth, infinite, or undefined at points away from these cluster points.
For later convenience, when f is undefined at a point it is assigned the value infinity at that
point.
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1.1. Filters

Here we use the standard multiobjective notation for filters (see e.g., Audet and Dennis,
2003), which differs slightly from that of Fletcher and Leyffer (2002). A filter approach
compares the merits of various points on the basis of objective function value and size of
the constraint violations. The latter is measured by the constraint violation function h(x),
where

h = ‖[c(x)]+‖2. (2)

If two points x1 and x2 are related by f (x1) ≤ f (x2) and h(x1) ≤ h(x2) with at least one
inequality being strict, then x1 is clearly superior to x2. In such cases x1 is said to dominate
x2 and this is written concisely as x1 ≺ x2. The notation x1 � x2 is similar, but includes
the case when neither inequality is strict. For convenience ‘≺’ and ‘�’ have been defined
as relations between points in Rn rather that between pairs of values ( f (x), h(x)).

A filter is a finite set of points F such that:

F1: no pair of points x1 and x2 in the filter satisfy x1 ≺ x2; and
F2: h(x) ≤ hmax for all x ∈ F .

Here we have departed somewhat from Fletcher and Leyffer (2002) in that feasible points
have been directly included in the filter. A point x1 is said to be filtered if either x2 � x1

for some x2 ∈ F , or if h(x1) > hmax. From time to time we shall speak loosely of a pair
of values ( f0, h0) being filtered. This means that there is a point x in the filter for which
f (x) ≤ f0 and h(x) ≤ h0.

We define the most nearly feasible filter point y(k) as the point y(k) ∈ F (k) such that
h(y(k)) ≤ h(x) holds for each x ∈ F (k). Clearly y(k) need not be unique, but there is no loss
of generality in choosing y(k) arbitrarily when there is more than one most nearly feasible
filter point. Note that y(k) may actually be feasible.

Following Fletcher and Leyffer (2002) and Fletcher et al. (2002) we construct an envelope
E (k) around the filter F (k). This envelope is defined using two positive constants: ε(k) and
τ (k). The set E (k) contains all infeasible points x1 such that f (x2) ≤ f (x1) + ε(k) and
h(x2) < h(x1) + τ (k) for some x2 ∈ F (k). The set E (k) also contains every feasible point x1

satisfying f (x1) ≥ f (y) − ε(k) for some y ∈ F (k) ∩ �, with the convention that f (y) = ∞
if F (k) ∩ � is empty. For convenience any such point which is contained in the envelope
E (k) is said to be envelope filtered, or E (k)-filtered.

2. The algorithm

The idea behind the algorithm is to generate an infinite sequence of structures called frames.
Loosely speaking, the points in a frame surround a point called the frame centre. Each frame
is defined by its frame centre x (k)

c , a frame size δ(k), and a positive basis V (k)
+ . The latter

may be defined in terms of positive spanning sets, which are finite sets of vectors whose
linear combinations with non-negative coefficients span Rn . If a positive spanning set has
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the additional property that no proper subset of it is also a positive spanning set, then it is
also a positive basis (Davis, 1954). A frame is the set of points

�
(
x (k)

c , δ(k);V (k)
+

) = {
x (k)

c + δ(k)v : v ∈ V (k)
+

}
. (3)

Due to the fact that filters treat points somewhat discontinuously, it may be necessary
to ‘bend’ some frames out of shape in order to more closely match the local constraint
geometry. This is achieved by ‘warping’ the directions in V (k)

+ , yielding a ‘bent’ positive
basis B(k)

+ . The resultant set of points �(x (k)
c , δ(k);B(k)

+ ) is called a bent frame. The notation
�(xc, δ;V+) is used in other papers explicitly for frames. Herein it is extended to include
the case when V+ is any finite set of directions, and such �(xc, δ;V+) are called sampling
sets.

The convergence properties depend on a type of frame called an envelope filtered bent
frame. These are bent frames for which every point is E (k)-filtered, and the frame centre is
not filtered by F (k). Their significance is most easily illustrated in the (forbidden) limiting
case when ε = τ = 0. In this case each bent frame point x ∈ �(x (k)

c , δ(k);B(k)
+ ) must satisfy

either f (x) ≥ f (x (k)
c ) or h(x) > h(x (k)

c ). The frames are bent in order to eliminate the latter
possibility. Hence the finite difference estimate f (x) − f (x (k)

c ) of the directional derivative
(x − x (k)

c )T ∇ f (x (k)
c ) is non-negative for each such x .

Guaranteed convergence is obtained by first showing that the subsequence of these en-
velope filtered bent frames is infinite. Then, taking limits we are able to show certain
directional derivatives of f are non-negative at cluster points of these bent frame centres.
The bent positive bases are aligned so that they take into account the geometry of any
nearby constraints. This alignment, standard assumptions on the constraint gradients, and
smoothness of f then establish that these cluster points are KKT points of the problem (1).

The algorithm is now formally stated, and then discussed in detail.

The algorithm

1. Initialize: set k = 1, m = 1, and choose the initial point x (0). Choose hmax > 0 and
γ > 0. Calculate F (1).

2. Choose �(m) > 0, E (m) > 0, and T (m) > 0.
3. Check stopping conditions and halt if they are satisfied.
4. Choose δ(k) ≥ �(m), ε(k) ≥ E (m), and τ (k) ≥ T (m).
5. Execute any finite process which either

(a) generates an iterate x (k) such that x (k) is not an E (k)-filtered point; or

(b) generates an E (k)-filtered sampling set �(x (k)
c , δ(k);S (k)), where B(k)

+ ⊆ S (k), and
where no point in F (k) dominates x (k)

c . Set z(m) = x (k)
c , δ(m)

z = δ(k), ε(m)
z = ε(k),

τ (m)
z = τ (k), and S (m)

z = S (k).

6. Update F (k) to get F (k+1).
7. If x (k) is not E (k)-filtered, increment k and go to Step 3, otherwise increment m and k,

and go to Step 2.
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The algorithm consists of two nested loops. Each iteration of the outer loop (Steps 2–7)
generates an envelope filtered bent frame. Each iteration of the inner loop (Steps 3–7) either
generates a point which is not envelope filtered, or generates an envelope filtered bent frame.
Iterations of the inner loop are performed until this latter event occurs.

Each iteration of the outer loop selects positive minimum values �(m), E (m), and T (m) for
the frame size δ(k), and envelope parameters ε(k) and τ (k). These minimum values ensure
that each iteration of the outer loop (and hence each execution of the inner loop) is a finite
process provided the sequence of function values { f (k)} is bounded below.

At iteration k of the inner loop, values for δ(k), ε(k), and τ (k) are chosen which meet or
exceed their preselected minimum values. The algorithm then tries to find one or more
points which are not E (k)-filtered by calculating f and h at a finite number of arbitrary
points. If successful, x (k) is chosen as a non envelope filtered point, the filter is updated,
and a new inner loop iteration is begun. Otherwise a working set of constraints indexed
by W (k) is identified and a bent frame centre x (k)

c is chosen. The centre x (k)
c must not be

dominated by any point in the filter F (k). A bent frame around x (k)
c is then constructed,

and the values of f and h are calculated at each bent frame point. The orientation and
shape of this bent frame are chosen to reflect the local geometry of constraints indexed by
W (k). This bent frame either contains a point which is not envelope filtered, or the entire
frame is envelope filtered. In the former case x (k) is chosen as a non envelope filtered point,
the filter is updated, and a new iteration of the inner loop is begun. In the latter case this
execution of the inner loop terminates, having achieved its purpose. The bent frame centre
x (k)

c becomes both x (k) and the next member of the sequence {z(m)} of envelope filtered
bent frame centres (or, more simply, envelope filtered centres). The sequence {z(m)} is vital
because the convergence theory shows that this sequence is infinite, and the cluster points
of {z(m)} are solutions of (1). The convergence theory is silent on the subsequence of non
envelope filtered iterates.

Each iteration the filter is updated. This is done by first augmenting F (k) with some or all
of the points at which f and h were calculated, including x (k). Then, all points in the filter
which are dominated by another filter point are deleted. Finally, points for which h exceeds
hmax are also deleted from the filter. This yields F (k+1).

Step 5 permits a finite number of arbitrary points to be examined at each iteration. This
would allow the algorithm, for example, to try a quasi-Newton step, points selected by a
heuristic, or even randomly selected points. In Step 5(b) various quantities are relabelled for
use in the convergence analysis. The ‘z’ subscript indicates that these quantities correspond
directly to the members of the subsequence {z(m)}. These relabelled quantities are not needed
to implement the algorithm.

The z(m) have their own separate counter m. This counter is linked to the iteration counter
k via the function k = k(m), which gives the iteration number in which the mth envelope
filtered centre was found. Certain quantities (such as the W (k)) need only be defined when
a bent frame centre x (k)

c is selected. Hence the members of the sequences {x (k)
c }, {W (k)},

{V (k)
+ }, and {B(k)

+ }, amongst others, are not defined for all values of k. Any reference to these
sequences or their members is understood to implicitly restrict k to the range of values
for which x (k)

c have been selected. In particular, x (k)
c are defined for all iteration numbers

k = k(m) in which an envelope filtered centre z(m) is found.
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When no feasible point is known, one would normally make gaining feasibility the
primary aim by choosing x (k)

c to be the most nearly feasible point y(k) in F (k) at each
iteration. Once feasibility has been achieved, selecting each x (k)

c so that h(x (k)
c ) is either

small or zero would ensure that feasibility is retained. The constant γ is used to determine
which points are near the boundary of �. Specifically, if the maximum of the constraint
values at a point x is at least −γ and h(x) ≤ γ , then x is regarded as near the boundary of
�. In practice the constants hmax and γ can be adjusted a finite number of times as long as
they always remain positive.

The filter approach requires that, at each point x near the boundary ∂� of the feasible
region, a direction wd (x) along which h is decreasing can be constructed. This direction is
used to warp the members of V (k)

+ to yield B(k)
+ . This warping is needed because h is not

smooth on ∂�. Accordingly, at points far from ∂� there is no need to warp V (k)
+ , and wd

need not be formed. There are two possibilities when far from ∂�: the algorithm is either
looking at points deep in the interior of �, or at points far away from �. In the first case the
algorithm is acting as an unconstrained algorithm. In the second the algorithm is primarily
attempting to reduce h in an area where it is smooth, with reducing f as a secondary aim.
In the latter case convergence to an infeasible point is clearly possible. Guaranteeing an
algorithm does not converge to such a point is a global optimization problem, and, as such,
is outside the scope of this paper.

The use of the 2-norm in (2) is preferred because it is smooth everywhere except at
the boundary ∂� of �. In contrast norms such as the 1-norm and ∞-norm are also non-
smooth at infeasible points. Following Yu and Li (1981) we assume that the active constraint
gradients are linearly independent at every point of interest on the boundary ∂� of �. This
assumption guarantees the construction of a descent direction wd for h at points near ∂�.

The next section examines cones of feasible directions at limit points z∗ of the sequence
{z(m)}. First the case when z∗ is an interior point of � is discussed, partially in the context of
unconstrained optimization. This allows many of the ideas central to frame-based algorithms
to be explored. Cones of feasible directions at boundary points are then looked at, and a
method of construction for sets of generators of these cones is given. For simplicity, much
of Section 3 (only) restricts attention to C1 objective functions. Section 4 describes how
these sets of generators can be used to construct bent frames which adequately conform to
the local constraint geometry. Section 5 analyses the algorithm’s convergence properties.
Concluding remarks are made in Section 6.

3. Tangent cones and generators

We wish to generate an infinite sequence of envelope filtered centres whose cluster point(s)
have non-negative directional derivatives for f along all feasible directions. This means we
must examine all feasible directions at each cluster point z∗ of this sequence. For z∗ in the
interior of � the set of feasible directions is all directions, whereas for z∗ on the boundary
of � it is all directions in the tangent cone T (z∗) of � at z∗ (Clarke, 1990). The set of
feasible directions is examined using a finite set of directions whose non-negative linear
combinations span the set of feasible directions. In the case when z∗ is an interior point any
positive basis will suffice as this finite set of directions. When z∗ is a boundary point this
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finite set of directions is partially defined by the active constraints at z∗. In either case the
directions in this finite set are the limits of those in {S (m)

z }. Hence bent positive bases for
frames near ∂� must be aligned with nearby constraints. This section discusses how this
alignment is achieved. For convenience we focus attention on a single cluster point of the
sequence of envelope filtered centres. If necessary this is done by replacing the sequence
of envelope filtered centres with an appropriate infinite subsequence of itself.

3.1. Interior cluster points

The case when z∗ is an interior point of � is looked at in this subsection. The discussion is
partly in terms of an unconstrained direct search algorithm (Coope and Price, 2000), as this
illustrates many of the key ideas of frame-based methods. We look at f along a finite set
of directions {v1, . . . , vp} which form a positive basis. Positive bases are useful because if
vT

j ∇ f (z∗) ≥ 0 for all j = 1, . . . , p and f is C1, then vT ∇ f (z∗) ≥ 0 for all v ∈ Rn , and
so ∇ f (z∗) must be zero. In practice we estimate each vT

j ∇ f at an approximation x (k)
c to z∗

by using the finite differences

f
(
x (k)

c + δ(k)v j
) − f (k)

c j = 1, . . . , p,

where f (k)
c = f (x (k)

c ) and δ(k) > 0.
An unconstrained algorithm (Coope and Price, 2000) would be required to generate an

infinite sequence of ‘quasi-minimal’ frames. The notion of quasi-minimality is the uncon-
strained equivalent of envelope filtered. A frame is quasi-minimal if and only if

f
(
x (k)

c + δ(k)v
) + ε(k) ≥ f (k)

c ∀ v ∈ V (k)
+ (4)

where ε(k) is the positive constant used to define the envelope E (k), and ε(k) is chosen at the
start of the kth iteration. The sequences {δ(k)} and {ε(k)} are both required to converge to
zero as k → ∞, with {ε(k)} converging faster than {δ(k)} (i.e. ε(k)/δ(k) → 0 as k → ∞).

The importance of a sequence of quasi-minimal frames can most easily be seen by
assuming that all V (k)

+ are identical. Equation (4) then yields

f
(
x (k)

c + δ(k)v
) − f (k)

c

δ(k)
+ ε(k)

δ(k)
≥ 0 ∀v ∈ V (k)

+ . (5)

In the limit k → ∞ this gives vT ∇ f (z∗) ≥ 0 for all v in V (k)
+ . Thus, if f is C1 then z∗ must

be a stationary point of f .
In practice using the same positive basis for all V (k)

+ leads to an unacceptable loss of
flexibility. Instead, the sequence of positive bases {V (k)

+ } is forbidden to collapse in the limit
k → ∞. That is to say, the limits of this sequence of positive bases must also be positive
bases. More precisely, each V (k)

+ is regarded as an ordered set, and limits of the sequence
{V (k)

+ } are defined as follows.
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Definition 3.1. A set of vectors V∗
+ = {v∗

1 , . . . , v
∗
p} is a limit of the sequence of sets of

vectors {V (k)
+ }∞k=1 if and only if there exists an infinite subset K of positive integers such that

V (k)
+ has cardinality p for all k ∈ K; and

lim
k→∞

v
(k)
j = v∗

j ∀ j = 1, . . . , p

where the limit is over values of k in K.

The existence of limits for the sequence {V (k)
+ } is guaranteed by imposing an upper bound

K on the length of every member of every V (k)
+ . The cardinality of each positive basis is

at least n + 1 and at most 2n (Davis, 1954). Hence infinite subsequences of positive bases
of the same cardinality must exist. The upper bound K ensures these subsequences have
limits.

An appropriate choice (Coope and Price, 2000; Price and Coope, 2003) of the method by
which the V (k)

+ are generated ensures that the limits of {V (k)
+ } are positive bases for Rn . By

considering subsequences if necessary, if V (k)
+ → V∗

+ and x (k)
c → z∗ as k → ∞ then Eq. (5)

ensures that the directional derivatives of a C1 function f at z∗ along each member of V∗
+

are non-negative. Since V∗
+ is a positive basis, the only possibility is that ∇ f (z∗) = 0.

3.2. Boundary and infeasible cluster points

We take an approach similar to that in the previous subsection when z∗ lies on the boundary
of �. In this case, the tangent cone T (z∗) is no longer equal to Rn . A first order constraint
qualification is required if the tangent cone is to be written in terms of the constraint
gradients. Herein the following assumption is used.

Assumption 3.1. At each point x on the boundary of �, the gradients of the constraints
active at x are linearly independent.

Clearly this can be relaxed at points far away from all points considered by the algorithm.
Using this first order constraint qualification, the tangent cone at z∗ may be expressed as

T (z∗) = {v : vT ∇ci (z
∗) ≤ 0 ∀ i such that ci (z

∗) = 0}.

This definition can not be used directly for several reasons. First z∗ is unknown, only
estimates of it are available. Second, the active set at z∗ is not always obvious. Last, only
estimates a(k)

i of the gradients ∇ci (x (k)
c ) may be available. Hence, whether or not exact

constraint gradient information is available, the tangent cones at boundary points of interest
must be estimated. We construct an estimate C (k)(W ) of the tangent cone T (z∗) at each
iterate as follows:

C (k)(W ) = {
v : vT a(k)

i ≤ 0 ∀ i ∈ W
}
. (6)
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The construction used for C (k)(W ) has the property that it also implicitly constructs each
cone C (k)(W1), where W1 ⊆ W . This means that one does not have to exactly determine
the set of indices W ∗ of the active constraints at z∗; a superset of W ∗ will do provided the
estimated constraint normals of this superset are linearly independent.

We require that the estimated tangent cone C (k)(W ∗) converge to T (z∗) in the limit
k → ∞. This requires that the errors in the estimated constraint gradients go to zero as
k → ∞. Accordingly, the maximum error Lk between the actual and estimated gradients
at x (k)

c is defined as

Lk = max
{∥∥a(k)

i − ∇ci
(
x (k)

c

)∥∥ : i ∈ W (k)
}
,

and the following assumption is made.

Assumption 3.2. The errors in the gradient estimates go to zero in the limit k → ∞, that
is to say limk→∞ Lk = 0.

When x (k)
c is near the boundary of �, the set W (k) must index all constraints which are

maximal at x (k)
c , or nearly so. For a preselected constant γ > 0, if h(x) ≤ γ then

∀ i = 1, . . . , q, ci
(
x (k)

c

) ≥ −γ ⇒ i ∈ W (k). (7)

If h > γ then the empty set can always be used for W (k). The reasoning behind (7) is as
follows: if h is large (i.e. greater than γ ) then h(x) is smooth near x (k)

c and there are no kinks
along which one must align the positive bases. If h is not large, then the positive bases are
aligned with all constraints which are within γ of being active.

Assumption 3.1 allows γ to be defined implicitly. To do this first list the constraints in
increasing order of |ci (x (k)

c )|, and then add constraints to W (k) in that order, starting with
W (k) as the empty set. One stops adding constraints when adding one more constraint to
W (k) would make the set {a(k)

i : i ∈ W (k)} linearly dependent. In practice, one would choose
a value for γ , and use the above construction only when h ≤ γ . In this case one would only
need to apply the above construction to the subset of constraints for which |ci (x (k)

c )| ≤ γ .
Constraints not satisfying (7) may also be included in W (k), provided the corresponding set
of constraint normals A(k) = {a(k)

i : i ∈ W (k)} remains linearly independent.
The C1 nature of the constraints means that if some subsequence of {x (k)

c } converges to
z∗, then, for k large, each corresponding W (k) contains the active set at z∗. This follows
from Assumption 3.1 and from (7) on noting ci (z∗) = 0 for all i in W ∗.

The tangent cone at any feasible point near x (k)
c is defined by some subset of the constraints

in the working set W (k). Each cone of the form C (k)(W ) is a polyhedral cone and hence
(Theorem 4.18 of van Tiel (1984)) can be written as the non-negative combinations of a
finite number of vectors:

∃v1, . . . , vp such that C (k)(W ) =
{

p∑
j=1

η jv j : η j ≥ 0 ∀ j

}
. (8)
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The vectors v1, . . . , vp are often referred to as a set of generators of the cone C (k)(W ).
Sets of generators are extremely useful. If f is C1 and if ∇ f T v j ≥ 0 for each generator

v j , then ∇ f T v ≥ 0 for all v in the cone C (k)(W ). This follows from the non-negativity
of each η j in (8) and the linearity of vT ∇ f in v. Thus we only need to consider sets of
generators, not the cones themselves.

Sets of generators are needed for every cone C (k)(W ) for which W ⊆ W (k). Their con-
struction is the subject of the following subsection. For judicious choices of these sets of
generators it turns out that they have many members in common, and their union V (k)

+ can be
a fairly small positive spanning set for Rn . When the working set A(k) = {a(k)

i : i ∈ W (k)}
of estimated constraint normals is linearly independent, this union V (k)

+ is a positive basis
for Rn , and hence (Davis, 1954) has at most 2n members. Any positive basis (or positive
spanning set) which contains a set of generators for each cone C (k)(W ), W ⊆ W (k), is said
to be aligned with the working set W (k) at iteration k.

3.3. Constructing sets of generators

An aligned positive basis for the working set W (k) at x (k)
c is constructed in two parts: one

each for the subspace containing the members of A(k) = {a(k)
i : i ∈ W (k)} and for the

subspace orthogonal to the members of A(k). For notational simplicity assume that W (k) =
{1, . . . , 
}. Let S(k) = [s(k)

1 . . . s(k)
n ] be any invertible matrix satisfying (S(k))T a(k)

i = ei , where
s(k)

1 , . . . , s(k)
n are the columns of S(k), and ei is the i th column of the identity matrix. Let U (k)

+
be a positive basis for the subspace spanned by e
+1, . . . , en . Clearly {±e1, . . . ,±e
} ∪U (k)

+
is a positive basis for Rn . Pre-multiplying by S(k) gives

V (k)
+ = {±s(k)

i : i = 1, . . . , 

} ∪ {

S(k)u : u ∈ U (k)
+

}
(9)

which is also a positive basis for Rn because S(k) is invertible. The next theorem shows that
V (k)

+ is aligned with the working set W (k) at x (k)
c .

Theorem 3.1. For each W ⊆ W (k), the set of generators

G(k)(W ) = {−s(k)
i : i ∈ W

} ∪ {±s(k)
i : i ∈ W (k) − W

} ∪ {
S(k)u : u ∈ U (k)

+
}

(10)

for the cone C (k)(W ) is contained in the positive basis V (k)
+ . Hence V (k)

+ is aligned with the
working set W (k) at x (k)

c .

Proof: Clearly G(k)(W ) ⊆ V (k)
+ for all W ⊆ W (k). Thus we need to show that each G(k)(W )

is a set of generators for the cone C (k)(W ), W ⊆ W (k). Consider an arbitrary W ⊆ W (k).
Without loss of generality let W (k) = {1, . . . , 
} and re-order the constraints in W (k) so that
W = {1, . . . , r}. To show that G(k)(W ) is a set of generators for the cone C (k)(W ), we first
note that

v ∈ C (k)(W ) ⇔ vT a(k)
i ≤ 0 ∀ i ∈ W.
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This is clearly true for all members of G(k)(W ), and so it remains to show that the members
of G(k)(W ) positively span C (k)(W ). Let v be an arbitrary member of C (k)(W ). Then

vT a(k)
i = θi ≤ 0 ∀ i ∈ W.

Using the fact that (s(k)
j )T a(k)

i = 1 when i = j and zero otherwise, it follows that

v −
∑
j∈W

θ j s
(k)
j

must lie in the null space of a(k)
i , i ∈ W . However the second and third parts of G(k)(W )

positively span this null space, so v can be expressed as a non-negative linear combination
of the members of G(k)(W ). Since W was an arbitrary subset of W (k), the positive basis V (k)

+
is aligned with W (k) at iteration k. �

We need to make sure that the limits of the sequence of positive bases {V (k)
+ } are also

positive bases. This is done in two parts. For the first part, an upper bound K is imposed on
the length of every u ∈ U (k)

+ for all values of k, where the positive constant K is independent
of k. Consider an arbitrary increasing sequence of positive integers K for which W (k) exists,
and is the same for all k ∈ K. Then the positive bases U (k)

+ , k ∈ K all positively span the
same subspace of Rn . Limits for this subsequence of U (k)

+ of positive bases are defined using
Definition 3.1. The set of all such limits for all acceptable choices of K is the set of limits
for the full sequence {U (k)

+ }∞k=1. The following assumption ensures the unconstrained parts
of V+ do not asymptotically collapse.

Assumption 3.3. All limits of the sequence of ordered positive bases {U (k)
+ } are ordered

positive bases.

This assumption can be enforced using the same techniques described in Coope and
Price (2000) and Price and Coope (2003) in an unconstrained setting.

For the second part, select an arbitrary increasing sequence of positive integers K for
which W (k) is the same for all k ∈ K, and such that the subsequences {U (k)

+ }k∈K and {x (k)
c }k∈K

have limitsU∗
+ and z∗ respectively. Then a(k)

i → ∇ci (z∗) for all i in W (k) in the limit k → ∞,
k ∈ K, by Assumption 3.2. Define limits of the subsequence of matrices {S(k)}k∈K in the
usual way using the matrix 2-norm. The set of all such limits for all acceptable choices of
K is the set of limits of the full sequence {S(k)}.

Assumption 3.4. All limits of the sequence {S(k)} are non-singular, and share a common
upper bound on their 2-norm.

The linear independence of the set of active constraint normals at z∗ ensures that this
assumption can be enforced.

Assumptions 3.3 and 3.4 ensure each limitV∗
+ of {V (k)

+ } is a positive basis. The construction
for V (k)

+ in (9) is continuous with respect to S(k) and U (k)
+ , and hence is also valid for V∗

+,
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as is Theorem 3.1. Specifically, choose K so that the subsequences {U (k)
+ }k∈K and {S(k)}k∈K

have limits U∗
+ and S∗, and all W (k) are equal for k ∈ K. Then (9) gives the limit V∗

+ of
the corresponding subsequence {V (k)

+ }k∈K when U (k)
+ and S(k) are replaced with U∗

+ and S∗

respectively. Theorem 3.1 shows V∗
+ is aligned with the superset W (k) of W ∗ at z∗, where

k ∈ K.
In addition to conditions on the sequence of ordered positive bases, the following as-

sumption is needed to establish convergence.

Assumption 3.5. The following conditions hold:

(a) The points at which f is calculated lie in a compact subset of Rn;
(b) The sequence of function values { f (k)} is bounded below;
(c) δ(k) → 0 as k → ∞; and
(d) ε(k)/δ(k) → 0 and τ (k)/δ(k) → 0 as k → ∞.

It is shown in Section 5 that part (b) of this assumption guarantees that the subsequence
{z(m)} is infinite. Part (a) then implies that this subsequence also has cluster points. Parts (c)
and (d) ensure that these cluster points have interesting properties. Satisfaction of these
latter two parts can be ensured by an appropriate implementation of the algorithm.

4. Sampling sets and bent frames

At each iteration f and h are calculated at members of a sampling set until either a point
which is not envelope filtered is found, or the sampling set is exhausted. The members of
the sampling set are expressed in the form x (k)

c + δ(k)v, where v ranges over a finite set
S (k) which contains the bent positive basis B(k)

+ . At first sight one would expect S (k) would
include all directions in the positive basis V (k)

+ , but this leads to theoretical difficulties. The
crux of these difficulties is that each envelope filtered point x (k)

c +δ(k)v provides information
which indicates that either f or h is increasing along v. The problem is most easily seen
when there is only one constraint which is strictly convex, and a(k)

1 is exact. For directions
tangential to the constraint h is increasing, and hence the fact that a sampling point is
envelope filtered conveys no information about f . Unfortunately information about f is
what we seek—not information about h.

For example let c1(x) = x2
1 + x2

2 − 9 in R2. At the point x (k) = (3, 0) we have V (k)
+ =

{±2e1, ±2e2}, with {±2e2} being the ‘U+’ part of the positive basis. The three vectors
{−2e1, ±2e2} generate the cone of feasible directions at (3, 0). Clearly h(x (k) ± 2δ(k)e2) >

h(x (k)), for any positive δ(k), and hence if the sampling set is envelope filtered it provides
information on f only in the single direction −2e1, for all sufficiently small positive δ(k).
This is clearly not sufficient to determine whether or not a feasible direction exists at (3, 0)
along which f has a negative slope.

This problem is circumvented by generating a direction w
(k)
d which is a descent direction

for each constraint in W (k) at x (k)
c . This direction is scaled to give a non-ascent step w(k)

s for
h at x (k)

c . Members of V (k)
+ are bent towards w(k)

s , yielding B(k)
+ .
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In the two dimensional example above, if w(k)
s = −e1 and δ(k) = 1, then one choice

for B(k)
+ is {−3e1, 2e2 − e1, −2e2 − e1, e1}. An envelope filtered sample set based on this

B(k)
+ would provide information about f along the first three directions in B(k)

+ . Whilst these
three directions still do not generate the tangent cone at (3, 0), they do generate a cone
much bigger than that generated by {−2e1} on its own. It is shown later that, as k → ∞,
the amount of ‘bending’ required for directions tangential or interior to ∂� goes to zero. It
is then shown that, in the limit, these directions positively span the relevant tangent cones.

Assumptions 3.1 and 3.2 guarantee that the a(k)
i are linearly independent for sufficiently

large k. If W (k) is non-empty then w
(k)
d is chosen as

w
(k)
d = −

∑
i∈W (k)

s(k)
i , (11)

otherwise w
(k)
d = 0 is used. Assumption 3.4 implies that the sequence {w(k)

d } is bounded,
and (11) gives (aT

i wd )(k) = −1 for all i ∈ W (k). When w
(k)
d is non-zero, it is scaled by a

factor λ(k) to yield a non-ascent step w(k)
s for h at x (k)

c . The factor λ(k) is chosen using a back-
tracking search. For a preselected ρ ∈ (0, 1), members of the sequence λ = 1, ρ, ρ2, . . .

are tried in that order, and the first one satisfying

h
(
x (k)

c + λδ(k)w
(k)
d

) ≤ h
(
x (k)

c

)
(12)

is accepted as λ(k), giving w(k)
s = λ(k)w

(k)
d . If no acceptable λ value is found before λ reaches

machine precision, then more accurate constraint gradient estimates are formed, and the
process is repeated. If w

(k)
d = 0 then w(k)

s = 0 is used.

Theorem 4.1.

lim inf
k→∞

∥∥w(k)
s

∥∥ > 0

where k ranges over the positive integers for which W (k) is defined and non-empty.

Proof: Assume that there exists an increasing sequence of positive integers K such that

lim
k∈K

∥∥w(k)
s

∥∥ = 0.

By replacing K with a subsequence of itself if necessary, assume that all W (k) are the same
for k ∈ K. Assumption 3.4 and Eq. (11) imply that the sequence of ‖w(k)

d ‖ values is bounded
away from zero. Therefore λ(k) → 0 as k → ∞ over K. Hence, for all sufficiently large
k ∈ K

h
(
x (k)

c + δ(k)λ(k)w
(k)
d

/
ρ
)

> h
(
x (k)

c

)
,



DIRECT SEARCH METHODS USING FILTERS AND FRAMES 137

and the sequence of pairs {(w(k)
d , x (k)

c )}has a limit point (w∗
d , x∗

c ) for which (w∗
d )T ∇ci (x∗

c ) ≥ 0
must hold for some i ∈ W (k).

On the other hand (wT
d ai )(k) = −1 for all i ∈ W (k) and for all k. Now w

(k)
d → w∗

d and
a(k)

i → ∇ci (x∗
c ) for all i , so ∇ci (x∗

c )T w∗
d = −1 for all i ∈ W (k)—a contradiction. �

The members of V (k)
+ are ‘bent’ towards w(k)

s so that the steps along these bent directions
are non-increasing steps for h. Each v

(k)
j is bent to give the direction b(k)

j . Collectively the
b(k)

j form the bent positive basis B(k)
+ . Each b(k)

j is a function of a bending parameter α as
follows:

b(k)
j (α) = (1 − α)v(k)

j + αw(k)
s where α ∈ [0, 1]. (13)

The quantity α
(k)
j denotes the value of α used by the algorithm to bend v

(k)
j . The choice

α
(k)
j = 0 corresponds to no bending, and α

(k)
j = 1 to replacing v

(k)
j with the non-ascent step

w(k)
s for h at x (k)

c . The value α
(k)
j is chosen so that

h
(
x (k)

c + δ(k)b(k)
j

(
α

(k)
j

)) ≤ max
{
h
(
x (k)

c

) − τ (k), h
(
x (k)

c + δ(k)w(k)
s

)}
. (14)

For convenience, the notation b(k)
j is used as a shorthand for b(k)

j (α(k)
j ). Clearly (14) always

holds for α = 1. When x (k)
c is infeasible (14) can be stronger than non-ascent. The following

is an example of a sub-algorithm that could be used to implement Step 5(b) of the main
algorithm.

An example sub-algorithm for Step 5(b)

(i) Select W (k) and calculate a(k)
i , i ∈ W (k).

(ii) Calculate s(k)
i and form V (k)

+ using Eq. (9).
(iii) Calculate w(k)

s via (11) and (12).
(iv) Form B(k)

+ . For j = 1, . . . , |V (k)
+ | choose α

(k)
j as the least element in, for example,

{0, 2−k, 2.2−k, 3.2−k, . . . , 1} which satisfies (14), where b(k)
j is given by (13).

(v) Select x (k)
c as y(k) and S (k) as B(k)

+ . Calculate f and h at points in the sampling set
�(x (k)

c , δ(k);S (k)) until either a non E (k) filtered point is found or the sampling set is
exhausted.

The purpose behind how each α is chosen in Step (iv) is to, asymptotically, select the
smallest value acceptable to (14). The minimum acceptable value β

(k)
j of the bending coef-

ficient α
(k)
j for v

(k)
j at x (k)

c is

β
(k)
j = min

{
β ∈ [0, 1] : h

(
x (k)

c + δ(k)b(k)
j (β)

)
≤ max

[
h
(
x (k)

c

) − τ (k), h
(
x (k)

c + δ(k)w(k)
s

)]}
.
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Each β
(k)
j is the smallest value in [0, 1] for which b(k)

j (β (k)
j ) satisfies (14) at x (k)

c . The following
assumption requires that the actual amount of bending asymptotically approach the minimal
bending required by (14).

Assumption 4.1. The method used to choose each α
(k)
j ensures that

lim
k→∞

max
{∣∣β (k)

j − α
(k)
j

∣∣ : ∀ j = 1, . . . ,
∣∣V (k)

+
∣∣} = 0.

The next two theorems show that these minimum acceptable values tend to zero for
limiting directions which are tangential or descent directions for all active constraints. The
first establishes a useful intermediate result.

Theorem 4.2. For c ∈ Rq and τ > 0

‖[c − τ ]+ ‖2 ≤ [‖[c]+‖2 − τ ]+. (15)

Proof: The result is obvious if [c − τ ]+ = 0. Otherwise, let u be the unit vector parallel
to [c − τ ]+. Then [c − τ ]+ + τu ≤ [c]+ because each element ui of u satisfies ui ≤ 1, and
ui > 0 if and only if ci > τ . Also ‖[c − τ ]+ + τu‖2 ≤ ‖[c]+‖2 because both vectors are
non negative. Finally, ‖[c − τ ]+ + τu‖2 = ‖[c − τ ]+‖2 + τ because u and [c − τ ]+ are
parallel, which gives the result. �

Theorem 4.3. LetK be an increasing sequence of positive integers such that the sequences
{x (k)

c }k∈K and {B(k)
+ }k∈K have limits x∗

c andB∗
+ respectively. Here x∗

c is feasible, and the limits

of {B(k)
+ }k∈K are given by Definition 3.1. ThenB∗

+ contains a set of generators for the tangent
cone T (x∗

c ).

Proof: Let W ∗ index the set of constraints which are active at x∗
c . Assume k is large

enough so that no point of the form x (k)
c + δ(k)b(k)

j violates any constraint not indexed by
W ∗. Clearly W ∗ ⊆ W (k) for all sufficiently large k ∈ K. If W (k) is empty, then T (x∗

c ) = Rn ,
and it is positively spanned by the positive basis V (k)

+ = B(k)
+ , as required. Otherwise, the set

of generators in V (k)
+ for the tangent cone C (k)(W ∗) is

G(k)(W ∗) = {−s(k)
i : i ∈ W ∗} ∪ {±s(k)

i : i ∈ W (k) − W ∗} ∪ {
S(k)u : u ∈ U (k)

+
}
.

All members v j of G(k)(W ∗) satisfy vT
j a(k)

i ≤ 0 for all i ∈ W ∗ by definition of a set

of generators. Now the change �ci (b
(k)
j (α)) in constraint i as a result of taking a step

δ(k)b(k)
j (α) from x (k)

c is

�ci
(
b(k)

j (α)
) = ci

(
x (k)

c + δ(k)
(
(1 − α)v(k)

j + αw(k)
s

)) − ci
(
x (k)

c

)
= δ(k)

(
a(k)

i

)T (
(1 − α)v(k)

j + αw(k)
s

) + o
(
δ(k)

) + Lk O
(
δ(k)

)
. (16)
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Here o(δ) and O(δ) denote quantities that respectively go to zero faster than δ, and at least
as fast as δ, in the limit k → ∞. Noting that vT

j a(k)
i is always non-positive for all v j in

G(k)(W ∗),

1

δ(k)

[
�ci

(
b(k)

j (α)
) + τ (k)

] ≤ α
(
a(k)

i

)T
w(k)

s + o(1) + Lk O(1) + τ (k)

δ(k)
,

where Assumption 3.5(d) means that the right hand τ/δ term can be incorporated into the
o(1) term. This right hand side is non-positive for values of α satisfying

α ≥ [
(o(1) + Lk O(1))

/(
a(k)

i

)T
w(k)

s

]
(17)

for each i ∈ W ∗. So, for these α values,

ci
(
x (k)

c + δ(k)b(k)
j (α)

) ≤ ci
(
x (k)

c

) − τ (k).

Now ci ≤ 0 at all points of interest for all i �∈ W ∗. Therefore if the same α satisfies (17)
for all i in W ∗, then Theorem 4.2 implies

h
(
x (k)

c + δ(k)b(k)
j (α)

) ≤ [
h
(
x (k)

c

) − τ (k)
]
+ ∀ j : v

(k)
j ∈ G(k)(W ∗). (18)

The right hand side of (18) is a lower bound on the right hand side of (14). Hence

β
(k)
j ≤ max

i∈W ∗

[
(o(1) + Lk O(1))

/(
a(k)

i

)T
w(k)

s

]
+ ∀ j : v

(k)
j ∈ G(k)

j (W ∗).

Now (aT
i ws)(k) = −‖w(k)

s ‖/‖w(k)
d ‖ for all i ∈ W ∗ and k ∈ K, so Theorem 4.1 implies

the denominator in (17) is bounded away from zero. Hence β
(k)
j → 0 and also α

(k)
j → 0

as k → ∞ for all j such that v
(k)
j ∈ G(k)(W ∗), by Assumptions 3.2 and 4.1. Therefore

b(k)
j − v

(k)
j → 0 as k → ∞ for all of these values of j . However the limiting values of

G(k)(W ∗) span the tangent cone T (x∗
c ) by Theorem 3.1, and Assumptions 3.3 and 3.4, which

yields the result. �

Theorem 4.3 also holds at each infeasible limit x∗
c because the tangent cone T (x∗

c ) is
empty at any infeasible x∗

c .
Asymptotically (14) either reduces h by at least τ , or to zero, as is shown next.

Theorem 4.4. Let {x (k)
c } converge to x∗ ∈ �, if necessary by replacing {x (k)

c } with a
subsequence of itself. Then for all k sufficiently large

x ∈ �
(
x (k)

c , δ(k);B(k)
+

) ⇒ h(x) ≤ [
h
(
x (k)

c

) − τ (k)
]
+. (19)
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Proof: There are two cases. First let x∗ be an interior point of �. Assumption 3.5(c)
implies that all frame points are feasible for k large, which yields the result.

Second, let x∗ ∈ ∂�. We show that h(x (k)
c + δ(k)w(k)

s ) ≤ [h(x (k)
c ) − τ (k)]+, by showing

w
(k)
d = w(k)

s for k large. Together with (14), this yields the required result. By considering
a subsequence of {x (k)

c } if necessary, let W (k) be independent of k and let V (k)
+ → V∗

+. Let k
be large enough so that ci < 0, i �∈ W (k) at all points of interest. Now, for all i ∈ W (k),

ci
(
x (k)

c + δ(k)w
(k)
d

) = ci
(
x (k)

c

) + δ(k)
(
w

(k)
d

)T
a(k)

i + Lk O
(
δ(k)

) + o
(
δ(k)

)
= ci

(
x (k)

c

) − δ(k) + Lk O
(
δ(k)

) + o
(
δ(k)

)
after noting that (wT

d ai )(k) = −1 for all i in W (k). Then for all i in W (k),

ci
(
x (k)

c + δ(k)w
(k)
d

) = ci
(
x (k)

c

) − τ (k) − δ(k) + Lk O
(
δ(k)

) + o
(
δ(k)

) ≤ ci
(
x (k)

c

) − τ (k)

for sufficiently large k by Assumptions 3.5(d) and 3.5(c). Theorem 4.2 implies w
(k)
d is a non

increasing step for h when k is large, and hence w
(k)
d = w(k)

s . Theorem 4.2 and (14) then
yield the required result. �

5. Convergence results

The convergence properties of the sequence of envelope filtered centres {z(m)} are analysed
in this section using the non-smooth calculus of Clarke (1990). The Clarke generalized
derivative is defined for locally Lipschitz functions as

f ◦(x ; v) = lim sup
t↓0 y→x

f (y + tv) − f (y)

t
.

If f is not locally Lipschitz at x then this limit superior may be infinite. Provided f
is locally Lipschitz at x it can be shown (Clarke, 1990) that f ◦(x ; v) is subadditive and
positively homogeneous in v. Moreover, if M is a Lipschitz constant for f near x , then
| f ◦(x ; v)| ≤ M‖v‖.

Theorem 5.1. At least one of the following possibilities holds:
(i) the subsequence of envelope filtered centres is infinite; or

(ii) the sequence of function values is unbounded below.

Proof: We assume that case (i) does not occur, and that there are J − 1 envelope filtered
bent frames in total. Hence the final value of m is J . Consider the subsequence of iterates
generated after m = J occurs.

Both E (J ) and T (J ) are positive, and so each iteration of Step 5 must locate a point x which
is not envelope filtered. There are three ways this can happen. First, h(x) + τ (k) ≤ h(y(k)),
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where y(k) is the least infeasible point in F (k). In this case a new least infeasible point y(k) is
found, and it satisfies h(y(k+1)) ≤ h(y(k))− T (J ). Clearly this can only occur a finite number
of times, and we label the final such new y as ylast.

Second, x is feasible, which means that either x is the first feasible point located (which
can happen exactly once) or y(k) is also feasible and f (x) < f (y(k)) − E (J ). This can only
occur a finite number of times or (ii) occurs.

Third, x is infeasible, and ( f (x)+ E (J ), h(x)+ T (J )) is not dominated by any point in the
filter. We define the area of a filter F (k) as the area of the region in the f, h plane consisting
of filtered pairs of values ( f, h) satisfying 0 ≤ h ≤ hmax and f ≤ f (ylast). Clearly each
new point accepted by the filter increases the area of the filter by at least E (J )T (J ). Hence if
the sequence of envelope filtered frames is finite the area of F (k) must tend to ∞ as k goes
to infinity. This can only happen if f (k) → −∞ as k goes to infinity, which is case (ii). �

Condition (ii) of the above theorem is weaker than for the unconstrained case in that f
is found to be unbounded below, but possibly for a sequence of infeasible points which are
bounded away from the feasible region.

Theorem 5.2. If h and f are locally Lipschitz near z∗, then

h◦(z∗; v) ≥ 0 or f ◦(z∗; v) ≥ 0,

where v is any vector such that there exists a sequence {(z(m), v(m))} with v(m) ∈ S (m)
z for

all m, and such that (z∗, v) is a cluster point of this sequence.

Proof: First we restrict m to an increasing sequence of positive integers M such that
{(z(m), v(m))}m∈M converges to (z∗, v). Each sampling set �(z(m), δ(m)

z ;S (m)
z ) is envelope

filtered, so for each v(m) ∈ S (m)
z , either

f
(
z(m) + δ(m)

z v(m)
) + ε(m)

z ≥ f
(
z(m)

)
(20)

or both

h
(
z(m) + δ(m)

z v(m)
) + τ (m)

z > h
(
z(m)

)
and h

(
z(m) + δ(m)

z v(m)
)

> 0. (21)

If this were not so, a point x in the filter would satisfy

f (x) ≤ f
(
z(m) + δ(m)

z v(m)
) + ε(m)

z < f
(
z(m)

)
and also either

0 = h(x) = h
(
z(m) + δ(m)

z v(m)
) ≤ h

(
z(m)

)
or

h(x) < h
(
z(m) + δ(m)

z v(m)
) + τ (m)

z ≤ h
(
z(m)

)
.
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The left hand inequalities are because x envelope filters z(m) + δ(m)
z v(m) and the right hand

inequalities stem from the negation of (20, 21). Together, they imply that z(m) is filtered by
x , which is excluded by the algorithm.

At least one of the two possibilities in (20, 21) must occur infinitely often. If the former
occurs infinitely often, then

f
(
z(m) + δ(m)

z v
) − f

(
z(m)

) ≥ [
f
(
z(m) + δ(m)

z v
) − f

(
z(m) + δ(m)

z v(m)
)] − ε(m)

z . (22)

The convergence of v(m) to v and Assumption 3.5(d) imply that the first pair of terms and
the final term on the right hand side of (22) go to zero faster than δ(m)

z . Hence, after dividing
by δ(m)

z and taking the limit m → ∞, (22) shows f ◦(z∗; v) is bounded below by zero. A
similar argument for h yields either

f ◦(z∗; v) ≥ 0 or h◦(z∗; v) ≥ 0

as required. �

Corollary 5.1. If either h(z(m) + δ(m)
z v(m)) + τ (m)

z ≤ h(z(m)) or h(z(m) + δ(m)
z v(m)) = 0

holds for each member of a subsequence {(z(m), v(m))} converging uniquely to (z∗, v), then
f ◦(z∗, v) ≥ 0.

Proof: When either h(z(m) + δ(m)
z v(m)) + τ (m)

z ≤ h(z(m)) or h(z(m) + δ(m)
z v(m)) = 0 then the

point z(m) + δ(m)
z v(m) must be envelope filtered because f (z(m) + δ(m)

z v(m)) + ε(m)
z ≥ f (z(m)).

Hence f ◦(z∗; v) ≥ 0 by Theorem 5.2. �

Corollary 5.2. The inequality f ◦(z∗; v) ≥ 0 holds for each (z∗, v) which is the limit of a
subsequence of {(v(m), z(m))}, for which z∗ ∈ � and v(m) ∈ B(k(m))

+ for all m.

Proof: Theorem 4.4 shows that the bending condition (14) implies either h(z(m) + δ(m)
z v(m))

+ τ (m)
z ≤ h(z(m)) or h(z(m) + δ(m)

z v(m)) = 0, for m sufficiently large. The required result then
follows from Corollary 5.1. �

This second corollary is crucial. The limits of {B(k(m))
+ } contain sets of generators for the

tangent cones at the limits of {z(m)}, by Theorem 4.3. This provides information about f ◦

along each member of these sets of generators. When f is strictly differentiable at these limit
points, it allows convergence to KKT point(s) to be established under standard conditions.

Theorem 5.3. Let z∗ be a feasible limit point of the the sequence of envelope filtered
centres. Then
(i) there is a set of generators for the tangent cone T (z∗) at z∗ such that f ◦(z∗; v) ≥ 0 for

each of these generators; and
(ii) if f strictly differentiable at z∗ then vT ∇ f (z∗) ≥ 0 for all feasible directions at z∗.
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Proof: Let M be an infinite increasing sequence of positive integers. Theorem 4.3 shows
that if {z(m)}m∈M converges uniquely to z∗ then the limits of {B(k(m))

+ }m∈M contain a set
of generators for T (z∗). Hence Corollary 5.2 shows that f ◦(z∗; v) ≥ 0 for all of these
generators, which proves part (i). Strict differentiability means that f ◦(z∗; v) = vT ∇ f ∗ for
all v. Linearity implies that vT ∇ f ∗ is non-negative for all directions in the tangent cone,
which yields part (ii). �

If both parts of Theorem 5.3 hold, then Assumption 3.1 means that Farka’s lemma can
be applied, and z∗ is a KKT point of (1).

6. Summary

An algorithm for inequality constrained nonlinear optimization has been presented. The
method uses filters, which allows it to handle infeasible starting points, and generate infea-
sible iterates. The method generates an infinite sequence of envelope filtered bent frames.
The shape of these bent frames is somewhat restricted at frame centres near the boundary of
the feasible region, but parts of the bent frames which lie in the null space of the estimated
active constraint gradients may be chosen freely. This allows second order information to
be incorporated in the shape of these frames.

In order to ensure convergence, a number of conditions are imposed upon the algorithm.
In particular, linear independence of the active constraint gradients at all points on the
boundary of the feasible region is assumed. It is shown that an identifiable subsequence of
iterates has cluster points, and the nature of these cluster points is examined using Clarke’s
non-smooth calculus. This allows the analysis to be applied to objective functions which
are locally Lipschitz, but not necessarily continuously differentiable. It is shown that cluster
points at which the objective function is strictly differentiable are also KKT points. It is
also shown that the objective function has interesting properties in certain directions at
other cluster points. The analysis is purely local, and so the objective function may be
non-smooth, or infinite at points remote to these cluster points.
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