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Abstract. Clustering time series is usually limited by the fact that the
length of the time series has a significantly negative influence on the
runtime. On the other hand, approximative clustering applied to ex-
isting compressed representations of time series (e.g. obtained through
dimensionality reduction) usually suffers from low accuracy. We propose
a method for the compression of time series based on mathematical mod-
els that explore dependencies between different time series. In particular,
each time series is represented by a combination of a set of specific ref-
erence time series. The cost of this representation depend only on the
number of reference time series rather than on the length of the time
series. We show that using only a small number of reference time series
yields a rather accurate representation while reducing the storage cost
and runtime of clustering algorithms significantly. Our experiments illus-
trate that these representations can be used to produce an approximate
clustering with high accuracy and considerably reduced runtime.

1 Introduction

Clustering time series data is a very important data mining task for a wide
variety of application fields including stock marketing, astronomy, environmen-
tal analysis, molecular biology, and medical analysis. In such application areas
the time series have usually an enormous length which has a significantly nega-
tive influence on the runtime of the clustering process. As a consequence, a lot
of research work has focused on efficient methods for similarity search in and
clustering of time series in the past years.

Time series are sequences of discrete quantitative data assigned to specific
moments in time, i.e. a time series X is a sequence of values X = 〈x1, . . . , xN 〉,
where xi is the value at time slot i. This sequence is often also taken as a N -
dimensional feature vector, i.e. X ∈ RN .

The performance of clustering algorithms for time series data is mainly lim-
ited by the cost required to compare pairs of time series (i.e. the processing
cost of the used distance function). As indicated above, time series are usually
very large containing several thousands of values per sequence. Consequently, the
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comparison of two time series can be very expensive, particularly when consid-
ering the entire sequence of values of the compared objects. The most prominent
approaches to measure the similarity of time series are the Euclidean distance
and Dynamic Time Warping (DTW). The choice of the distance function mainly
depends on the application. In some applications, the Euclidean distance pro-
duce better results whereas in other applications, DTW is superior. The big
limitation of DTW is its high computational cost of O(N2) while the Euclidean
distance between two time series can be computed in O(N). Since we consider
large databases and long time series (i.e. large values of N) in this paper, we
focus on the Euclidean distance as similarity function in the following.

In general, if we apply the Euclidean distance to the entire sequences, this
is also only adequate for short time series. In case of long time series, we face
two problems: The distance computation requires rather high runtimes and, if
the time series are indexed by a standard spatial indexing method such as the
R-Tree [1] or one of its variants, this index will perform rather bad due to the
well-known curse of dimensionality. Thus, the common way is to create adequate
but considerably shorter approximations of the data retaining essential features
of interest. According to this schema there exist a lot of approaches for dimen-
sionality reduction resulting in suitable time series representations that allow
efficient similarity distance computations. However, since the distance computa-
tions performed on the approximations do not reflect the exact similarity, they
can either be used as a filter step of the data mining task or the preliminary
results can be directly taken to approximately solve the problem if the results
satisfactorily agree with the exact query response. In the first case, the approxi-
mations should fulfill the lower bounding property to guarantee complete results.
The advantage of the second solution over the first one is that the approxima-
tions do not need to fulfill this lower bounding property which makes it easier
to find a proper approximation technique. Furthermore, the second method will
yield considerably lower response times because no refinements are required.
However, the challenge of the second solution is that the distances on the ap-
proximations should accurately estimate the distances on the exact time series
in order to achieve satisfying results (i.e. approximate results of high accuracy).

The question at issue is which approximation we should use. Adequate time
series approximations can be built by means of mathematical models. Most ap-
proaches use models which are based on approximations in time, i.e. models that
describe how a time series depends on the time attribute (cf. Section 2). The
common characteristics of these techniques are that the approximation quality
decreases with increasing length of the time series assuming a constant approx-
imation size. In this paper, we propose a method for the approximation of time
series based on mathematical models that explore dependencies between differ-
ent time series. We represent each time series by an adequate combination of a
set of specific reference time series (usually these reference time series can easily
be determined e.g. by a domain expert). The resulting representation consists of
some low-dimensional feature vector that can easily be indexed by means of any
Euclidean index structure. The similarity distance used for the clustering is com-
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Fig. 1. Model-based time series representation.

puted by applying the parameters that specify the combination. Consequently,
the cost of the clustering process depend only on the number of reference time
series rather than on the length of the time series. As we will see in our experi-
ments, the number of reference time series can usually be very small in order to
achieve rather accurate results.

Figure 1 illustrates our approach. A set of reference time series (marked as
“T1”, “T2”, and “T3” on the left hand side of Figure 1) is used to approximate an
original time series Torig(shown on the upper right hand side of Figure 1) by an
arbitrary complex combination Tapprox. In case of Figure 1 this is a combination
of the coefficients α1, . . . , α3 representing the three input time series using a
function f . The resulting approximated time series (marked as “output” in the
middle of the right hand side of Figure 1) is similar to the original time series. For
clustering, the approximation is represented by a feature vector of the coefficients
of the combination (cf. lower right hand side of Figure 1).

The rest of the paper is organized as follows. In Section 2, we survey related
work. In Section 3, we introduce the notion of mathematical models and describe
our powerful method for the calculation of compact representation for time series
based on the idea of mathematical models. Section 4 presents results of versatile
experimental evaluation. Finally, we conclude our paper in Section 5 with a short
summary and show directions for further research.

2 Related Work

In general, a time series of length d can be viewed as a feature vector in a d-
dimensional space. As discussed above, we focus on similarity in time, i.e. we
assume that the similarity of time series is represented by the Euclidean distance



of the corresponding feature vector. Since for long time series d is usually large,
the efficiency and the effectiveness of data analysis methods is rather limited
due to the curse of dimensionality. Thus, several more suitable representations
of time series data, e.g. by reducing the dimensionality, have been proposed.
Most of them are based on the GEMINI indexing approach [2]: extract a few
key features for each time series and map each time sequence X to a point f(X)
in a lower dimensional feature space, such that the distance between X and any
other time series Y is always lower-bounded by the Euclidean distance between
the two points f(X) and f(Y ). For an efficient access, any well known spatial
access method can be used to index the feature space. The proposed methods
mainly differ in the representation of the time series which can be classified into
non data adaptive methods, including DFT [3] and extensions [4], DWT [5], PAA
[6], and Chebyshev Polynomials [7], as well as data adaptive methods, including
SVD [8, 9], APCA [10], and cubic splines [11].

Contrary to our approach, all these approximation techniques represent time
series by a set of attributes describing how the time series depend on time.
As a consequence, the approximation quality of these methods decreases with
increasing length of the time series assuming a constant number of approximation
attributes.

In [12] the authors use a clipped time series representation rather than ap-
plying a dimensionality reduction technique. Each time series is represented by
a bit string indicating the intervals where the value of the time series is above
the mean value of the time series. This representation can be used to compute
an approximate clustering of the time series. The bit level representations are
compressed using standard compression algorithms in order to reduce the I/O
cost and to speed-up the clustering task. Unfortunately, the authors did not
propose any index structure for the approximation data. Each similarity search
task results in a full scan over the approximated data.

For clustering time series data, most of the various clustering methods pro-
posed in the past decades have been successfully applied. A general overview
over clustering methods is given in [13].

In this paper, we claim the following contribution. We propose a novel com-
pact approximation method for time series data that is independent of the length
of the time series. The resulting representation can be indexed using any Eu-
clidean index structure and is rather accurate for an approximate clustering of
the database.

3 Mathematical Models for Time Series Data

Mathematical modeling is a powerful method for the description of real-word
processes by a compact mathematical representation (e.g., mathematical mod-
els of physical or chemical processes). In this section, we introduce a formal
definition of mathematical models. Additionally, we describe our method for the
description of large time series data by using a compact representation based on
the idea of mathematical models.



3.1 Mathematical Model

We start with an informal discussion of the notion of a mathematical model. A
mathematical model is an approximate description of a class of certain objects
and their relationships. This approximate description is given by mathematical
formulas. In context of time series data, a mathematical model describes depen-
dencies between recorded time series data called inputs or exploratory variables
and time series data called outputs or dependant variables of an observed pro-
cess. For instance, we can model the relationship between the air pressure in an
enclosed container w.r.t. the temperature of the surrounding environment. The
observation of both pressure values and temperature values are given in the form
of time series. The values of pressure are used as values of the dependant vari-
able. The values of temperature are used as values of the exploratory variable.
More formally, a mathematical model can be defined as follows.

Definition 1 (Mathematical Model).
A mathematical model µ = (X,α, f) for a dependent variable Y (output) con-
sists of a set of exploratory variables X1, . . . , Xk called inputs and a mathe-
matical function f(X,α) that is used to describe the dependency between the
variable Y and the variables X1, . . . , Xk, where α denotes the model parameters
also called coefficients of the model. The general form of the model is given by
Y = f(X,α) + ε, where ε denotes the random error.

In this definition, the exploratory variables X1, . . . , Xk are inputs of the
model. The model parameters α are the quantities that are estimated during
the modeling process. The value ε represents the random error that makes the
relationship between the dependant variable and the exploratory variables a
“statistical” one rather than a perfect deterministic one. This statistical charac-
ter is justified by the fact that the functional relationship holds only in average
(i.e., not for each data point).

In general, for building a mathematical model for a time series Y of measured
values as a dependant variable we need a mathematical function f and a set
ρ = {ρ1, . . . , ρk} of input time series also called reference time series. Usually, f
and ρ can be given by a domain expert or can be choosen by examining a small
sample of the time series in the database. The goal is to find the “best fitting”
model. Obviously, in order to find this “best fitting”, the random error ε should
be minimized. This minimization can be achieved by calculating suitable model
parameters α. In the last decades, several methods were proposed that allow us
to fit the model to the real time series data (i.e. to calculate the model parameters
α so that the random error ε is minimized). The most popular method is Least-
Squares Estimation which we will use in the following.

Let us consider some examples of mathematical functions that are typically
used in mathematical modeling. For a time series Y that fits a straight line with
an unknown intercept and slope, there are two parameters α = (α1, α2), and
one exploratory variable X such that f(X,α) = α2 ·X + α1.

Figure 2 illustrates an example for the approximation of a more complex
time series Y = DV by a mathematical model using four reference time series
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Fig. 2. An example for relationship between a dependant variable (DV) and four ex-
ploratory variables (EV1-4).

ρ1 = EV 1, ρ2 = EV 2, ρ3 = EV 3, and ρ4 = EV 4 that are combined as given by
DV = EV 1 + 2 · EV 2− 4 · EV 3− EV 4.

Thus, the mathematical model describing Y = DV consists of the set of
reference time series ρ = {ρ1, ρ2, ρ3, ρ4} and the function f(ρ,α) = ρ1 + 2 · ρ2 −
4 · ρ3 − ρ4 and α1 = 1, α2 = 2, α3 = −4, and α4 = −1.

To summarize, a mathematical model provides an elegant method of describ-
ing the relationship between a dependent variable (output time series) and a set
of exploratory variables (reference time series). In general, it can use any complex
mathematical function such as the combination of quadratical and logarithmical
functions to approximate this relationship. In order to express the relationship
formally, parameters of a given mathematical function need to be fitted.

3.2 Representation of Time Series based on Mathematical Models

In this section, we introduce the intuition behind our compact representation
of a time series and present a novel technique that transforms a very long time
series into a compact representation.

Let us consider a given set of reference time series ρ and a given mathe-
matical model µ = (ρ,α, f). Each time series Ti ∈ D in the database can now
be considered as a dependant variable Yi. Values of the dependant variable Yi

can be approximated by values of the mathematical model µi = (ρ,αi, f) that
contains the model parameters αi that are fitted in order to approximate the
values of the dependant variable Yi as exactly as possible. Thus, the given math-
ematical model µi describes relationships between the reference time series ρ
and the approximated time series Ti (i.e., it expresses how strong Yi depends on
each of the reference time series) by means of the model parameters αi. Obvi-
ously, dependant variables Yi and Yj with similar dependencies should have very
similar mathematical models µi and µj , i.e. the parameters αi and αj will be
rather similar. In other words, if the underlying physical processes represented
by measured values in the database have similar character, their mathematical
models look very similar. This relation between original processes and mathe-
matical models is justified by the fact that we consider dependencies based on



the same form of the mathematical function and the same reference time series,
i.e. all the models µi use the same function f and the same set of reference time
series ρ but differ only in the parameters αi.

In the following, we describe this intuition more formally:

Definition 2 (Model-based Representation).
Let ρ = ρ1, . . . , ρk ⊆ D be a given set of reference time series with ρj =
〈ρj,1, . . . , ρj,N 〉 and let f(ρ,α) be a given mathematical function. A model-based
representation of a database time series Ti = 〈ti,1, . . . , ti,N 〉 ∈ D is given by a
vector of model parameters αi if αi minimizes the random error ε of the math-
ematical model µ = (ρ,α, f) having the general form Ti = f(ρ,αi) + ε.

In the example shown in Figure 2, the model-based representation of the
time series DV w.r.t. the reference time series ρ = {EV 1, EV 2, EV 3, EV 4} is
given by a vector α = (1, 2,−4,−1). Let us not that, in this case, we describe
a time series of length 1,000 by a short model-based representation with four
coefficients.

To summarize, we describe each time series by a small set of model param-
eters of a mathematical model the shape of which is identical for all time series
in the database. The size of our model-based representation is independent on
the length of the time series in the underlying database but depends only on the
number of reference time series. In particular, the approximation exactness of
our model-based representation only depends on the applied model function and
the reference time series. Therefore, we can achieve an arbitrary level of exact-
ness of the approximation by choosing a model function and a set of reference
time series that are most appropriate for the given application area.

3.3 Model-based Similarity of Time Series

The bottom line of clustering time series is the distance (or similarity) measure
used to decide about the similarity of time series. As discussed above, we fo-
cus on similarity in time. Thus, for our approach we use the most prominent
time-based distance measure for time series, the Euclidean distance. The Eu-
clidean distance is commonly used for the dimensionality reduction techniques
mentioned in Section 2.

For long time series, the computation of the Euclidean distance is very ex-
pensive. Furthermore the well-known curse of dimensionality limits the efficiency
of indexing methods to speed-up similarity queries. For this reason we propose
to compute the similarity using the representations based on mathematical mod-
els consisting of only a few coefficients (model parameters). We can show that
our model-based similarity distance based on the model parameters accurately
approximates the Euclidean distance between the original time series. The ap-
proximation accuracy mainly depends on how good the model fits to the original
time series, i.e. how accurate the model approximates the original time series.

When defining the similarity of time series based on the model parameters,
we need to consider that the pairwise similarities between our reference time
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series need not be identical. An illustrative example is shown in Figure 3. The
depicted three time series T1, T2, and T3 are represented by a model µ that
is based on the three reference time series presented at the top of Figure 3.
Since T1 is equal to the first reference time series, the coefficients of the model-
based representation of T1 are given by α1 = (1.0, 0.0, 0.0). Accordingly, the
coefficients of the model-based representation of T2 which is equal to the second
reference time series are given by α2 = (0.0, 1.0, 0.0). The coefficients of the
model-based representation of T3 which is nearly equal to the third reference
time series are given by α2 = (0.0, 0.0, 0.9). If we compare the Euclidean distance
between T1 and T2 (denoted by λId

µ (T1, T2) in the Figure) with the Euclidean
distance between T1 and T3 (denoted by λId

µ (T1, T3)) we see that λId
µ (T1, T2) >

λId
µ (T1, T3). This is rather unintuitive because the original time series T1 is much

more similar to the original time series T2 than to T3. This is because we do not
consider that the first reference time series is more similar to the second than to
the third.

Thus, we need to consider these different pair-wise similarities of our reference
time series when computing the similarity between the model parameters αi

and αj of two time series Ti, Tj ∈ D. This can be done using the well-known
Mahalanobis-distance between the vectors αi and αj , formally

Definition 3 (Model-based Similarity Distance).
Let Ti, Tj ∈ D be two time series and let µ = (ρ,α, f) be a mathematical model
where αi and αj are the representations of Ti and Tj based on µ, respectively.
The model-based similarity distance λS

µ(Ti, Tj) between Ti and Tj is defined by

λS
µ(Ti, Tj) =

√
(αi −αj) · S · (αi −αj)T .



The key part of the Mahalanobis-distance is the matrix S that is used to
rank the pair-wise combinations of the reference time series. Thus, an important
issue is to determine a suitable matrix S for distance computation. The following
lemma assists in this choice.

Lemma 1. Let µ = (ρ,α, f) be a mathematical model and αi and αj be the
representations of time series Ti and Tj based on µ, respectively. Then, the values
of the model-based similarity distances are approximately equal (except for a
small random error ∆) to the values of Euclidian distance on the original time
series Ti and Tj, i.e. DistEuclidian(Ti, Tj) = λρ·ρT

µ (Ti, Tj) + ∆.

Proof. Without loss of generality, we assume that the function f is linear or is
transformable to a linear form, i.e. Ti = αi · ρ + εi for any Ti ∈ D.

DistEuclidian(Ti, Tj) =
√

(Ti − Tj) · (Ti − Tj)T =√
((αi · ρ + εi)− (αj · ρ + εj)) · ((αi · ρ + εi)− (αj · ρ + εj))T =√

((αi −αj) · ρ) · ((αi −αj) · ρ)T + ∆′ =√
((αi −αj) · ρ) · (ρT · (αi −αj)T ) + ∆′ =√
(αi −αj) · (ρ · ρT ) · (αi −αj)T + ∆′ =

λρ·ρT

µ (Ti, Tj) + ∆

The lemma states that the model-based similarity distance approximates the
Euclidian distance on the original time series1 by an error of ∆, if S = ρ · ρT

where ρ is a matrix consisting of the reference time series. Obviously, ∆ depends
on the random errors εi and εj of the model-based approximation of Ti and Tj .
Thus, if the errors of the approximation are small (which is a design goal of the
approximation and is realized by the Least-Squared Error method), then ∆ will
also be small. As a consequence, if we set S = ρ · ρT , the model-based similarity
distance will be a rather accurate approximation.

Let us note that if S is the unity matrix, i.e. S = ρ·ρT = Id, the Mahalanobis-
distance is identical to the Euclidean distance. In Figure 3, the model-based
similarity distance between T1 and T2 as well as between T1 and T3 using S =
ρ · ρT denoted by λS

µ(T1, T2) and λS
µ(T1, T3), respectively, are compared with

the corresponding Euclidean distance on the model-based representations. As it
can be seen, the model-based similarity distance using the Mahalanobis-distance
more accurately reflects the intuitive similarity of the original time series than
the Euclidean distance on the model-based representations.

Furthermore, let us note that our method may have a slight increase of the
CPU cost because we use the Mahalanobis-distance rather than the Euclidean
1 Please recall that we focus on similarity in time rather than similarity in shape, and,

thus use the Euclidean distance as the baseline.



T1

T2

original time series approximated time series

time series length = 1024, # model coefficients = 44

Fig. 4. Approximations for sample time series.

distance used by the existing methods. However, since the size of our approx-
imations is independent of the length of the original data items this marginal
CPU performance loss leads to a great benefit in terms of I/O-cost especially
when dealing with long time series.

3.4 Choosing the Reference Time Series

Obviously, an important aspect of our model-based representation of time series
is the choice of the reference time series. As already sketched, this choice can
usually be done by a domain expert. However, if no such domain expert is at
hand, we need a procedure for this choice.

In general, the reference time series should have a high correlation to a subset
of the remaining time series in the database. Inspired by this intuition, we pro-
pose to use the following procedure to derive a set of reference time series. Let
us assume that we want to choose k reference time series. We simply cluster the
time series using a k-medoid clustering algorithm, e.g. PAM [13]. This yields a
set of k cluster medoids (time series), each representing its corresponding cluster.
All time series of a cluster are strongly correlated to the corresponding cluster
medoid. Obviously, taking these medoids for the derivation of the reference time
series should be a very good choice. In addition, in order to avoid wasting to
much computational costs, we propose to perform the PAM clustering only on a
small sample of the database. In practice, a sample rate of about 1% has shown
a sufficient high clustering accuracy.

3.5 Efficient Approximative Clustering

Based on the previously defined similarity distance measure, we can apply any
analysis task to time series data. Our main goal is to yield an efficient clustering
of the database D of time series using the approximative representations while
generating clusters with sufficient quality. In other words, approximative clus-
tering implements the idea that a user may want very fast response times while
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Fig. 5. Cluster quality for varying number of clusters. (DS1)

accepting a considerable decrease of accuracy. This is a reasonable setting in
many application domains. For our experiments, we used the most prominent
clustering method k-means. However, our approximate representation can be in-
tegrated into any other clustering algorithm the user is most accustomed to. The
key issue for approximate clustering is of course to generate accurate results, i.e.
the used approximations should describe the original time series considerably
well. We will show in our experiments that a very small set of parameters for the
time series approximations is sufficient to achieve high quality clustering results
even if the original time series that should be clustered are very long. The exam-
ple shown in Figure 4 indicates the potentials of our approximation. Two rather
complex time series T1 and T2 of length 1,024 are compared with some sample
approximations using only 44 coefficients. As it can be seen, the compressions
approximate the real time series rather accurate.

4 Evaluation

We implemented our method and comparison partners in Java 5. All experiments
were performed on a workstation featuring two 3 GHz Xeon CPUs and 32GB
RAM. We used four datasets for our experiments, three artificial datasets (DS1,
DS2 and DS4) and one real world dataset (DS3) as depicted in Table 4.

name type length N

DS1 artificial 2,560
DS2 artificial 6,000
DS3 real world 1,024
DS4 artificial 2,000-14,000

The reference time series of the first two
artificial datasets DS1 and DS2 are generated
by random walk. The corresponding datasets
are built by a linear combination of the refer-
ence time series compounded by the identity,
square, cube and first and second derivatives.
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In order to demonstrate that our ap-
proach can handle versatile data, we com-
posed the dataset DS3 in the following way.
It consists of real-world time series from the

following application areas: (1) wing flutter 2, (2) cutaneous potential recordings
of a pregnant woman 3, (3) data from a test setup of an industrial winding pro-
cess 4, (4) continuous stirred tank reactor 5. In this dataset (DS3), the reference
time series were given by domain experts. The forth dataset DS4 is generated
using the Cylinder-Bell-Funnel method6. It is an artificial dataset that covers
the complete spectrum of stationary/ non-stationary, noisy/ smooth, cyclical/
non-cyclical, symmetric/ asymmetric etc. data characteristics. We used a PAM
clustering (k = 4) of a random sample in order to derive the reference time series
as described above. The k parameter was determined by standard methods.

We compare our mathematical model based time series approximation (MB)
with the following competing approximation techniques: Bit Level using clipped
time series representations as proposed in [12], Discrete Fourier Transformation
(DFT) [3] and representations by means of Chebyshev polynomials (Chebyshev)
[7]. The competing techniques are evaluated by the approximation quality of
k-means clusterings.

Model description of the test datasets. For the mathematical function of the
model we used a linear combination of the original set of reference time series,

2 http://homes.esat.kuleuven.be/ smc/daisy/daisydata.html
3 http://www.tsi.enst.fr/icacentral/base single.html
4 http://homes.esat.kuleuven.be/ smc/daisy/daisydata.html
5 http://www.fceia.unr.edu.ar/isis/cstr.txt
6 http://waleed.web.cse.unsw.edu.au/phd/html/node119.html
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Fig. 7. Cluster quality for varying number of clusters. (DS3)

the quadrature and cubature of the reference time series, and the first and second
derivation of the reference time series in time. In fact, using n model parameters
we only required n/5 reference time series.

The overall number of model parameters used for the experiments are justi-
fied to the datasets. We used 101 parameters for DS1 and DS2, 51 parameters
for DS3 and 20 for DS4. In order to be comparable to the competitors, we used
the same number of coefficients for DFT and Chebyshev based approximations.

Measuring clustering quality. For the experimental evaluation of our approach,
we built reference clusterings based on the Euclidean distance between the orig-
inal time series and measured the clustering quality w.r.t. this reference clus-
tering. For the clustering quality measure, we used the two most prominent
clustering evaluation methods, the Rand Index and the Jacard Distance [14].

Experiments on clustering quality. In the first experiment, we examine the qual-
ity of our approximation method for a varying number of clusters based on the
three datasets DS1 (cf. Figure 5), DS2 (cf. Figure 6) and DS3 (cf. Figure 7). Over
all competitors, the Bit Level approach yields the lowest clustering quality for
all experiments and experimental settings. In comparison we achieve a quality
which is at least two times higher than that of the Bit level approach. In our
experiments, our approach outperforms the method based on DFT coefficients
and is even better than the approach using the Chebyshev polynomials when
increasing the number of searched clusters.

Against the competitors, our approach achieves optimal clustering quality,
even on the real world dataset. This can be justified by the fact that our model-
based similarity distance reflects the Euclidean distance on the original time
series very accurately.
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Fig. 8. Cluster quality for varying time series length. (DS4)

Dependency on time series length. In the next experiment, we examine how the
cluster quality depends on the size of the time series. Figure 8(a) and Figure 8(b)
depict the results. Obviously, the characteristic of both dimensionality reduction
approaches DFT and Chebyshev is that the clustering quality decreases drasti-
cally with increasing time series length. In contrast, we achieve high quality over
all investigated time series lengths applying our model-based approximations.
Similar to our approach, the Bit Level approach keeps nearly constant quality
even for long time series, but yields rather low performance.

Runtime comparison. Last but not least, we compared the speed-up of our
method in comparison to the original Euclidean distance in terms of CPU time.
For that purpose, we varyed the length of the time series of DS4. The results
are illustrated in Figure 9(a). As expected, our model-based approach (marked
with “MB” in the figure) scales constant, while the Euclidean distance (marked
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Fig. 9. Performance of our model-based approach vs. Euclidean distance.

with “ED” in the figure) scales linear wr.t. the length of the time series. It can
be further observed that our model-based approach clearly outperforms the Eu-
clidean distance for long time series. Figure 9(b) depicts the speed-up factor our
model-based approach gains over the approach using the Euclidean distance.
Obviously, this speed-up grows with a linear scale when increasing the length of
the time series. In summary, our approach yields feature vectors of a constant
and considerably lower dimensionality and (beside more efficient indexing) yields
to better CPU performance than using the original time series.

5 Conclusions

The performance of clustering time series data is limited by the length of the
considered time series. As a consequence, several dimensionality reduction meth-
ods have been proposed to represent time series in a compact approximation.
Approximative clustering applied to existing compressed representations of time
series (e.g. obtained through dimensionality reduction) usually suffers from low
accuracy. This holds especially for large time series.

In this paper, we propose an approximation technique for time series based
on mathematical models. In fact, each time series is described by the coefficients
of a mathematical model involving a given set of reference time series. The great
benefit is that the size of our approximation depends only on the number of
coefficients of the model (i.e. the number of reference time series). In particu-
lar, our method is independent of the length of the original time series and is
thus suitable also for very long time series. The compact representation using a
feature vector of coefficients of the model allows efficient indexing of the time
series approximations for fast similarity search and clustering. We further show
how our proposed approximations can be used for approximate clustering. In
our experimental evaluation, we illustrate that our novel method outperforms



existing state-of-the-art approximation methods in terms of clustering accuracy,
i.e. our approximations are significantly better than existing schemata.

In our future work, we plan to extend our ideas of approximating time series
by means of mathematical models to stream data.
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