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Abstract. The PASCAL Speech Separation Challenge (SSC) is based
on a corpus of sentences from the Wall Street Journal task read by two
speakers simultaneously and captured with two circular eight-channel
microphone arrays. This work describes our system for the recognition
of such simultaneous speech. Our system has four principal components:
A person tracker returns the locations of both active speakers, as well
as segmentation information for each utterance, which are often of un-
equal length; two beamformers in generalized sidelobe canceller (GSC)
configuration separate the simultaneous speech by setting their active
weight vectors according to a minimum mutual information (MMI) cri-
terion; a postfilter and binary mask operating on the outputs of the
beamformers further enhance the separated speech; and finally an auto-
matic speech recognition (ASR) engine based on a weighted finite-state
transducer (WFST) returns the most likely word hypotheses for the sep-
arated streams. In addition to optimizing each of these components, we
investigated the effect of the filter bank design used to perform subband
analysis and synthesis during beamforming. On the SSC development
data, our system achieved a word error rate of 39.6%.

1 Introduction

The PASCAL Speech Separation Challenge (SSC) is based on a corpus of sen-
tences from the Wall Street Journal (WSJ) task read by two speakers simulta-
neously and captured with two circular eight-channel microphone arrays. This
work describes our system for the automatic recognition of such simultaneous
speech. Our system has four principal componenents: A person tracker returns
the locations of both active speakers, as well as segmentation information for
each utterance, which are often of unequal length; two beamformers in gener-
alized sidelobe canceller (GSC) configuration separate the simultaneous speech
by setting their active weight vectors according to a minimum mutual informa-
tion (MMI) criterion; a postfilter and binary mask operating on the outputs



of the beamformers further enhance the separated speech; and finally an auto-
matic speech recognition (ASR) engine based on a weighted finite-state transducer
(WFST) returns the most likely word hypotheses for the separated streams.

Our speaker tracking system was previously described in [1]. It is based on
a joint probabilistic data association filter (JPDAF). The JPDAF is capable of
tracking multiple targets simultaneously and consists of multiple Kalman filters,
once for each target to be tracked [2, §6.4]. When new observations become avail-
able, they are associated either with an active target or with the clutter model,
which models spurious acoustic events, through the calculation of posterior prob-
abilities. After the association step, the position of each target can be updated
independently through suitably modified Kalman filter update formulae.

In acoustic beamforming, it is typically assumed that the position of the
speaker is estimated by a speaker localization system. A conventional beam-
former in GSC configuration is structured such that the direct signal from the
speaker is undistorted [3, §6.7.3]. Subject to this distortionless constraint, the
total output power of the beamformer is minimized through the appropriate
adjustment of an active weight vector, which effectively places a null on any
source of interference, but can also lead to an undesirable signal cancellation. To
avoid the latter, the adaptation of the active weight vectors is typically halted
whenever the desired source is active.

For the speech separation task, we implemented two beamformers in GSC
configuration, where one GSC was directed at each source. We then jointly ad-
justed the active weight vectors of the GSCs so as to provide output streams with
minimum mutual information. Better speech separation was achieved through
the use of non-Gaussian pdfs for calculating mutual information. In our initial
experiments on the SSC development data, a simple delay-and-sum beamformer
achieved a word error rate (WER) of 70.4%. The MMI beamformer under a
Gaussian assumption achieved 55.2% WER which was further reduced to 52.0%
with a Ky pdf, whereas the WER for data recorded with close-talking micro-
phone was 21.6%.

We also used novel techniques to represent a full WSJ trigram language
model with 1,639,687 bigrams and 2,684,151 trigrams as a statically-expanded
WFST for decoding the separated streams. The final decoding graph constructed
from this trigram contained nearly 50 million states and over 100 million tran-
sitions. We were able to construct such a large decoding graph by introducing
an additional symbol into the language model to explicitly model transitions to
the back-off node and thereby make the language model transducer sequential.
Because the components to be composed together to create the final decoding
graph were likewise sequential, we were able to forego the last determinization
step, which is usually the most demanding operation in terms of computation
and main memory requirements. The use of the full trigram provided a reduction
in WER from 52.5% to 47.7%.

In a final set of experiments, we used four different filter bank designs to

perform subband analysis and synthesis. We also tested different postfiltering
configurations, and applied binary masking to the postfiltered streams. Our best



current result on the SSC development data is 39.6% WER. Our best result on
the SSC 2007 evaluation set was 46.9% WER.

The balance of this work is organized as follows. In Section 2, we review the
definition of mutual information, and demonstrate that, under a Gaussian as-
sumption, the mutual information of two complex random variables is a simple
function of their cross-correlation coefficient. We then discuss our MMI beam-
forming criterion and present the framework needed to apply minimum mutual
information beamforming when the Gaussian assumption is relaxed. In Section 3
we describe sequence of operations used to optmize the search space for au-
tomatic recognition on the separated streams of speech. We also present the
sizes of the language models and decoding graphs used for our experiments. In
Section 4, we present the results of far-field automatic speech recognition ex-
periments conducted on data from the PASCAL Speech Separation Challenge.
Finally, in Section 5, we present our conclusions and plans for future work.

2 Beamforming

Consider two r.v.s Y7 and Ys. By definition, the mutual information [4] between
Y1 and Y5> can be expressed as

(1)

I(V1,Ys) =€ {log p(¥1,Y>) }

p(Y1)p(Yz)

where £{} indicates the ensemble expectation.
The univariate Gaussian pdf for complex r.v.s Y; can be expressed as

PY) = —5 exp (- [Vif2/o?) @)

where 02 = £{Y;Y;*} is the variance of Y;. Let us define the zero-mean complex
random vector Y = [Yl YQ}T and the covariance matriz.
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where p12 = €12/0102 and €12 = £{Y1Y;}. The bivariate Gaussian pdf for
complex r.v.s is given by

p(Y1,Ys) = exp (-YT 57 1Y) (4)

™| Dy |
It follows that the mutual information (1) for jointly Gaussian complex r.v.s can
be expressed as [5]

I(Y1,Ys) = —log (1 — |p12|) (5)

From (5), it is clear that minimizing the mutual information between two zero-
mean Gaussian r.v.s is equivalent to minimizing the magnitude of their cross
correlation coefficient p12, and that I(Y7,Y2) = 0 if and only if |p12]| = 0.
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Fig. 1. A beamformer in GSC configuration.

Consider two subband beamformers in GSC configuration as shown in Fig-
ure 1. The output of the i-th beamformer for a given subband can be expressed
as,

Y = (wgqi — Biwa,i)H X (6)

where wy; is the quiescent weight vector for the i-th source, B; is the blocking
matriz, W ; is the active weight vector, and X is the input subband snapshot
vector. In keeping with the GSC formalism, w,; is chosen to preserve a signal
from the look direction [3, §6.3]. The blocking matrix B; is chosen such that
Bfl wg,i = 0. The active weight vector w, ; is typically chosen to maximize the
signal-to-noise ratio (SNR). Here, however, we develop an optimization proce-
dure to find that w,; which minimizes the mutual information (Y7, Y2) where
Y1 and Y5 are the outputs of the two beamformers. Minimizing a mutual informa-
tion criterion yields a weight vector w, ; capable of canceling interference that
leaks through the sidelobes without the signal cancellation problems encoun-
tered in conventional beamforming. The details of the estimation of the optimal
active weights w, ; under the MMI criterion (5) as well as the application of a
reqularization term are described in Kumatani et al [6].

Beamforming in the subband domain has the considerable advantage that
the active sensor weights can be optimized for each subband independently,
which provides a tremendous computational savings. The subband analysis and
resynthesis can be performed with a perfect reconstruction (PR) filter bank such
as the popular cosine modulated filter bank [7, §8]. As this PR filter bank is
based on assumptions that are not satisfied in beamforming and adptive filter-
ing applications, however, there are other designs that are better suited for such
applications. In Section 4 we present the results of ASR experiments comparing
the effectiveness of frequency domain beamforming with subband beamforming
based on the PR design, the design proposed by De Haan et al [8], and a further



novel design technique. We also compare the performance of subband beamform-
ers based on the filter designs with frequency domain beamforming based on a
simple FFT.

A plot of the log-likelihood of the Gaussian and three super-Gaussian real
univariate pdfs considered here is provided in Figure 2. From the figure, it is
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Fig. 2. Plot of the log-likelihood of the super-Gaussian and Gaussian pdfs.

clear that the Laplace, Ky and I' densities exhibit the “spikey” and “heavy-
tailed” characteristics that are typical of super-Gaussian pdfs. This implies that
they have a sharp concentration of probability mass at the mean, relatively little
probability mass as compared with the Gaussian at intermediate values of the
argument, and a relatively large amount of probability mass in the tail; i.e.,
far from the mean. As explained in [6], univariate and bivariate forms of the
complex Laplace, Ky and I' pdfs can be derived using the theory of Meijer
G-functions [9).

3 Search Space Optimization

As originally proposed by Mohri et al [10,11], a weighted finite-state transducer
(WFST) that translates phone sequences into word sequences can be obtained by
forming the composition LoG, where L is a lezicon which translates the phonetic
transcription of a word to the word itself, and G is a grammar or language model
which assigns to valid sequences of words a weight consisting of the negative log
probability of this sequence. In the original formulation of Mohri and Riley [12],
phonetic context is modeled by the series of compositions H o C' o L o G, where



H is a transducer converting sequences of Gaussian mixture models (GMMs) to
sequences of polyphones, and C' is a transducer that converts these polyphone
sequences to corresponding sequences of phones.

In [13], we showed how the necessity of explicitly modeling C' could be cir-
cumvented by constructing a transducer HC' that maps directly from sequences
of GMM names to sequences of phones. In more recent work [14], we demon-
strated that HC' can be incrementally expanded and immediately determinized.
Such an incremental procedure enables a much larger decision tree to be modeled
as a WFST. In our previous work, we constructed a recognition network based
on

min push det(min det HC o det(L o G)) (1)

where det, push, and min represent the WFST equivalence transformations,
determinization [15], weight pushing [16], and minimization [17]. The sequence
represented by (7) is the “standard” build procedure [11]. By far, the most
memory and time intensive portion of this build sequence is the determinization
after HC has been statically composed with LoG. Hence, we sought to construct
a larger recognition network by eliminating this costly determinization.

In the context of WFSTs, e-symbols represent that null symbol that con-
sumes no input or produces no ouput. A sequential transducer is deterministic
on the input side and has no e-symbols as input. A well-known theorem from
Mohri [15] states that the composition of two sequential transducers is sequen-
tial. As typically constructed, the grammar G is not sequential, as e-symbols
are used to allow transitions to nodes modeling back-off probabilities, which in
turn implies L o G is not sequential. We remedied this problem by replacing
the e-symbols in G with an explicit back-off symbol %, much the way word end
markers are introduced to disambiguate homophones [11] thereby allowing Lo G
to be determinized. Similarly, a back-off self-loop was added to the end of each
word in L, and to the end of each three-state sequence in HC'. These changes
were sufficient to make L o G sequential. As HC was already sequential, we
were able to entirely forego the determinization after composing HC and Lo G.
Adding the back-off symbols had an additional salutary effect in that L o G, and
hence the final recognition network, became much smaller, which provided for
the use of a still larger language model G.

The sizes of the shrunken and full bigram trigram language models along
with the decoding graphs built from them and used for the speech recognition
experiments reported in Section 4 are given in Table 1. We performed our initial
experiments with the a decoding graph built based on (7) without explicit back-
off symbols. Thereafter, we built decoding graphs with the full bigram, then with
shrunken and full trigrams using the new build technique with explicit back-off
symbols in the LM. It is worth noting that the decoding graph built from the
full bigram with the back-off symbols actually has fewer nodes and transitions
than the decoding graph built from the shrunken bigram without back-off sym-
bols. Moreover, as we were able to eliminate the costly determinization after
composing HC and L o G, we were able build a decoding graph from the full
WSJ trigram with nearly 50 million states and over 100 million transitions.



Language G HCoLoG
Model Bigrams | Trigrams| Nodes Arcs
Shrunken Bigram || 323,703 0| 4,974,987| 16,672,798
Full Bigram 835,688 0| 4,366,485| 10,639,728
Shrunken Trigram|| 431,131| 435,420|14,187,005| 32,533,593
Full Trigram 1,639,687|2,684,151(49,082,515(114,304,406

Table 1. Dimensions of the various language models and the decoding graphs built
from them.

4 Experiments

We performed far-field automatic speech recognition experiments on develop-
ment data from the PASCAL Speech Separation Challenge (SSC) [18]. The data
contain recordings of five pairs of speakers and each pair of speakers reads ap-
proximately 30 sentences taken from the 5,000 word vocabulary Wall Street
Journal (WSJ) task. The data were recorded with two circular, eight-channel
microphone arrays. The diameter of each array was 20 cm, and the sampling rate
of the recordings was 16 kHz. The database also contains speech recorded with
close talking microphones (CTM). This is a challenging task for source separa-
tion algorithms given that the room is reverberant and some recordings include
significant amounts of background noise. In addition, as the recorded data is
real and not artificially convoluted with measured room impulse responses, the
position of the speaker’s head as well as the speaking volume varies.

After beamforming, the feature extraction of our ASR system was based
on cepstral features estimated with a warped minimum variance distortionless
response [19] (MVDR) spectral envelope of model order 30. We concatenated 15
cepstral features, each of length 20, then applied linear discriminant analysis
(LDA) [20, §10] and a semi-tied covariance (STC) [21] transform to obtain final
features of length 42 for speech recognition.

4.1 Beamforming Experiments

The training data used for our initial beamforming experiments were taken from
the ICSI, NIST, and CMU meeting corpora, as well as the Transenglish Database
(TED) corpus, for a total of 100 hours of training material. In addition to these
corpora, approximately 12 hours of speech from the WSJCAMO corpus [22] was
used for HMM training in order to cover the British accents for the speak-
ers [18]. Acoustic models estimated with two different HMM training schemes
were used for the several decoding passes: conventional maximum likelihood
(ML) HMM training [23, §12] and speaker-adapted training under a ML criterion
(ML-SAT) [24]. Our baseline system was fully continuous with 3,500 codebooks
and a total of 180,656 Gaussian components.

We performed four passes of decoding on the waveforms obtained with each of
the beamforming algorithms. Parameters for speaker adaptation were estimated



Beamforming || Pass (%WER)
Algorithm 112|314
Delay & Sum ||85.1|77.6|72.5(70.4
MMI: Gaussian||79.7/65.6{57.9(55.2
MMI: Laplace ||81.1{67.9{59.3|53.8
MMI: Ky 78.0162.6(54.1|52.0
MMI: I 80.3]63.0(56.2|53.8

CTM 37.1124.8|23.0|21.6

Table 2. Word error rates for every beamforming algorithm after every decoding
passes.

using the word lattices generated during the prior pass [25]. A description of the
individual decoding passes follows:

1. Decode with the unadapted, conventional acoustic model and bigram lan-
guage model (LM).

2. Estimate vocal tract length normalization (VTLN) [26] parameters and con-
strained maximum likelihood linear regression parameters (CMLLR) [27] for
each speaker, then redecode with the conventional acoustic model and bigram
LM.

3. Estimate VTLN, CMLLR, and maximum likelihood linear regression (MLLR) [28]

parameters for each speaker, then redecode with the conventional model and
bigram LM.

4. Estimate VITLN, CMLLR, MLLR parameters, then redecode with the ML-
SAT model and bigram LM.

Table 2 shows the word error rate (WER) for every beamforming algorithm
and speech recorded with the CTM after every decoding pass on the SSC devel-
opment data. These results were obtained with subband-domain beamforming
where subband analysis and synthesis was performed with the perfect recon-
struction cosine modulated filter bank described in [7, §8]. After the fourth pass,
the delay-and-sum beamformer has the worst recognition performance of 70.4%
WER. The MMI beamformer with a Gaussian achieved a WER of 55.2%. The
best performance of 52.0% WER was achieved with the MMI beamformer by
assuming the subband samples are distributed according to the Ky pdf.

4.2 Language Modeling Experiments

To test the effect of language modeling improvements, we trained a triphone
acoustic model on 30 hours of American WSJ data, and the 12 hours of Cam-
bridge WSJ data. For the language modeling experiments, we used the same
acoustic features and same sequence of decoding passes as in the prior sec-
tion. The word error rate reduction achieved through larger language models
are shown in Table 3. The most dramatic reduction in WER was achieved by
replacing the bigram LMs with the shrunken trigram. As shown in Table 1, the



Table 3. ASR results on the SSC development data.

Pass (%WER)
Language Model/Pass 1 2| 3| 4

shrunken bigram ||85.7/64.8]53.8|52.5
full bigram 65.553.8(52.4
shrunken trigram ||86.1|61.7(49.8|47.7
full trigram 88.3(61.0(48.9|47.0

shrunken trigram produced a decoding graph that was still small enough to run
on our standard 32-bit workstations. The full trigram, on the other hand, could
not be used on the 32-bit machines used for the experiments reported here. On
a work station with a 64-bit operating system, more than 7 Gb of RAM were
required merely to load the decoding graph built from the full trigram, and the
entire task image of the recognition job was approximately 8 Gb. Moreover, the
reduction in WER, with respect to the shrunken trigram that was achieved by
the full trigram was less than one percent absolute. Hence, we used the decoding
graph built from the shrunken trigram to decode the evaluation data, as that
system was much more tractable.

The results of further experiments with these language models, as well as a
description of a technique for dynamically composing the HC' and L o G com-
ponents, and thereby radically reducing the enormous amount of random access
memory required by the full trigram, are given in [29].

4.3 Filter Bank Experiments

As explained in Section 2, our MMI beamformer operates in the frequency or
subband domain. Hence, the digital filter bank used for subband analysis and
resynthesis is an important component of the speech separation system. We
investigated four different filter bank designs, including:

1. The cosine modulated filter bank described by Vaidyanathan [7, §8], which
yields perfect reconstruction (PR) under optimal conditions. In such a filter
bank, PR is achieved through aliasing cancellation, wherein the aliasing that
is perforce present in one subband is cancelled by the aliasing in all others.
Aliasing cancellation breaks down if arbitrary complex factors are applied to
the subband samples. For this reason, such a PR filter bank is not optimal
for beamforming or adaptive filtering applications.

2. An DFT filter bank based on overlap-add.

3. The modulated filter bank proposed by De Haan et al [8], wherein separate
analysis and synthesis prototypes are designed to minimize an error criterion
consisting of a weighted combination of the total spectral response error and
the aliasing distortion. This design is dependent on the use of oversampling
to reduce aliasing error.



10

4. A novel cosine modulated design which differs from the De Haan filter bank
in that a Nyquist(M ) constraint [7, §4] is imposed on the prototype in order
to ensure that the total response error vanishes. Thereafter the remaining
components of the prototype are chosen to minimize aliasing error, as with
the De Haan design. The Nyquist(M) design similarly uses oversampling to
reduce aliasing distortion.

The word error rates (WERs) obtained with the four filter banks on the SSC
development data are shown in Table 4. For these experiments, the Gaussian pdf

Table 4. ASR results on the SSC development data.

Pass (%WER)

Filter Bank 1 21 3] 4

PR 87.7(65.2|54.0|50.7

PR + postfilter + binary mask 87.1/66.6|55.7(52.5
FFT 88.5|71.1|58.8(55.5

De Haan 88.7(68.2]56.1]|53.3

De Haan + postfilter + binary mask |[82.757.7|42.7|39.6
Nyquist(M) + postfilter + binary mask||84.8/58.0|43.4/40.9

was used exclusively. We also investigated the effect of applying a Zelinski post
filter [30] to the output of the beamformer in the subband domain, as well as the
binary mask ® described in [31]. The results indicate that the performnace of PR
filter bank is actually quite competitive if no postfiltering nor binary masking
is applied to the output of the beamformer. For the PR design, performance
degrades from 50.7% WER to 52.5% when such postfiltering and masking is
applied, which is not surprising given that both will tend to destroy the aliasing
cancellation on which this design is based. When postfiltering and masking is
applied to either the De Haan or the Nyquist(M) designs, performance is greatly
enhanced. With the De Haan design adding postfiltering and masking reduced
WER from 53.5% to 39.6%. With postfiltering and masking the Nyquist(M)
design achieved very similar performance of 40.9%. For both the De Haan and
Nyquist(M) designs, an oversampling factor of eight was used. The simple FFT
achieved significantly worse performance than all of the subband filter banks.

5 Conclusions and Future Work

In this work, we have described our system for the automatic recognition of
simultaneous speech. Our system consisted of three principal components: A

® We learned of the binary masking technique only by attending MLMI and listening
to Tain McCowan’s presentation about the SSC system developed by him and his
collaborators. Our experiments with the binary mask were conducted after the SSC
deadline.
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person tracker returns the locations of both active speakers, as well as segmen-
tation information for each utterance, which are often of unequal length; two
beamformers in GSC configuration separate the simultaneous speech by setting
their active weight vectors according to a minimum mutual information (MMI)
criterion; a postfilter and binary mask operating on the outputs of the beam-
formers further enhance the separated speech; and finally an ASR engine based
on a WFST returns the most likely word hypotheses for the separated streams.
In addition to developing and optimizing each of these three components, we
have also proposed a novel filter bank design in this work that, when used for
subband beamforming, provided ASR performance comparable or superior to
any design that has previously appeared in the literature. Our final results on
the SSC development data were 39.6% WER. On the SSC evaluation data, our
system achieved a WER of 46.2%.

In future, we plan to continue our investigations into the use of super-
Gaussians pdfs for MMI beamforming. This will entail systematically searching
the entire class of multi-dimensional super-Gaussians pdfs that can be repre-
sented with the aid of the Meijer-G function. We will also develop an online or
LMS-style algorithm for updating the active weight vectors of the GSCs during
MMI beamforming. Finally, we hope to investigate other optimization criteria
such the negentropy metric typically used in the field of independent component
analysis [4].
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